JPH01163436A - Air-fuel ratio control device for lean combustion internal combustion engine - Google Patents

Air-fuel ratio control device for lean combustion internal combustion engine

Info

Publication number
JPH01163436A
JPH01163436A JP31746787A JP31746787A JPH01163436A JP H01163436 A JPH01163436 A JP H01163436A JP 31746787 A JP31746787 A JP 31746787A JP 31746787 A JP31746787 A JP 31746787A JP H01163436 A JPH01163436 A JP H01163436A
Authority
JP
Japan
Prior art keywords
control valve
intake control
air
intake
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31746787A
Other languages
Japanese (ja)
Inventor
Keisuke Tsukamoto
啓介 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31746787A priority Critical patent/JPH01163436A/en
Publication of JPH01163436A publication Critical patent/JPH01163436A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent disturbance of an air-fuel ratio during switching, by a method wherein a suction control valve, a first map means to control a fuel feed means, and a second map means are provided, and during switching between the first and the second map means, switching is gradually effected. CONSTITUTION:A first map means 1 to set an amount of fuel fed from a fuel feed means 26 according to a state in which a suction control valve is closed and a second map means 2 to set an amount of fuel fed from the fuel feed means 26 according to a state in which the suction control valve 32 is opened are provided. In which case, when the suction control valve 32 is switched between a closed state and an opening state, transient switching is detected by a switching state detecting means 3, and switching of a map is gradually effected between the first and second map means 1 and 2 by means of a means 4 to perform switching of a maps.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、吸気制御弁を備え空燃比を超リーンからリ
ッチまでの広い範囲にわたり制御する内燃機関における
空燃比制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air-fuel ratio control device for an internal combustion engine that includes an intake control valve and controls the air-fuel ratio over a wide range from ultra-lean to rich.

〔従来の技術] 空燃比が理論空燃比より極端に希薄な混合気で燃焼を可
能とする内燃機関として吸気制御弁を使用したものが公
知である。例えば、特開昭60=196931号参照。
[Prior Art] An internal combustion engine that uses an intake control valve is known as an internal combustion engine that enables combustion with an air-fuel mixture whose air-fuel ratio is extremely leaner than the stoichiometric air-fuel ratio. For example, see Japanese Unexamined Patent Publication No. 196931.

即ち、吸気ボートはストレート型の吸気ポートと、ヘリ
カル型の吸気ポートとの二つが設けられ、ストレート吸
気ボートには吸気制御弁が設置される。吸気制御弁はエ
ンジンの負圧によって開閉制御される。エンジン全負荷
状態では吸気制御弁は開弁されるため双方の吸気ポート
より空気の導入が行われる。このときは、空燃比は理論
空燃比よりリッチ側の値(例えば12.5 )に設定さ
れる。エンジンの部分負荷状態でかつエンジン回転数が
所定値より小さいとき吸気制御弁は閉鎖され、空気はヘ
リカル型の吸気ポートのみより導入され、この際シリン
ダボア内にスワールが生成される。そのため、成層作用
が達成され、超希薄混合気(空燃比=21〜22)によ
る安定燃焼が実現する。部分負荷においてエンジン回転
数が低い状態から高い状態へ移行すると吸気制御弁は閉
鎖状態から開放状態に切り替えられ。この部分負荷にお
ける高回転域では吸気制御弁は開放維持され、低回転時
と違って、負荷に応じた吸気制御弁の開閉は行わない。
That is, the intake boat is provided with two intake ports, a straight intake port and a helical intake port, and an intake control valve is installed on the straight intake boat. The opening and closing of the intake control valve is controlled by the negative pressure of the engine. When the engine is fully loaded, the intake control valve is opened, so air is introduced from both intake ports. At this time, the air-fuel ratio is set to a value richer than the stoichiometric air-fuel ratio (for example, 12.5). When the engine is under partial load and the engine speed is less than a predetermined value, the intake control valve is closed and air is introduced only through the helical intake port, creating a swirl in the cylinder bore. Therefore, a stratification effect is achieved, and stable combustion with an ultra-lean mixture (air-fuel ratio = 21 to 22) is achieved. When the engine speed changes from low to high under partial load, the intake control valve is switched from the closed state to the open state. In the high rotation range under this partial load, the intake control valve is kept open, and unlike at low rotation speeds, the intake control valve is not opened or closed according to the load.

しかし、空燃比は全負荷域では出力を得るためリッチ側
の値とされ、部分負荷域では燃料消費効率の向上のため
幾分り一ン側の値(例えば16〜18)に設定している
However, in the full load range, the air-fuel ratio is set to a rich value in order to obtain output, and in the partial load range, it is set to a value on the rich side (for example, 16 to 18) to improve fuel consumption efficiency. .

