JPH01162712A - Method and device for smelting reduction - Google Patents

Method and device for smelting reduction

Info

Publication number
JPH01162712A
JPH01162712A JP62322328A JP32232887A JPH01162712A JP H01162712 A JPH01162712 A JP H01162712A JP 62322328 A JP62322328 A JP 62322328A JP 32232887 A JP32232887 A JP 32232887A JP H01162712 A JPH01162712 A JP H01162712A
Authority
JP
Japan
Prior art keywords
furnace
ore
exhaust gas
preheating
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62322328A
Other languages
Japanese (ja)
Other versions
JP2600229B2 (en
Inventor
Katsuhiro Iwasaki
克博 岩崎
Kenji Takahashi
謙治 高橋
Shigeru Inoue
茂 井上
Haruyoshi Tanabe
治良 田辺
Masahiro Kawakami
川上 正弘
Osamu Terada
修 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP32232887A priority Critical patent/JP2600229B2/en
Priority to US07/283,218 priority patent/US4995906A/en
Priority to AU26831/88A priority patent/AU604589C/en
Priority to BR888806668A priority patent/BR8806668A/en
Priority to CA000586081A priority patent/CA1336744C/en
Priority to KR1019880016851A priority patent/KR910008142B1/en
Priority to EP88121236A priority patent/EP0320999B1/en
Priority to AT88121236T priority patent/ATE103638T1/en
Priority to DE3888803T priority patent/DE3888803T2/en
Publication of JPH01162712A publication Critical patent/JPH01162712A/en
Priority to US07/599,679 priority patent/US5074530A/en
Application granted granted Critical
Publication of JP2600229B2 publication Critical patent/JP2600229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a molten iron from iron ore with high thermal efficiency by preheating the powdery iron ore with the exhaust gas from a top blowing converter type refining furnace, then preheating and prereducing the ore further with a prereduction furnace and charging the iron into the refining furnace at the time of reducing the iron ore with carbonaceous material by using the above-mentioned refining furnace, thereby executing iron making and refining. CONSTITUTION:The lumped iron ore, carbonaceous material and slag forming material are charged by a chute 14 into the converter type refining furnace 10 provided with a top blowing lance 21 and side face and bottom tuyeres 25, 26. Gaseous O2 is blown from the nozzle 22 of the lance 21 to burn the carbonaceous material and to smelt and reduce the raw materials, by which the molten iron 11 and molten slag 12 are formed. The exhaust gas is subjected to secondary combustion of CO by the gaseous O2 from the nozzle 23 of the lance 21 and is introduced as the exhaust gas having 300-1100 deg.C and 0.4-0.8 degree of oxidation to a preheating prereduction furnace 30 through a dust separator 16. After the powder iron ore is heated by absorbing the sensible heat of the exhaust gas in a heat exchanger 40 utilizing the exhaust gas, the ore is further heated and prereduced to <=30% in the preheating prereduction furnace 30; thereafter, the iron ore is supplied through chutes 31 and 14 into the refining furnace 10, by which the iron ore is reduced to the molten iron.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は炭材を燃料及び還元材として用い、鉱石を転
炉型製錬炉内において溶融状態で還元する溶融還元する
溶融還元法及び装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a smelting reduction method and apparatus for reducing ore in a molten state in a converter-type smelting furnace using carbonaceous materials as fuel and reducing material. Regarding.

[従来の技術] 溶融還元法は、高炉製銑法に変わるものであり、高炉製
銑法においては高炉の建設費が高く、広大な敷地が必要
であるという高炉製銑法の欠点を解消し、また鉄の他、
クロム、マンガン、ニッケルの鉱石を直接還元すること
ができるものとして近年に至り開発されたものである。
[Conventional technology] The smelting reduction method is an alternative to the blast furnace iron making method, and it eliminates the disadvantages of the blast furnace iron making method, such as the high construction cost and the need for a large site. , and in addition to iron,
It has been developed in recent years as a device that can directly reduce chromium, manganese, and nickel ores.

