JPH0116286B2 - - Google Patents

Info

Publication number
JPH0116286B2
JPH0116286B2 JP18083183A JP18083183A JPH0116286B2 JP H0116286 B2 JPH0116286 B2 JP H0116286B2 JP 18083183 A JP18083183 A JP 18083183A JP 18083183 A JP18083183 A JP 18083183A JP H0116286 B2 JPH0116286 B2 JP H0116286B2
Authority
JP
Japan
Prior art keywords
phase
rolling
stainless steel
duplex stainless
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18083183A
Other languages
Japanese (ja)
Other versions
JPS6075524A (en
Inventor
Yasuhiro Maehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18083183A priority Critical patent/JPS6075524A/en
Publication of JPS6075524A publication Critical patent/JPS6075524A/en
Publication of JPH0116286B2 publication Critical patent/JPH0116286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は、2相ステンレス鋼板の製造方法、特
に常温付近でフエライト(α)相とオーステナイ
ト(γ)相の2相からなる混合組織を有する、
Fe,Cr,Niを主成分とした2相ステンレス鋼で
あつて、塑性異方性の生じにくい超塑性変形用素
材としての2相ステンレス鋼板の製造方法に関す
る。 (従来技術) 従来、2相ステンレス鋼は、いわゆる難加工材
の部類に属し、そのため加工性改善の種々の提案
がなされてきた。その結果、今日では、例えば熱
間加工性に有害なSやOの低減によつて板や管の
ように簡単な形状のものの製造および比較的形状
の簡単な鍛造品の製造は可能になつてきた。 また、複雑な形状の製品の製造についても、加
工、熱処理を組み合せて微細組織とすることによ
つて、超塑性変形を利用した大変形加工法の適用
が可能であることも分かつてきた。 しかし、かかる大変形加工を行うに際し、その
素材については塑性異方性がほとんどないことが
特に重要であるが、従来方法では塑性異方性に関
し所望の性質は得られず、有用な方法の開発が望
まれていた。 (発明の目的) かくして、本発明の目的は、700〜1100℃での
超塑性変形を利用した大変形加工において、塑性
異方性を生じにくい、加工用素材としての2相ス
テンレス鋼板の製造方法を提供することである。 本発明の別の目的は、超塑性材料としての性能
を損なうことなく塑性異方性を改善した2相ステ
ンレス鋼板の製造を可能にする方法を提供するこ
とである。 さらに、本発明の目的は、製品歩留の大巾な上
昇により、大巾なコスト低減を図ることのできる
2相ステンレス鋼板の製造方法を提供することで
ある。 (発明の要約) ここに、本発明者はかかる目的を達成すべく、
従来法では2相ステンレス鋼板の製造時に一方向
にのみ圧延を行つていたことに着目して実験を重
ねたところ、圧延方向と超塑性変形時の塑性異方
性には一定の相関が見られること、および微細組
織とするための熱処理を行つたうえでいわゆるク
ロス圧延による冷間圧延をすることにより塑性異
方性が解消され、さらに超塑性材料としての性能
が大幅に向上することを見い出して、本発明を完
成した。 すなわち、本発明の要旨とするところは、Fe,
Cr,Niを主成分とし、常温付近でフエライト相
とオーステナイト相とから成る混合組織を有する
2相ステンレス鋼を(T―150)℃以上の温度に
加熱後〔ただし、Tはこの2相ステンレス鋼がフ
エライト単相となる温度(℃)〕、水冷もしくは強
制冷却により500℃以下に冷却し、次いで200℃以
下で合計圧下率20%以上のクロス圧延をすること
を特徴とする2相ステンレス鋼板の製造方法であ
る。 (発明の態様) 次に、本発明の具体的態様について詳細に説明
する。 本発明において、2相ステンレス鋼の主成分を
Fe,Cr,Niを限定したのは、他の元素を用いた
組合せでもα相とγ相の2相混合組織は得られる
が、材料の耐食性をはじめとする性質とコストと
を考慮した場合、Fe,Cr,Ni3元素を基本とした
方が有利であるからであり、当該2相ステンレス
鋼はこれらの合金成分の他に、必要に応じて、重
量%で示す; 5%以下のMo、 1%以下のCu、 0.5%以下のTi、 0.5%以下のNb、 0.5%以下のZr、 0.5%以下のV、 1%以下のW、 0.1%以下のC、 0.2%以下のN、 溶解時の脱酸剤としてのSi,Mnをそれぞれ
2.5%以下、2.0%以下 の1種もしくは2種以上を含有していてもよい。
なお、他に少量のReやLa,Ca,Ceあるいは不可
避不純物を含有するものももちろん包含されるの
であつて、それらによつて本発明が制限されるも
のではない。 好適組成としては次のものが例示される。
(Technical Field of the Invention) The present invention relates to a method for producing a duplex stainless steel sheet, in particular a method for manufacturing a duplex stainless steel sheet having a mixed structure consisting of two phases, a ferrite (α) phase and an austenite (γ) phase at around room temperature.
The present invention relates to a method for manufacturing a duplex stainless steel sheet, which is a duplex stainless steel whose main components are Fe, Cr, and Ni, and which is used as a material for superplastic deformation that is unlikely to cause plastic anisotropy. (Prior Art) Conventionally, duplex stainless steel belongs to the class of so-called difficult-to-work materials, and therefore various proposals have been made to improve workability. As a result, for example, by reducing S and O, which are harmful to hot workability, it has become possible to manufacture objects with simple shapes such as plates and tubes, and to manufacture forged products with relatively simple shapes. Ta. It has also been found that it is possible to apply large deformation processing methods that utilize