[発明が解決しようとする問題点] 一般に電子制御燃料噴射内P!機関では、機関の負荷及
び回転数に応じて基本燃料噴射量をマツプ計算する。こ
こに基本燃料噴射量とはその特定の負荷、回転数で空燃
比を理論空燃比とする燃料噴射量に設定される。従って
、吸気管圧力によって負荷を検出する燃料噴射システム
(所謂D−J型の燃料噴射システム)では基本燃料噴射
マツプは負荷と回転数との二次元マツプとして構成され
る。
[Problems to be solved by the invention] In general, electronically controlled fuel injection P! In the engine, the basic fuel injection amount is calculated based on the engine load and rotation speed. Here, the basic fuel injection amount is set to the fuel injection amount that makes the air-fuel ratio the stoichiometric air-fuel ratio at that specific load and rotation speed. Therefore, in a fuel injection system (so-called DJ type fuel injection system) in which load is detected by intake pipe pressure, the basic fuel injection map is constructed as a two-dimensional map of load and rotational speed.

ところが、吸気制御弁を備えた場合その開閉て同一の吸
気管圧力でも空気流量は同じではない。即ち、吸気制御
弁の閉鎖時は流量が低下し、一方吸気制御弁の開放時は
流量は増加する。従って、−枚のマツプのみでは吸気制
御弁の開閉の双方に適合する基本燃料噴射量を得ること
は困難である。
However, when an intake control valve is provided, the air flow rate is not the same even if the intake pipe pressure is the same when the intake control valve is opened or closed. That is, when the intake control valve is closed, the flow rate decreases, while when the intake control valve is open, the flow rate increases. Therefore, it is difficult to obtain a basic fuel injection amount that is suitable for both opening and closing of the intake control valve using only one map.

そこで、吸気制御弁の開閉のどちらでも最適な基本燃料
噴射量を得るため2枚のマツプを切替で使用することが
提案されている。ところが、吸気制御弁を開と閉との間
で切り替える過渡状態を考えると吸気制御弁の作動には
機械的な遅れが必然的に伴う。一方、空燃比の切替はそ
の遅れは小さい。
Therefore, it has been proposed to switch between two maps in order to obtain the optimum basic fuel injection amount for both opening and closing of the intake control valve. However, considering the transient state in which the intake control valve is switched between open and closed states, the operation of the intake control valve is inevitably accompanied by a mechanical delay. On the other hand, the delay in switching the air-fuel ratio is small.

特に、吸気制御弁を閉から開への切替の場合場合には吸
気制御弁の駆動圧力の伝達を遅延させるオリフィスのよ
うな手段が具備され、空燃比はリッチ側に直ぐ移行する
のに吸気制御弁は暫く閉に留まる結果となる。そのため
、吸気制御弁の閉から開への過渡的な切替状態ではスパ
イク的なリッチ状態が惹起されるという不具合があった
In particular, when switching the intake control valve from closed to open, a means such as an orifice is provided to delay the transmission of the driving pressure of the intake control valve, and even though the air-fuel ratio immediately shifts to the rich side, the intake control This results in the valve remaining closed for some time. Therefore, there has been a problem in that a spike-like rich state occurs in a transient switching state of the intake control valve from closed to open.

この発明は吸気制御弁の開と閉との切替過程における空
燃比の荒れを防止することを目的とする。
The object of the present invention is to prevent the air-fuel ratio from becoming rough during the switching process between opening and closing of an intake control valve.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の希薄燃焼内燃機関の空燃比制御装置は、第1
図に示すように、吸気管の流路系を大小可変とする吸気
制御弁32と、内燃機関へ必要量の燃料を供給する燃料
供給手段26と、燃料供給手段26からの燃料供給量を
吸気制御弁32の閉鎖状態に適合して設定する第1マツ
プ手段1と、燃料供給手段26からの燃料供給量を吸気
制御弁32の開放状態に適合して設定する第2マツプ手
段2と、吸気制御弁32の閉鎖状態と開放状態と間の過
渡的な切替状態を検出する切替状態検出手段3と、この
切替状態においてその状態に移行後の時間に応じて前記
第1マンブ手段lと第2マツプ手段2との間で徐々にマ
ツプ切替を行う手段4とから構成される。
The air-fuel ratio control device for a lean-burn internal combustion engine of the present invention has a first
As shown in the figure, an intake control valve 32 that changes the size of the flow path system of the intake pipe, a fuel supply means 26 that supplies the required amount of fuel to the internal combustion engine, and a fuel supply amount from the fuel supply means 26 that controls the intake air flow. a first map means 1 for setting the amount of fuel supplied from the fuel supply means 26 in accordance with the closed state of the control valve 32; a second map means 2 for setting the amount of fuel supplied from the fuel supply means 26 in accordance with the open state of the intake control valve 32; switching state detection means 3 for detecting a transient switching state between the closed state and the open state of the control valve 32; and means 4 for gradually switching maps between map means 2 and map means 2.