この還元法においては、鉱石を予熱予備還元炉において
製錬炉からの排出ガスで予備還元して炭材、造滓材とと
もに製錬炉内に装入し、また酸素ガスまたは撹拌用ガス
が前記製錬炉内に吹き込まれる。
In this reduction method, ore is pre-reduced in a preheating pre-reducing furnace using exhaust gas from the smelting furnace and charged into the smelting furnace together with carbon material and slag material, and oxygen gas or stirring gas is It is blown into the smelting furnace.

そうすると炭材が予め装入されである溶銑に溶解すると
ともに、炭材及び溶湯中のCが酸素ガスによって酸化さ
れる。このときの酸化熱によって鉱石が溶融されるとと
もに、鉱石が炭材及び溶湯中のCによって還元される。
Then, the carbonaceous material is dissolved in the previously charged hot metal, and the carbon in the carbonaceous material and the molten metal is oxidized by the oxygen gas. The ore is melted by the oxidation heat at this time, and the ore is reduced by the carbonaceous material and C in the molten metal.

溶銑から発生するCOガスは過剰に吹き込まれる酸素ガ
スにより2次燃焼されてCO2ガスになる。このCO2
ガスの顕熱は、溶銑上を覆っているスラグ及びスラグに
懸濁された粒鉄に伝達され、次いで溶銑に伝達される。
The CO gas generated from the hot metal is subjected to secondary combustion by the excessively blown oxygen gas and becomes CO2 gas. This CO2
The sensible heat of the gas is transferred to the slag overlying the hot metal and the iron particles suspended in the slag, and then to the hot metal.

こうして鉱石が還元されて溶融金属が製造されるが、製
錬炉における鉄鉱石の還元工程を軽減するため、製錬炉
に装入される前の鉄鉱石の予備還元率を60乃至75%
とし、従って製錬炉の排出ガスは還元性の高い低酸化度
のガスを多量に使用している。(例えば特公昭6l−4
3406)[発明が解決しようとする問題点] しかしながら、予備還元率を30%以上にする場合には
、製錬炉の排出ガスの酸化度(以下これを単にODとい
う)を下げる必要がある。こうすると前記排出ガス量は
は必然的に増加することになり、前記製錬炉の発生エネ
ルギーは適正と考えられる1、0乃至1.5Gcal/
T(溶、銑)を大きく超えることになり、製造所内のエ
ネルギーバランス上、発生エネルギーが過剰となる。こ
のことは当然製造コストの増大につながる。
In this way, the ore is reduced to produce molten metal, but in order to reduce the iron ore reduction process in the smelting furnace, the preliminary reduction rate of the iron ore before being charged into the smelting furnace is set at 60 to 75%.
Therefore, the exhaust gas from the smelting furnace uses a large amount of highly reducing gas with a low oxidation degree. (For example, special public Sho 6l-4
3406) [Problems to be Solved by the Invention] However, in order to increase the preliminary reduction rate to 30% or more, it is necessary to lower the degree of oxidation (hereinafter simply referred to as OD) of the exhaust gas from the smelting furnace. In this case, the amount of exhaust gas will inevitably increase, and the energy generated by the smelting furnace will be 1.0 to 1.5 Gcal/, which is considered to be appropriate.
T (molten, pig iron) will be greatly exceeded, and the generated energy will be excessive in terms of the energy balance within the factory. This naturally leads to an increase in manufacturing costs.

また、高い予備還元率を得るためには上記の通りODの
低い前記排出ガスを必要とし、かつ鉄鉱石の予備還元炉
内の滞留時間を長くすることになって、予備還元された
鉄鉱石の製錬炉内への装入と製造される溶銑の出湯サイ
クルとのバランスを取ることが難しい。このことは必然
的に製錬炉の操業の自由度を大きく制限する。
In addition, in order to obtain a high pre-reduction rate, the exhaust gas with a low OD is required as described above, and the residence time of the iron ore in the pre-reduction furnace is lengthened, so that the pre-reduced iron ore is It is difficult to balance the charging cycle of the hot metal into the smelting furnace and the tapping cycle of the produced hot metal. This inevitably greatly limits the degree of freedom in operating the smelting furnace.