superplastic deformation to the manufacture of products with complex shapes by creating microstructures by combining processing and heat treatment. However, when performing such large deformation processing, it is especially important that the material has almost no plastic anisotropy, but conventional methods cannot obtain the desired properties regarding plastic anisotropy, so a useful method has been developed. was desired. (Object of the Invention) Thus, the object of the present invention is to provide a method for manufacturing a duplex stainless steel sheet as a processing material that is unlikely to cause plastic anisotropy during large deformation processing using superplastic deformation at 700 to 1100°C. The goal is to provide the following. Another object of the present invention is to provide a method that makes it possible to produce a duplex stainless steel sheet with improved plastic anisotropy without impairing its performance as a superplastic material. Furthermore, it is an object of the present invention to provide a method for manufacturing a duplex stainless steel sheet that can significantly reduce costs by significantly increasing product yield. (Summary of the Invention) In order to achieve the above object, the inventors hereby provide the following:
Focusing on the fact that in conventional methods, rolling is performed only in one direction when manufacturing duplex stainless steel sheets, repeated experiments revealed that there is a certain correlation between the rolling direction and the plastic anisotropy during superplastic deformation. It was also discovered that by heat-treating to create a microstructure and then cold rolling by so-called cross rolling, the plastic anisotropy can be eliminated and the performance as a superplastic material can be greatly improved. Thus, the present invention was completed. That is, the gist of the present invention is that Fe,
After heating a duplex stainless steel whose main components are Cr and Ni and which has a mixed structure consisting of a ferrite phase and an austenite phase at room temperature to a temperature of (T - 150) °C or higher [where T is the duplex stainless steel temperature (°C) at which the steel becomes a single phase of ferrite], cooled to 500°C or less by water cooling or forced cooling, and then cross-rolled at 200°C or less with a total reduction of 20% or more. This is the manufacturing method. (Aspects of the Invention) Next, specific aspects of the present invention will be described in detail. In the present invention, the main component of duplex stainless steel is
The reason for limiting Fe, Cr, and Ni is that although a two-phase mixed structure of α phase and γ phase can be obtained by combining other elements, when considering the properties such as corrosion resistance of the material and cost, This is because it is more advantageous to use Fe, Cr, and Ni3 elements as the base, and in addition to these alloy components, the duplex stainless steel may, if necessary, be expressed in weight%; Mo of 5% or less, 1 % or less Cu, 0.5% or less Ti, 0.5% or less Nb, 0.5% or less Zr, 0.5% or less V, 1% or less W, 0.1% or less C, 0.2% or less N, when melted Si and Mn as deoxidizers, respectively
It may contain one or more of 2.5% or less, 2.0% or less.
Note that, of course, materials containing small amounts of Re, La, Ca, Ce, or other unavoidable impurities are also included, and the present invention is not limited thereto. Examples of suitable compositions include the following.