〔実施例〕〔Example〕

第2図において、10はシリンダブロック、12はシリ
ンダボアである。12a、12bは吸気ボート、14a
、14bは排気ポートであり、夫々のボートのため吸気
弁16a、16b、排気弁18a、18bが設けられた
所謂4バルブ構成である。第1の吸気ボート12aは所
謂ヘリカル型であり、吸気スワールの形成に好都合な形
状に構成されている。第2の吸気ボート12bはストレ
ート型である。吸気ボート12a、12bは吸気管20
、サージタンク22を介してスロットルボディ23に接
続される。スロットルボディ23内にスロットル弁24
が設置される。各気筒の吸気ボート12a及び12bに
近接して吸気管20に燃料インジェクタ26が配置され
る。排気ボー)L4a、14bは排気マニホルド28に
接続される。尚、30はディストリビュータである。
In FIG. 2, 10 is a cylinder block, and 12 is a cylinder bore. 12a and 12b are intake boats, 14a
, 14b are exhaust ports, and each boat has a so-called four-valve configuration in which intake valves 16a, 16b and exhaust valves 18a, 18b are provided. The first intake boat 12a is of a so-called helical type, and is configured to have a shape convenient for forming an intake swirl. The second intake boat 12b is of a straight type. The intake boats 12a and 12b are the intake pipes 20
, are connected to the throttle body 23 via the surge tank 22. Throttle valve 24 inside throttle body 23
will be installed. A fuel injector 26 is arranged in the intake pipe 20 adjacent to the intake boats 12a and 12b of each cylinder. The exhaust bows L4a and 14b are connected to the exhaust manifold 28. Note that 30 is a distributor.

ストレートの吸気ボート12bに蝶型弁としての吸気制
御弁32が設けられる。吸気制御弁32の閉鎖状態では
ヘリカル型の吸気ボートl 2aのみから吸入空気の導
入が行われ、シリンダボア12内にスワールSが形成さ
れ、超希薄混合気の燃焼が実現される。吸気制御弁32
が開放されると双方の吸気制御弁12a、12bより空
気が導人され、スワールが弱まる。各気筒の吸気制御弁
32の弁軸にレバー34が取付られ、ロッド36を介し
て負圧アクチュエータ38に連結される。
An intake control valve 32 as a butterfly valve is provided on the straight intake boat 12b. When the intake control valve 32 is closed, intake air is introduced only from the helical intake boat l2a, a swirl S is formed in the cylinder bore 12, and combustion of an ultra-lean mixture is achieved. Intake control valve 32
When the intake control valves 12a and 12b are opened, air is guided from both intake control valves 12a and 12b, and the swirl is weakened. A lever 34 is attached to the valve shaft of the intake control valve 32 of each cylinder, and is connected to a negative pressure actuator 38 via a rod 36.

負圧アクチュエータ38はダイヤフラム40とスプリン
グ41とから構成される。ダイヤフラム40に負圧がか
かっていないときはスプリング41の働きでダイヤフラ
ム40は図の下方に押され、吸気制御弁32は開放位置
される。ダイヤフラム40に負圧が加わるとダイヤプラ
ム40はスプリング41に抗して引っ張られ、吸気制御
弁32は吸気ボート12bを閉鎖する位置をとる。
The negative pressure actuator 38 is composed of a diaphragm 40 and a spring 41. When no negative pressure is applied to the diaphragm 40, the diaphragm 40 is pushed downward in the figure by the action of the spring 41, and the intake control valve 32 is placed in the open position. When negative pressure is applied to the diaphragm 40, the diaphragm 40 is pulled against the spring 41, and the intake control valve 32 assumes a position that closes the intake boat 12b.