さらに、従来の方法においては予熱予備還元炉もしくは
予熱装置において発生した粉状鉱石は炉外に排出されて
鉱石の歩留り低下の大きな要因となっている。またこれ
を回収して製錬炉の羽口もしくは酸素ランスから吹き込
む場合において粗粒が混入されて前記羽目もしくは酸素
ノズルの閉塞等のトラブルが発生する虞があった。
Furthermore, in the conventional method, powdery ore generated in the preheating pre-reducing furnace or preheating device is discharged outside the furnace, which is a major factor in reducing the yield of ore. Furthermore, when this is recovered and blown into the tuyeres or oxygen lances of the smelting furnace, there is a risk that coarse particles may be mixed in and cause problems such as clogging of the tuyeres or oxygen nozzles.

この発明は、かかる問題点を解決するためになされたも
のであって、前記製錬炉からの発生エネルギーを抑えプ
ロセス全体のエネルギー効率を向上させ、鉱石の歩留り
がよくまた操業性の優れた溶融還元法及び装置を提供し
ようとするものである。
The present invention was made to solve these problems, and it is possible to reduce the energy generated from the smelting furnace, improve the energy efficiency of the entire process, and improve the yield of ore and improve operability. The present invention attempts to provide a reduction method and apparatus.

[問題点を解決するための手段及び方法]第1の発明に
よる溶融還元法は鉱石を流動層型の予熱予備還元炉で予
熱、予備還元して炭材、造滓材とともに製錬炉に装入し
、脱炭用及び2次燃焼用の酸素ノズルを有する上吹き酸
素ランスから酸素を吹き込むとともに、製錬炉の側壁及
び炉底に設けられた羽目から撹拌用ガスを吹き込んで鉱
石を溶融還元する方法であって、前記製錬炉から予熱予
備還元炉に導入されるガスの温度を300乃至1100
℃、前記製錬炉で生成するガスの酸化度[(H2O+C
O2)/(H2+H2O+CO+CO□)]を0.4乃
至0.8、予熱予備還元炉での予備還元率を30%以下
として、前記予熱予備還元炉からキャリーオーバーする
鉱石の微粒子を排ガスと分離し、分離された前記微粒子
の一部または全部を前記予熱予備還元炉に戻し、その残
余があるときはこれを単味または粉炭材と混合して前記
羽口または酸素ランスから製錬炉内に吹き込むことを特
徴とする。  ・第2の発明の溶融還元装置は鉱石を流
動層型の予熱予備還元炉で予熱、予備還元して炭材、造
滓材とともに製錬炉に装入し、脱炭用及び2次燃焼用の
酸素ノズルを有する上吹き酸素ランスから酸素を吹き込
むとともに、製錬炉の側壁及び炉底に設けられた羽口か
ら撹拌用ガスを吹き込んで鉱石を溶融還元する装置であ
って、粉体吹込用のノズルを有する前記酸素ランスと、
前記製錬炉の排ガスから粉体を分離する第1の分離装置
と、前記予熱予備還元炉の排ガスから粉体を分離する第
2の分離装置と、前記第2の分離装置の排ガスと原料供
給装置から導入される鉱石を予熱する予熱装置と、前記
予熱装置40の排ガスから微粒の鉱石を分離する第3の
分離装置と、を具備することを特徴とする。
[Means and methods for solving the problems] The smelting reduction method according to the first invention involves preheating and prereducing ore in a fluidized bed type preheating prereduction furnace, and loading the ore into a smelting furnace together with carbonaceous materials and slag making materials. The ore is melted and reduced by blowing oxygen from a top-blowing oxygen lance with an oxygen nozzle for decarburization and secondary combustion, and blowing stirring gas through the grooves provided on the side wall and bottom of the smelting furnace. The method includes controlling the temperature of the gas introduced from the smelting furnace to the preheating pre-reduction furnace from 300 to 1100.
°C, the degree of oxidation of the gas produced in the smelting furnace [(H2O+C
O2) / (H2 + H2O + CO + CO Part or all of the separated fine particles are returned to the preheating pre-reduction furnace, and if there is any remaining, it is mixed with plain or powdered coal material and blown into the smelting furnace through the tuyere or oxygen lance. It is characterized by - The smelting reduction device of the second invention preheats and pre-reduces ore in a fluidized bed type preheating pre-reduction furnace and charges it into a smelting furnace together with carbon material and slag material for decarburization and secondary combustion. A device for melting and reducing ore by blowing oxygen from a top-blown oxygen lance with an oxygen nozzle and blowing stirring gas from tuyere provided on the side wall and bottom of the smelting furnace, and is used for powder injection. the oxygen lance having a nozzle;
A first separation device that separates powder from the exhaust gas of the smelting furnace, a second separation device that separates the powder from the exhaust gas of the preheating pre-reduction furnace, and exhaust gas and raw material supply for the second separation device. It is characterized by comprising a preheating device that preheats the ore introduced from the device, and a third separation device that separates fine ore from the exhaust gas of the preheating device 40.