【表】 本発明によれば、当該2相ステンレス鋼がα相
単相となる温度をT(℃)とした場合、加熱温度
を、(T―150)℃以上とし、次いで水冷もしくは
強制冷却によつて500℃以下に冷却し、200℃以下
で合計圧下率20%以上の圧延加工を施すのである
が、その目的とするところは、超塑性変形を利用
する熱間加工に先立つて700〜1100℃加熱した時
にα相とγ相の微細混合組織を得るためであり、
かかる加工条件が超塑性現象を実現するための条
件となる。 加熱温度は高い方が好ましく、α相単相領域の
温度であること、つまりT℃以上が好ましいが、
これよりも多少低くても構わない。しかし、あま
り低いとα相地中に島状に凝集粗大化したγ相が
残存して超塑性に悪影響を与えるので加熱温度の
下限を(T―150)℃と定めた。Tは一般には
1050〜1250℃の範囲にある。 加熱後の冷却速度は、γ相の凝集、粗大化を可
及的に防止するために大きい程好ましく、水冷が
好ましいが、例えば噴霧冷却等の強制冷却でも良
い。この場合の急冷を500℃以下まで行うのは、
これより高い温度で冷却を中止した場合にはγ相
の粗大化が起こるからである。好ましくは、200
℃以下にまで急冷する。 次いで、200℃以下で圧延加工を行うのは、超
塑性変形を利用した熱間加工を行う場合、その加
工に先立つて700〜1100℃に加熱することによつ
て微細組織を得るためである。このときの圧延加
工温度が200℃を超えると、圧延中あるいは圧延
後にα相の回復が起つてγ相の微細析出の核とな
る転位密度が減少するからである。好ましくは、
この圧延加工温度は50℃以下である。 次に、本発明によれば、上述の200℃以下での
圧延ではクロス圧延が行われる。その目的とする
ところは、微細析出するγ相の核成長方向の均一
分散化にある。 ここに、クロス圧延とは、各パスの圧下率を可
及的に等しくするとともに、合計パス回数を2以
上とするとともに、各パス毎の圧延方向を変えて
行う圧延を云う。好ましくは各パス毎に圧延方向
をほぼ30度以上、変えて行う圧延法であつて、よ
り厳密には45度もしくは45度の整数倍だけ回転さ
せて行い、第1回目と最終回目のパスとのなす角
度を90度もしくは90度の整数倍とする圧延をい
う。好ましくは、上記クロス圧延は、各パス毎に
圧延方向を同じ角度だけ変えるのが良く、それら
の圧延を少なくとも2回繰り返すことから成る。
各パス毎の圧下率は、平均圧下率の2/3〜4/3であ
つてもよい。 なお、従来にあつても、クロス圧延はおこなわ
れているが、その目的とするところは、介在物の
形状制御による機械的特性の異方性解消にあり、
多くの場合、熱間圧延として行われているにすぎ
ない。 本発明によれば、200℃以下でのかかるクロス
圧延により、析出核成長方向に異方性のない組織
が得られ、超塑性変形時の塑性異方性の解消が図
れ、さらに超塑性材料としての性能も均一な微細
組織となるために著しく向上するのである。これ
は、従来のクロス圧延が上述のように介在物の形
状制御を目的とするのと比較して、予想外の効果
といえる。 このようにして製造された鋼板は、超塑性変形
加工に先立つて700〜1100℃に再加熱することに
よつて異方性のみられない均一なな微細組織を得
ることが可能であり、したがつて、超塑性を利用
した大変形加工を行う場合にあつても加工性が良
くさらに塑性異方性はみられないため、極めて歩
留りの良い効率的成形加工を行うことができる。 次に、本発明を実施例によりさらに説明する。 実施例 第1表に示す組成を有する鋼(T=1300℃)を
溶解し、鍛造と熱間圧延によつて得た厚さ4mmの
鋼板を、α相―単相域となる1300℃に1時間加熱
後室温にまで水冷し、次いでこれを酸洗して冷間
圧延素材とした。
[Table] According to the present invention, when the temperature at which the two-phase stainless steel becomes α-phase single phase is T (°C), the heating temperature is set to (T-150)°C or higher, and then water cooling or forced cooling is performed. Therefore, it is cooled to below 500℃ and rolled with a total reduction rate of 20% or more at 200℃ or below. This is to obtain a fine mixed structure of α phase and γ phase when heated at °C.
These processing conditions are the conditions for realizing the superplastic phenomenon. The heating temperature is preferably higher, and is preferably a temperature in the α phase single phase region, that is, T°C or higher,
It may be slightly lower than this. However, if the heating temperature is too low, the γ phase, which has aggregated and coarsened into islands in the α phase soil, will remain and have an adverse effect on superplasticity, so the lower limit of the heating temperature was set at (T-150)°C. T is generally
In the range of 1050-1250℃. The cooling rate after heating is preferably as high as possible in order to prevent agglomeration and coarsening of the γ phase as much as possible, and water cooling is preferred, but forced cooling such as spray cooling may also be used. In this case, rapid cooling to below 500℃ is
This is because if cooling is stopped at a temperature higher than this, the γ phase will become coarse. Preferably 200
Rapidly cool down to below ℃. The reason why the rolling process is then performed at 200°C or lower is to obtain a fine structure by heating to 700 to 1100°C prior to hot working using superplastic deformation. This is because if the rolling temperature at this time exceeds 200°C, recovery of the α phase occurs during or after rolling, and the dislocation density, which becomes the nucleus of fine precipitation of the γ phase, decreases. Preferably,
The rolling temperature is 50°C or less. Next, according to the present invention, cross rolling is performed in the above-mentioned rolling at 200° C. or lower. The purpose is to uniformly disperse the finely precipitated γ phase in the direction of nucleation growth. Here, cross rolling refers to rolling in which the rolling reduction ratio of each pass is made as equal as possible, the total number of passes is 2 or more, and the rolling direction is changed for each pass. Preferably, it is a rolling method in which the rolling direction is changed by approximately 30 degrees or more for each pass, and more precisely, the rolling direction is rotated by 45 degrees or an integral multiple of 45 degrees, and the rolling direction is changed between the first and final passes. This refers to rolling where the angle formed is 90 degrees or an integral multiple of 90 degrees. Preferably, said cross rolling consists of repeating said rolling at least twice, changing the rolling direction by the same angle in each pass.
The rolling reduction rate for each pass may be 2/3 to 4/3 of the average rolling reduction rate. Although cross rolling has been carried out in the past, its purpose is to eliminate anisotropy in mechanical properties by controlling the shape of inclusions.
In many cases, it is only carried out as hot rolling. According to the present invention, by such cross rolling at 200°C or less, a structure without anisotropy in the direction of precipitation nucleus growth can be obtained, and plastic anisotropy during superplastic deformation can be eliminated, and furthermore, it can be used as a superplastic material. The performance is also significantly improved due to the uniform microstructure. This can be said to be an unexpected effect compared to the conventional cross rolling, which aims to control the shape of inclusions as described above. By reheating the steel sheet manufactured in this way to 700 to 1100°C prior to superplastic deformation, it is possible to obtain a uniform microstructure with no anisotropy. Therefore, even when performing large deformation processing using superplasticity, the workability is good and no plastic anisotropy is observed, so that efficient forming processing with extremely high yield can be performed. Next, the present invention will be further explained by examples. Example A steel plate with a thickness of 4 mm obtained by melting steel (T = 1300°C) having the composition shown in Table 1 and forging and hot rolling was heated to 1300°C, which is the α phase - single phase region. After heating for a period of time, the material was cooled to room temperature with water, and then pickled to obtain a cold rolled material.