ダイヤフラム40は、負圧遅延弁42、電磁3方弁44
、及び負圧保持チエツク弁46を介してサージタンク2
2の負圧取出ボート22aに接続される。負圧遅延弁4
2はオリフィス42aとチエツク弁42bとを並列配置
して構成され、ダイヤフラム40への大気圧導入速度、
即ち吸気制御弁32の開放速度を適当な値にコントロー
ルするものである。一方、チエツク弁46はダイヤフラ
ム40に加わる負圧を保持するものである。電磁弁44
は3つのボート44a、44b、44cを具備しており
、除電時はボート44aと44bとが連通されてダイヤ
フラム40は負圧ボート22aに連通され、通電時はボ
ート44aと44cとが連通され、ダイヤフラム40は
大気(フィルタ48)に連通される。電磁弁44は制御
回路50によって駆動され、吸気制御弁32の作動を制
御する。
The diaphragm 40 includes a negative pressure delay valve 42 and an electromagnetic three-way valve 44.
, and the surge tank 2 via the negative pressure maintenance check valve 46.
It is connected to No. 2 negative pressure extraction boat 22a. Negative pressure delay valve 4
2 is configured by arranging an orifice 42a and a check valve 42b in parallel, and the rate at which atmospheric pressure is introduced into the diaphragm 40,
That is, the opening speed of the intake control valve 32 is controlled to an appropriate value. On the other hand, the check valve 46 maintains the negative pressure applied to the diaphragm 40. Solenoid valve 44
is equipped with three boats 44a, 44b, and 44c, and when electricity is removed, the boats 44a and 44b are communicated, and the diaphragm 40 is communicated with the negative pressure boat 22a, and when electricity is applied, the boats 44a and 44c are communicated, Diaphragm 40 is in communication with the atmosphere (filter 48). The solenoid valve 44 is driven by the control circuit 50 and controls the operation of the intake control valve 32.

制御回路50は、例えば、マイクロコンピュータシステ
ムとして構成され、インジェクタ26及び電磁弁44を
この発明に従って制御するものである。吸気管圧力セン
サ52はサージタンク22に設置され、吸気管圧力PM
に応じた信号を発生する。クランク角度センサ54,5
6はディストリビュータ30に設けられ、第1のクラン
ク角度センサ54は基準位置検出用で、例えば、機関の
クランク軸の720度毎に信号を発生し、第2のクラン
ク角度センサ56は、クランク角度で例えば30度毎の
信号を発生し、機関回転数NEを知るのに役立つ。また
、所謂リーンセンサ等の空燃比センサ58が排気マニホ
ルド28に設けられ、空燃比OXに応じた信号が得られ
る。59はスロットル弁広開度スイッチ(VLスイッチ
)であり、スロットル弁24が全負荷に相当する開度ま
で踏み込まれたときONとなり、通常はOFFである。
The control circuit 50 is configured as a microcomputer system, for example, and controls the injector 26 and the solenoid valve 44 according to the present invention. The intake pipe pressure sensor 52 is installed in the surge tank 22 and measures the intake pipe pressure PM.
Generates a signal according to the Crank angle sensor 54,5
6 is provided in the distributor 30, the first crank angle sensor 54 is for detecting the reference position and generates a signal every 720 degrees of the engine crankshaft, and the second crank angle sensor 56 is for detecting the crank angle. For example, it generates a signal every 30 degrees and is useful for knowing the engine speed NE. Further, an air-fuel ratio sensor 58 such as a so-called lean sensor is provided in the exhaust manifold 28, and a signal corresponding to the air-fuel ratio OX is obtained. 59 is a throttle valve wide opening switch (VL switch), which is turned ON when the throttle valve 24 is depressed to an opening corresponding to the full load, and is normally OFF.

制御回路50はこれらのセンサからの信号に基づいて必
要な演算処理を実行し、インジェクタ及び電磁弁の駆動
制御を行うことになる。
The control circuit 50 executes necessary arithmetic processing based on the signals from these sensors, and controls the driving of the injector and the solenoid valve.

以下の制御回路50の作動をフローチャートによって説
明する。第3図は吸気制御弁(SCV)32の駆動のた
めのルーチンを示している。このルーチンは一定時間(
例えば32m秒)毎に実行される。ステップ70ではカ
ウンタC3CVDLYのインクリメントが実行される。
The operation of the control circuit 50 will be explained below using a flowchart. FIG. 3 shows a routine for driving the intake control valve (SCV) 32. This routine runs for a certain period of time (
For example, it is executed every 32 msec). In step 70, the counter C3CVDLY is incremented.

C5CVDLYは吸気制御弁32の閉鎖から開放への移
行の開始からの経過時間を計測する役目を持っている。
C5CVDLY has the role of measuring the elapsed time from the start of the transition from closing to opening of the intake control valve 32.

ステップ71では吸気制御弁32の開閉状態の判別が行
われる。
In step 71, it is determined whether the intake control valve 32 is open or closed.

吸気制御弁32は部分負荷における低回転域において閉
鎖され、それ以外の領域では開放される。
The intake control valve 32 is closed in a low rotation range under partial load, and is opened in other regions.