[実施例] 本発明の実施例を添付の図面を参照しながら説明する。[Example] Embodiments of the invention will be described with reference to the accompanying drawings.

第1図は本発明の溶融還元法に用いられる溶融還元装置
の説明図である。製錬炉10内には鉄浴11及びスラグ
層12が形成され、また酸素を吹き込む酸素ランス21
が炉内に鉛直に挿入されている。前記ランスには脱炭用
酸素及び2次燃焼用酸素を噴出するノズル22.23が
夫々設けられ、更にランス先端の中心には主に炭材また
は石灰等の副原料を吹き込むノズル24が設けられてい
る。
FIG. 1 is an explanatory diagram of a melt reduction apparatus used in the melt reduction method of the present invention. Inside the smelting furnace 10, an iron bath 11 and a slag layer 12 are formed, and an oxygen lance 21 for blowing oxygen is formed.
is inserted vertically into the furnace. The lance is provided with nozzles 22 and 23 for ejecting oxygen for decarburization and oxygen for secondary combustion, respectively, and furthermore, a nozzle 24 is provided at the center of the tip of the lance for injecting auxiliary materials such as carbonaceous material or lime. ing.

また製錬炉10の上部には原料である鉄鉱石、副原料で
ある炭材および造滓材等が良く知られた通常゛の原料供
給装置(特に図示せず)もしくは後に説明する予熱予備
還元炉から自然落下により製錬炉に装入される原料用シ
ュート14及び製錬炉からの排ガスが排出される排ガス
用導管15が設けられている。前記導管15から排出さ
れた排ガス中に含まれるダストを除去する第1の分離装
置16と、前記排ガス及び鉱石が導入されてこれを予熱
、予備還元する流動層型の予熱予備還元炉30と、前記
予熱予備還元炉30からの排ガスを受けてこれに含まれ
る鉄鉱石の微粒を除去する第2の分離装置35と、前記
第2の分離装置35からの排ガスと前記原料供給装置か
ら鉄鉱石が導入されて前記鉱石を予熱する予熱装置40
と、前記予熱装置40からの排ガスから鉄鉱石の細粒を
除去する第3の分離装置45と、が設けられている。
Further, in the upper part of the smelting furnace 10, iron ore as a raw material, carbonaceous material and slag forming material as auxiliary materials are supplied using a well-known conventional raw material supply device (not particularly shown) or a preheating pre-reduction device which will be explained later. A chute 14 for raw materials charged into the smelting furnace by gravity falling from the furnace and an exhaust gas conduit 15 through which exhaust gas from the smelting furnace is discharged are provided. a first separation device 16 for removing dust contained in the exhaust gas discharged from the conduit 15; a fluidized bed preheating pre-reduction furnace 30 into which the exhaust gas and ore are introduced and preheating and pre-reducing them; A second separator 35 receives the exhaust gas from the preheating pre-reduction furnace 30 and removes iron ore particles contained therein, and a second separator 35 receives the exhaust gas from the preheating pre-reduction furnace 30 and removes iron ore particles from the exhaust gas from the second separator 35 and the raw material supply device. A preheating device 40 is introduced to preheat the ore.
and a third separator 45 for removing iron ore fine particles from the exhaust gas from the preheating device 40.