【表】 これらを第2表に示す各条件下で室温にて冷間
圧延した。得られた冷間圧延材から半径300mmの
円板を切出し、塑性異方性評価の試験片とした。 添付図面は塑性異方性の試験法を略式断面図で
示す説明図である。図からも分かるように、円板
状試験片を深絞り加工して供試材の塑性異方性を
評価した。 円板状試験片1の加工は、1000℃において直径
50mmの金型2に直径40mm、端部の曲率半径5mmの
治具3を、図中、矢印方向に移動させて歪速度〜
10-3s-1で行つた。このようにして各供試材から
の円板状試験片から深さ200mmのカツプ状のもの
を製造し、残つた耳の部分の長さの場所による差
で塑性異方性を評価した。 その結果をまとめて、併せて第2表に示すが本
発明による方法で製造された鋼板においては塑性
異方性はほとんど生じなかつたが、従来法もしく
は本発明方法と条件がはずれる比較例の場合にお
いては著しく異方性を生じた。
[Table] These were cold rolled at room temperature under the conditions shown in Table 2. A disk with a radius of 300 mm was cut out from the obtained cold rolled material and used as a test piece for plastic anisotropy evaluation. The attached drawing is an explanatory diagram showing a plastic anisotropy test method in a schematic cross-sectional view. As can be seen from the figure, the plastic anisotropy of the specimen was evaluated by deep drawing a disk-shaped specimen. Processing of disk-shaped specimen 1 was performed at 1000℃.
Move a jig 3 with a diameter of 40 mm and a radius of curvature of 5 mm at the end to a 50 mm mold 2 in the direction of the arrow in the figure to increase the strain rate ~
It went at 10 -3 s -1 . In this way, cup-shaped specimens with a depth of 200 mm were manufactured from disc-shaped specimens from each sample material, and plastic anisotropy was evaluated based on the difference in length of the remaining ear portion depending on location. The results are summarized and shown in Table 2. Although almost no plastic anisotropy occurred in the steel sheets manufactured by the method according to the present invention, in the case of comparative examples where the conditions differ from those of the conventional method or the method of the present invention. In this case, significant anisotropy occurred.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