吸気制御弁32の閉鎖状態では空燃比はリーン側に制御
され、吸気制御弁32の開放状態では空燃比はリッチ側
に制御される。吸気制御弁32の開閉の判別の詳細はこ
の発明と直接関係しないので説明を省略する。ステップ
72ではステップ70の判別結果より吸気制御弁32の
閉鎖領域か否かが判別される。吸気制御弁32の閉鎖域
であれば、ステップ74に進みカウンタC3CVDLY
のクリヤが実行され、次にステップ75に進み、フラグ
yscvがセットされる。このフラグは吸気制御弁32
の開信号が出力されたか(0)、閉信号が出力されたか
(1)を示す。次にステップ76に進み電磁弁44をO
FFとすべき信号が出力される。そのため、電磁弁44
は黒塗りのボート位置をとり、サージタンク22の負圧
ボート22aの負圧がチエツク弁46.負圧遅延弁42
のチエツク弁42bを介してダイヤプラム40に印加さ
れ、ダイヤフラム40はスプリング42に抗して吸引さ
れ、吸気制御l弁32は閉弁される。尚、吸気制御弁3
2を閉弁せしめる負圧が一旦発生すると、チエツク弁4
6の働きでこの負圧は保持され、ボート22aの負圧が
閉弁には足りなくても吸気制御弁32を閉弁保持するこ
とができる。
When the intake control valve 32 is closed, the air-fuel ratio is controlled to the lean side, and when the intake control valve 32 is open, the air-fuel ratio is controlled to the rich side. The details of determining whether the intake control valve 32 is open or closed are not directly related to the present invention, so a description thereof will be omitted. In step 72, it is determined based on the determination result in step 70 whether or not the intake control valve 32 is in a closed region. If the intake control valve 32 is in the closed region, the process advances to step 74 and the counter C3CVDLY is
is cleared, and then the process proceeds to step 75, where the flag yscv is set. This flag is the intake control valve 32
This indicates whether an open signal is output (0) or whether a close signal is output (1). Next, proceed to step 76 and turn the solenoid valve 44 to O.
A signal to be used as an FF is output. Therefore, the solenoid valve 44
takes the black boat position, and the negative pressure of the negative pressure boat 22a of the surge tank 22 is at the check valve 46. Negative pressure delay valve 42
The air pressure is applied to the diaphragm 40 through the check valve 42b, the diaphragm 40 is attracted against the spring 42, and the intake control valve 32 is closed. In addition, the intake control valve 3
Once the negative pressure that closes check valve 4 is generated, check valve 4 closes.
6 maintains this negative pressure, and even if the negative pressure in the boat 22a is insufficient to close the valve, the intake control valve 32 can be kept closed.

吸気制御弁32を閉鎖すべき領域とすればステップ72
よりステップ78に進み、yscv=oとリセットされ
、ステップ80では電磁弁44をONとすべき信号が出
力される。そのため、電磁弁44は白抜きのボート位置
をとり、空気フィルタ48から大気圧が負圧遅延弁のオ
リフィス42aを介してダイヤフラム40に印加され、
ダイヤフラム40はスプリング42によって下降され、
吸気制御弁32は開弁される。オリフィス42aは吸気
制御弁32の開弁速度を適正に規制する。
If the region in which the intake control valve 32 should be closed is Step 72.
The process then proceeds to step 78, where yscv=o is reset, and in step 80, a signal to turn on the solenoid valve 44 is output. Therefore, the solenoid valve 44 takes the white boat position, and atmospheric pressure is applied from the air filter 48 to the diaphragm 40 through the orifice 42a of the negative pressure delay valve.
The diaphragm 40 is lowered by a spring 42;
The intake control valve 32 is opened. The orifice 42a appropriately regulates the opening speed of the intake control valve 32.

第4図は燃料噴射ルーチンを示し、このルーチンはクラ
ンク角度における燃料噴射時期の幾分手前をクランク角
度センサ54及び56により検出することにより実行開
始される。ステップ90では吸気制御弁32の閉鎖時の
基本燃料噴射量を決める第1マツプTPSより基本燃料
噴射量の補間演算が実行される。周知のように基本燃料
噴射量は空燃比を理論空燃比とするように機関負荷(P
M)及び機関回転数(NE)によって決められる値であ
る。ステップ94ではyscv=oか否か、即ち吸気制
御弁32を開放すべき信号が出力されているか否か判別
される。YSCV=1のとき、即ち吸気制御弁32の閉
鎖信号が出力されているときはステップ96に進み、T
PSがTPに入れられる。
FIG. 4 shows a fuel injection routine, and this routine is started when the crank angle sensors 54 and 56 detect the crank angle slightly before the fuel injection timing. In step 90, an interpolation calculation of the basic fuel injection amount is performed from the first map TPS which determines the basic fuel injection amount when the intake control valve 32 is closed. As is well known, the basic fuel injection amount is determined based on the engine load (P
M) and the engine speed (NE). In step 94, it is determined whether yscv=o, that is, whether a signal to open the intake control valve 32 is being output. When YSCV=1, that is, when the closing signal of the intake control valve 32 is output, the process advances to step 96, and T
PS is put into TP.