前記第1乃至第3の分離装置から分離された鉄鉱石の細
粒または粉体がAr、N2等のキャリアーガスとともに
混合され、かつ加圧されて製錬炉の側壁及び炉底に夫々
設けられた羽口25.26に圧送される加圧装置27.
28が設けられである。
Fine grains or powder of iron ore separated from the first to third separators are mixed with a carrier gas such as Ar and N2, and are pressurized and provided on the side wall and bottom of the smelting furnace, respectively. A pressurizing device 27.
28 is provided.

以上のように構成された溶融還元装置を用いた本発明の
作用について説明する。原料である鉄鉱石は上記原料供
給装置から予熱装置40に入りここで予熱された後予熱
予備還元炉に装入され、ここで予熱、予備予還元された
鉄鉱石は予熱予備還元炉の出口31から原料用シュート
14を経て製錬炉10に装入される。上記原料供給装置
から供給される塊状もしくは粗粒の副原料は原料用シュ
ート14から自然落下により製錬炉10に装入され、細
粒もしくは粉状の副原料は酸素ランスのノズル24もし
くは羽口25.26からキャリアーガスとともに製錬炉
内に吹き込まれる。
The operation of the present invention using the melting reduction apparatus configured as described above will be explained. Iron ore, which is a raw material, enters the preheating device 40 from the raw material supply device and is preheated here and then charged into the preheating and pre-reducing furnace. The raw material is charged into the smelting furnace 10 via the raw material chute 14. The auxiliary raw materials in the form of lumps or coarse particles supplied from the raw material supply device are charged into the smelting furnace 10 by falling naturally from the raw material chute 14, and the auxiliary raw materials in the form of fine particles or powder are fed to the nozzle 24 of the oxygen lance or through the tuyere. From 25.26, it is blown into the smelting furnace together with carrier gas.

また製錬炉10で発生した排ガスはガス用導管15を通
って第1の分離装置16でダストが除去された後、流動
層型の予熱予備還元炉30に導入されて流動ガスとして
働き、前述の通り予熱予備還元炉30に装入される鉄鉱
石が予熱、予備還元される。予熱予備還元炉からの排ガ
スは第2の分離装置35に入りここで細粒もしくは粉状
の鉱石が分離されて予熱装置40に導入される。予熱装
置40からの排ガスは第3の分離装置45で細粒もしく
は粉状の鉱石が分離された後通常の排ガス処理装置を経
て排出されるかもしくは羽口25.26野粉体吹込のキ
ャリアーガスとして用いられる。さらにこの排ガスは製
錬炉からの排ガスに混合されて冷却用として使うことも
できる。
Further, the exhaust gas generated in the smelting furnace 10 passes through the gas conduit 15, and after dust is removed by the first separation device 16, it is introduced into the fluidized bed type preheating pre-reduction furnace 30, where it acts as a fluidized gas. Iron ore charged into the preheating pre-reducing furnace 30 is preheated and pre-reduced. The exhaust gas from the preheating pre-reduction furnace enters the second separator 35 where fine or powdered ore is separated and introduced into the preheater 40. The exhaust gas from the preheating device 40 is separated into fine grains or powdery ore in a third separator 45, and then discharged through a normal exhaust gas treatment device, or is discharged through a carrier gas from the tuyeres 25 and 26 where the raw powder is injected. used as. Furthermore, this exhaust gas can be mixed with the exhaust gas from the smelting furnace and used for cooling.