添付図面は略式断面図で示す塑性異方性を評価
する試験方法の説明図である。 1:円板状試験片、2:金型、3:治具。
The attached drawing is an explanatory diagram of a test method for evaluating plastic anisotropy shown in a schematic cross-sectional view. 1: disk-shaped test piece, 2: mold, 3: jig.

Claims (1)

【特許請求の範囲】 1 Fe,Cr,Niを主成分とし、常温付近でフエ
ライト相とオーステナイト相とから成る混合組織
を有する2相ステンレス鋼を(T―150)℃以上
の温度に加熱すること〔ただし、Tは該2相ステ
ンレス鋼がフエライト単相となる温度(℃)〕; この加熱された鋼を水冷もしくは強制冷却によ
り500℃以下に冷却すること;および この冷却された鋼板に200℃以下で合計圧下率
20%以上のクロス圧延を施すこと、 を特徴とする2相ステンレス鋼板の製造方法。
[Claims] 1. Heating a duplex stainless steel whose main components are Fe, Cr, and Ni and which has a mixed structure consisting of a ferrite phase and an austenite phase at room temperature to a temperature of (T-150)°C or higher. [However, T is the temperature (°C) at which the two-phase stainless steel becomes a single ferrite phase]; This heated steel is cooled to 500°C or less by water cooling or forced cooling; and this cooled steel plate is heated to 200°C. The total reduction rate is below
A method for producing a duplex stainless steel sheet, characterized by subjecting it to cross rolling of 20% or more.
JP18083183A 1983-09-30 1983-09-30 Manufacture of two-phase stainless steel plate Granted JPS6075524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18083183A JPS6075524A (en) 1983-09-30 1983-09-30 Manufacture of two-phase stainless steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18083183A JPS6075524A (en) 1983-09-30 1983-09-30 Manufacture of two-phase stainless steel plate

Publications (2)

Publication Number Publication Date
JPS6075524A JPS6075524A (en) 1985-04-27
JPH0116286B2 true JPH0116286B2 (en) 1989-03-23

Family

ID=16090117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18083183A Granted JPS6075524A (en) 1983-09-30 1983-09-30 Manufacture of two-phase stainless steel plate

Country Status (1)

Country Link
JP (1) JPS6075524A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5630004B2 (en) * 2009-11-04 2014-11-26 Jfeスチール株式会社 High-strength steel sheet having a tensile strength of 1500 MPa or more and a method for producing the same
JP5630005B2 (en) * 2009-11-04 2014-11-26 Jfeスチール株式会社 High-strength steel sheet having a tensile strength of 1500 MPa or more and a method for producing the same

Also Published As

Publication number Publication date
JPS6075524A (en) 1985-04-27

Similar Documents

Publication Publication Date Title
JPS59159961A (en) Superplastic al alloy
US2859143A (en) Ferritic aluminum-iron base alloys and method of producing same
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JP3369627B2 (en) Method of manufacturing fine crystal grain super heat resistant alloy member
US2799602A (en) Process for producing stainless steel
JPH0116286B2 (en)
JP3749589B2 (en) Hot-rolled strip, hot-rolled sheet or hot-rolled strip made of Ti-Fe-O-N-based titanium alloy and method for producing them
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JPH09217149A (en) Large-sized casting and forging, made of duplex stainless steel excellent in corrosion resistance and toughness, and their production
CN115418548B (en) Multi-pass compression preparation method of Mn-substituted Ni-type duplex stainless steel
JPS648047B2 (en)
JPS5819725B2 (en) Manufacturing method of ferritic stainless steel sheet
JPH11509634A (en) Fuel box and method of manufacturing fuel box
GB2248849A (en) Process for working a beta type titanium alloy
JPS6366364B2 (en)
JPH05202444A (en) Steel plate excellent in toughness at low temperature and its production
JPH0526846B2 (en)
JPS635466B2 (en)
JPH0135915B2 (en)
JPH05271860A (en) Structural steel excellent in brittle fracture resistance and its production
JPS6156234A (en) Manufacture of austenite stainless fine grain steel
JPS648046B2 (en)
CN118064804A (en) Ultra-high strength ultra-low temperature resistant flat bulb steel, preparation method and application