yscv=oのとき、即ち吸気制御弁32を開放すべき
信号が出ているときは、ステップ94よりステップ98
に進み、吸気制御弁32の開放時の基本燃料噴射量を決
める第2マツプTPOより基本燃料噴射量の補間演算が
実行される。このマツプは同様に吸気制御弁の開放時に
空燃比を理論空燃比とするように機関負荷(PM)及び
機関回転数(NE)によって決められる値である。次に
ステップ100に進み、カウンタC3CVDLY< 1
500m秒か否か、即ち吸気制御弁を閉鎖から開放に切
り替えるべき信号が初めに出てから1500m秒経過か
否か判別される。未経過のときはステップ102に進み
、過渡時の基本燃料噴射量の補正係数KTPSCVの補
間演算が実行される。 KTPSCVはC3CVDLY
の値に応じてOから1までの値をとり、吸気制御弁32
の開放信号の出力開始から吸気制御弁32が実際に完全
開放されるまでの過渡状態において、TPSとTPOと
の間の最適な基本燃料噴射量の値が得られるように予め
決められている。制御回路50のメモリにはC3CVD
LYとKTPSCVとの二次元マツプが格納されており
、現在のC5CVDLYの値に対するKTPSCVの値
の補間演算が実行されることになる。次ぎにステップ1
04に進み、過渡時の基本燃料噴射量TPが、 TP=TPS+KTPSCVX (TPO−TPS)に
よって算出される。この式によって、吸気制御弁32の
開放信号が出力されてからの吸気制御弁32の実際の開
放状態に適した基本燃料噴射量を得ることができる。
When yscv=o, that is, when a signal to open the intake control valve 32 is issued, the process proceeds from step 94 to step 98.
Then, interpolation calculation of the basic fuel injection amount is executed from the second map TPO which determines the basic fuel injection amount when the intake control valve 32 is opened. Similarly, this map is a value determined by the engine load (PM) and the engine speed (NE) so that the air-fuel ratio is the stoichiometric air-fuel ratio when the intake control valve is opened. Next, proceed to step 100 and check the counter C3CVDLY<1
It is determined whether 500 msec has elapsed, that is, whether 1500 msec has elapsed since the signal to switch the intake control valve from closed to open was first issued. If it has not yet elapsed, the process proceeds to step 102, where an interpolation calculation of the correction coefficient KTPSCV for the basic fuel injection amount during the transient period is executed. KTPSCV is C3CVDLY
The intake control valve 32 takes a value from O to 1 depending on the value of
The optimum basic fuel injection amount value between TPS and TPO is determined in advance so that an optimum basic fuel injection amount value between TPS and TPO can be obtained in a transient state from the start of output of the opening signal until the intake control valve 32 is actually fully opened. The memory of the control circuit 50 is C3CVD.
A two-dimensional map of LY and KTPSCV is stored, and an interpolation calculation of the value of KTPSCV with respect to the current value of C5CVDLY will be executed. Next step 1
04, the basic fuel injection amount TP at the time of transition is calculated by TP=TPS+KTPSCVX (TPO-TPS). Using this equation, it is possible to obtain a basic fuel injection amount suitable for the actual open state of the intake control valve 32 after the opening signal for the intake control valve 32 is output.

吸気制御弁32の開放信号の出力開始から1.5秒経過
したとき、即ち吸気制御弁32が現実に開放されたとき
はステップ100よりステップ106に流れ、TPOが
TPに入れられる。
When 1.5 seconds have elapsed since the start of outputting the open signal of the intake control valve 32, that is, when the intake control valve 32 has actually been opened, the process flows from step 100 to step 106, and TPO is put into TP.

ステップ108では最終噴射量TAUが、TAU=TP
Xα+β により算出される。ここにα、βはこの発明と直接関係
しないため説明を省略する補正係数、補正量を概括的に
示すものである。吸気制御弁32の閉鎖状態において空
燃比をリーン側に補正する補正係数や、加速時の増量補
正、空燃比を設定空燃比にフィードバックする補正等が
この中に含まれることはもとよりである。
In step 108, the final injection amount TAU is determined as TAU=TP
Calculated by Xα+β. Here, α and β generally indicate correction coefficients and correction amounts whose explanations are omitted because they are not directly related to the present invention. Of course, this includes a correction coefficient that corrects the air-fuel ratio to the lean side when the intake control valve 32 is closed, an increase correction during acceleration, a correction that feeds back the air-fuel ratio to the set air-fuel ratio, etc.

ステップ110ではステップ108で算出された燃料噴
射量が噴射されるように燃料噴射信号がインジェクタ2
6に印加される。
In step 110, a fuel injection signal is sent to the injector 2 so that the fuel injection amount calculated in step 108 is injected.
6.