前記第2の分離装置で分離された細粒もしくは粉状の鉄
鉱石は一部は予熱予備還元炉に戻されその残余は単味も
しくは粉炭材と混合されて加圧装置27.28に送られ
ここでキャリアーガスと混合、加圧されて羽口25.2
6に送られ、製錬炉の側壁または炉底の羽口から装入さ
れる。第2の分離装置で分離回収された微粒の鉄鉱石は
必要に応じて、塊状もしくは粗粒の鉄鉱石と混合されて
製錬炉10に投入される。こうすると前記微粒の鉄鉱石
は製錬炉内で飛散されることなく装することが出来る。
Part of the fine or powdered iron ore separated by the second separator is returned to the preheating pre-reduction furnace, and the remainder is mixed with plain or powdered carbon material and sent to the pressurizing device 27, 28. Here, it is mixed with carrier gas and pressurized to the tuyere 25.2.
6, and is charged through the tuyere on the side wall or bottom of the smelting furnace. The fine iron ore separated and recovered by the second separator is mixed with lumpy or coarse iron ore and charged into the smelting furnace 10, if necessary. In this way, the fine iron ore particles can be loaded into the smelting furnace without being scattered.

また、前記第3の分離装置45で分離された細粒もしく
は粉状の鉄鉱石は予熱装置で発生したもので予熱予備還
元炉を経ていないので全て予熱予備還元炉に戻される。
Further, since the fine grain or powdered iron ore separated by the third separator 45 is generated in the preheating device and has not passed through the preheating pre-reducing furnace, it is all returned to the preheating pre-reducing furnace.

上記のように製錬炉に装入された原料及び副原料は製錬
炉の側壁及び炉底に設けられた羽口25.26から撹拌
用ガスと共に吹き出され、既に炉内に形成されている鉄
浴およびスラグ層とともに十分攪拌される。この撹拌用
ガスは前記予熱予備還元炉からの排ガスまたはAr5N
  等の不活性ガスが用いられる。一方前記酸素ランス
21の脱炭用及び2次燃焼用ノズル22.23から供給
される酸素は前記炭材またはCOガスを酸化させて原料
である鉄鉱石を還元するのに十分な熱源を供給する。
The raw materials and auxiliary materials charged into the smelting furnace as described above are blown out together with the stirring gas from the tuyeres 25 and 26 provided on the side wall and the bottom of the smelting furnace, and the raw materials and auxiliary materials charged into the smelting furnace are blown out together with the stirring gas. Thoroughly stirred together with iron bath and slag layer. This stirring gas is exhaust gas from the preheating pre-reduction furnace or Ar5N
An inert gas such as On the other hand, oxygen supplied from the decarburization and secondary combustion nozzles 22 and 23 of the oxygen lance 21 provides a heat source sufficient to oxidize the carbonaceous material or CO gas and reduce the iron ore that is the raw material. .

本発明の特徴は上記製錬炉の排ガスの酸化度ODを0.
4乃至0.8、その温度を800℃乃至1100℃、第
1図の溶融還元装置における鉄鉱石の予備還元率を30
%以下とすることを特徴とするものであるが、以下にそ
の理由を説明する。
The feature of the present invention is that the oxidation degree OD of the exhaust gas from the smelting furnace is reduced to 0.
4 to 0.8, the temperature is 800℃ to 1100℃, and the preliminary reduction rate of iron ore in the smelting reduction apparatus shown in Figure 1 is 30℃.
The reason for this is explained below.