第5図はこの発明の詳細な説明するタイミング図で、吸
気制御弁32の閉鎖から開放条件への移行のため■の時
点でYSCV= 1から0に切り替わったとすると、負
圧遅延弁42のオリフィス42aを介して大気圧が徐々
にダイヤフラム40に導入されるため吸気制御弁32の
実際の開度は一点鎖線のように緩慢に変化し、空気量も
(ロ)のように徐々に変化する。吸気制御弁32の閉鎖
状態の基本燃料噴射ITPは第1マツプTPSで、開放
状態では第2マツプTPOにより決まる。そして、閉鎖
から開放への過渡状態ではステップ104の式により第
1マツプと第2マツプとの中間に、切替後の時間(即ち
C5CVDLYの値)に応じて決められる。そのため、
過渡状態での空気量の変化に適合した基本燃料噴射量T
Pが得られる(ハ)、そのため、(ニ)の実線のように
空燃比は過渡的にも目標空燃比に適合される。もし、吸
気制御弁の閉から開の切替信号と同時にマツプを切替と
すると基本燃料噴射量は(ハ)の破線のように急変する
ため、空燃比も(ニ)の破線のようにリッチ側にずれる
不具合がある。
FIG. 5 is a timing diagram illustrating the present invention in detail. Assuming that YSCV=1 is switched from 0 to 0 at point (2) due to the transition from the closed to open condition of the intake control valve 32, the orifice of the negative pressure delay valve 42 Since the atmospheric pressure is gradually introduced into the diaphragm 40 via 42a, the actual opening degree of the intake control valve 32 changes slowly as shown by the dashed line, and the air amount also changes gradually as shown in (b). The basic fuel injection ITP in the closed state of the intake control valve 32 is determined by the first map TPS, and in the open state the basic fuel injection ITP is determined by the second map TPO. In the transition state from closing to opening, the equation in step 104 is used to determine an intermediate point between the first map and the second map depending on the time after switching (ie, the value of C5CVDLY). Therefore,
Basic fuel injection amount T adapted to changes in air amount in transient conditions
P is obtained (c). Therefore, the air-fuel ratio is adapted to the target air-fuel ratio even transiently, as shown by the solid line in (d). If the map is switched at the same time as the intake control valve switching signal from closed to open, the basic fuel injection amount will change suddenly as shown in the broken line in (c), and the air-fuel ratio will also shift to the rich side as shown in the broken line in (d). There is a problem with shifting.

〔効 果〕〔effect〕

この発明によれば、吸気制御弁の閉鎖域と開放域との切
替の過渡状態に応じて、切替信号の出力からの経過時間
に応じてマツプを徐々に切替することにより過渡状態に
おける最適な基本燃料噴射量の値を得ることができ、過
渡的な空燃比の荒れを防止することができる。そのため
、運転性を向上することができる。
According to the present invention, in accordance with the transient state of switching between the closed region and the open region of the intake control valve, the map is gradually switched according to the elapsed time from the output of the switching signal, so that the optimum basics in the transient state can be achieved. It is possible to obtain the value of the fuel injection amount, and it is possible to prevent transient fluctuations in the air-fuel ratio. Therefore, drivability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の構成を示す図。 第2図はこの発明の実施例の全体概略図。 第3図及び第4図はこの発明の制御回路の作動を説明す
るフローチャート。 第5図はこの発明の装置の作動を説明するタイミング図
。 12a、12b・・・吸気ポート 22・・・サージタンク 26・・・燃料インジェクタ 32・・・吸気制御弁 38・・・負圧アクチュエータ 44・・・3方電磁弁 46・・・負圧保持用チエツク弁 50・・・制御回路 52・・・吸気管圧力センサ 54.56・・・クランク角度センサ 59・・・スロットル弁広開度スイッチ第3図
FIG. 1 is a diagram showing the configuration of the present invention. FIG. 2 is an overall schematic diagram of an embodiment of the invention. FIGS. 3 and 4 are flowcharts illustrating the operation of the control circuit of the present invention. FIG. 5 is a timing diagram illustrating the operation of the device of the present invention. 12a, 12b...Intake port 22...Surge tank 26...Fuel injector 32...Intake control valve 38...Negative pressure actuator 44...3-way solenoid valve 46...For maintaining negative pressure Check valve 50...Control circuit 52...Intake pipe pressure sensor 54.56...Crank angle sensor 59...Throttle valve wide opening switch Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 吸気管の流路系を大小可変とする吸気制御弁と、内燃機
関へ必要量の燃料を供給する燃料供給手段と、燃料供給
手段からの燃料供給量を吸気制御弁の閉鎖状態に適合し
て設定する第1マップ手段と、燃料供給手段からの燃料
供給量を吸気制御弁の開放状態に適合して設定する第2
マップ手段と、吸気制御弁の閉鎖状態と開放状態と間の
過渡的な切替状態を検出する切替状態検出手段と、この
切替状態においてその状態に移行後の時間に応じて前記
第1マップと第2マップとの間で徐々にマップ切替を行
う手段とから構成される希薄燃焼内燃機関の空燃比制御
装置。
An intake control valve that makes the flow path system of the intake pipe variable in size, a fuel supply means for supplying a necessary amount of fuel to an internal combustion engine, and a fuel supply amount from the fuel supply means adapted to the closed state of the intake control valve. a first map means for setting, and a second map means for setting the amount of fuel supplied from the fuel supply means in accordance with the open state of the intake control valve.
map means; switching state detection means for detecting a transient switching state between a closed state and an open state of the intake control valve; An air-fuel ratio control device for a lean-burn internal combustion engine, comprising means for gradually switching between two maps.
JP31746787A 1987-12-17 1987-12-17 Air-fuel ratio control device for lean combustion internal combustion engine Pending JPH01163436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31746787A JPH01163436A (en) 1987-12-17 1987-12-17 Air-fuel ratio control device for lean combustion internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31746787A JPH01163436A (en) 1987-12-17 1987-12-17 Air-fuel ratio control device for lean combustion internal combustion engine

Publications (1)

Publication Number Publication Date
JPH01163436A true JPH01163436A (en) 1989-06-27

Family

ID=18088555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31746787A Pending JPH01163436A (en) 1987-12-17 1987-12-17 Air-fuel ratio control device for lean combustion internal combustion engine

Country Status (1)

Country Link
JP (1) JPH01163436A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649737U (en) * 1992-12-10 1994-07-08 日本電子機器株式会社 Air-fuel ratio controller for internal combustion engine
US5853902A (en) * 1994-12-02 1998-12-29 Usui Kokusai Sangyo Kaisha, Ltd. Metal honeycomb core body
JP2001511694A (en) * 1997-02-04 2001-08-14 エミテク・ゲゼルシャフト・フュール・エミシオーン テクノロギー・ミット・ベシュレンクテル・ハフツング Extruded honeycomb body with reinforced wall structure, especially catalytic converter carrier body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649737U (en) * 1992-12-10 1994-07-08 日本電子機器株式会社 Air-fuel ratio controller for internal combustion engine
US5853902A (en) * 1994-12-02 1998-12-29 Usui Kokusai Sangyo Kaisha, Ltd. Metal honeycomb core body
JP2001511694A (en) * 1997-02-04 2001-08-14 エミテク・ゲゼルシャフト・フュール・エミシオーン テクノロギー・ミット・ベシュレンクテル・ハフツング Extruded honeycomb body with reinforced wall structure, especially catalytic converter carrier body
JP4860801B2 (en) * 1997-02-04 2012-01-25 エミテク・ゲゼルシャフト・フュール・エミシオーンテクノロギー・ミット・ベシュレンクテル・ハフツング Honeycomb body constituting the catalytic converter carrier body

Similar Documents

Publication Publication Date Title
JPH0652057B2 (en) Internal combustion engine controller
US8006676B2 (en) Control device for engine
US7885757B2 (en) Degradation determination apparatus and degradation determination system for oxygen concentration sensor
US5832724A (en) Air-fuel ratio control system for engines
US4633841A (en) Air-fuel ratio control for an international combustion engine
US4598678A (en) Intake system of an internal combustion engine
JPH01163436A (en) Air-fuel ratio control device for lean combustion internal combustion engine
EP0447765B1 (en) An air-fuel ratio control device for an engine
JPH03225045A (en) Air-fuel ratio control device for internal combustion engine
JPH0643814B2 (en) Dual fuel switching control method and device
JPS63195349A (en) Air-fuel ratio control device for internal combustion engine
JP2596025B2 (en) Air-fuel ratio control device for internal combustion engine
JP2888013B2 (en) Control device for intake control valve for internal combustion engine
JPH01163433A (en) Air-fuel ratio control device for lean combustion internal combustion engine
JP2596026B2 (en) Air-fuel ratio control device for internal combustion engine
JPH1193736A (en) Idling rotation learning control device for electronically controlled throttle valve type internal combustion engine
JP2609126B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH01163437A (en) Air-fuel ratio control device for lean combustion internal combustion engine
JP3691078B2 (en) Air-fuel ratio switching control device for internal combustion engine
JPS61101634A (en) Air-fuel ratio controlling method for internal-combustion engine
JPH068287Y2 (en) Air-fuel ratio controller
JPH01163435A (en) Air-fuel ratio control device for internal combustion engine
JPS62191628A (en) Intake path device for multicylinder internal combustion engine
JPH06272601A (en) Control of engine
JPH03225042A (en) Internal combustion engine control device with swirl adjusting means