第2図は前記酸化度ODと第1図の溶融還元装置から発
生する余剰エネルギーとの関係を示したグラフ図である
。第2図の図中、斜線で示した範囲が製鉄所全体のエネ
ルギーバランスを考えたときの適正な余剰エネルギーの
範囲で、実線は揮発分の低い炭材、破線は前記揮発分の
高い炭材に関するものである。夫々の綿に付された数字
は対応する予備還元率である。この図は前記溶融還元装
置について検討した結果得られたもので、これによれば
ODが0.4より小さい場合は余剰エネルギーは多過ぎ
て無駄なエネルギーが発生することにするになり、OD
が0.8より大きい場合は余剰エネルギーは少な過ぎて
製鉄所のエネルギーは不足する。ただし、炭材の揮発分
が40%以上で発熱量が7000kcal/  ’kg
未満である場合、または鉄鉱石中の脈石分が5%以上の
場合には炭材原単位を増加させることになるので、OD
比は0.8乃至1.0であるでが望ましい場合も考えら
れる。このことは第2図に示されているように前記予備
還元率を30%以下としたときに達成されるのであって
、これを80%より多くすることは前述の通り鉄鉱石の
予熱予備還元炉の滞留時間が長くなり、溶融還元装置の
操業の自由度が大きく制限されることになる。
FIG. 2 is a graph showing the relationship between the degree of oxidation OD and the surplus energy generated from the melt reduction apparatus of FIG. 1. In Figure 2, the shaded range is the appropriate surplus energy range when considering the energy balance of the entire steelworks, the solid line is the carbonaceous material with low volatile content, and the broken line is the carbonaceous material with high volatile content. It is related to. The number attached to each cotton is the corresponding preliminary reduction rate. This figure was obtained as a result of studying the above-mentioned melting reduction equipment.According to this, if OD is smaller than 0.4, excess energy is too large and wasteful energy is generated.
If is larger than 0.8, the surplus energy is too small and the steelworks will run out of energy. However, if the volatile content of the carbon material is 40% or more, the calorific value is 7000kcal/'kg.
If the gangue content in the iron ore is less than 5%, or if the gangue content in the iron ore is 5% or more, the unit carbon content will increase, so the OD
It is conceivable that a ratio of 0.8 to 1.0 may be desirable. This is achieved when the pre-reduction rate is set to 30% or less as shown in Figure 2, and increasing this to more than 80% is achieved by preheating and pre-reducing iron ore. The residence time in the furnace becomes longer, and the degree of freedom in the operation of the melting reduction apparatus is greatly restricted.

また排ガス温度が300℃未満では鉄鉱石の還元反応が
進行せず、かつ熱効率も低いレベルとなる。また110
0℃以上では鉄鉱石の粒子が互に凝縮し、また予熱予備
還元炉に固着して操業上のトラブルが発生する虞があり
、さらに耐火物の損耗が倣しくなる。
Further, if the exhaust gas temperature is less than 300°C, the iron ore reduction reaction will not proceed, and the thermal efficiency will also be at a low level. 110 again
At 0° C. or higher, iron ore particles may condense with each other and stick to the preheating pre-reduction furnace, causing operational troubles, and furthermore, the refractories will be more likely to wear out.

上記に加えて本発明の特徴は予熱予備還元炉30または
予熱装置40の排ガスから細粒もしくは粉状の鉱石を分
離して回収し、これを製錬炉に戻して鉄鉱石の歩留りを
向上させている。これによる効果を第3図及び第4図に
より説明する。第3図(a)、(b)、(c)は横軸に
ODをとり縦軸に炭材原単位、余剰エネルギーおよび製
錬炉10の発生ガスである副生ガス量をとって夫々示し
たグラフ図である。これにより本発明による細粒もしく
は粉状の鉱石を分離回収する効果は従来例と比較してO
Dが0.5の場合、炭材原単位、余剰エネルギー及び副
生ガス発生量は夫々溶銑トン当り2O0kg/THM、
2Gcal/THM、2O0ONm  /THMの低下
となって示されている。第4図(a)、(b)は夫々縦
軸に発生頻度指数、横軸に製錬炉10の熱効率、粗大粒
鉱石の混入による操業トラブルの頻度をとって示したグ
ラフ図である。これにより上記分離回収の効果は熱効率
で約10%向上し、粗粒の混入によるノズル24または
羽口25.26の閉塞等による操業トラブルは殆ど皆無
となった。
In addition to the above, the present invention is characterized by separating and recovering fine or powdery ore from the exhaust gas of the preheating pre-reduction furnace 30 or the preheating device 40, and returning it to the smelting furnace to improve the yield of iron ore. ing. The effect of this will be explained with reference to FIGS. 3 and 4. 3(a), (b), and (c) show the OD on the horizontal axis and the carbon material consumption unit, surplus energy, and amount of by-product gas generated in the smelting furnace 10 on the vertical axis, respectively. FIG. As a result, the effect of separating and recovering fine or powdery ores according to the present invention is lower than that of the conventional example.
When D is 0.5, the carbon material consumption rate, surplus energy, and by-product gas generation amount are 2O0kg/THM per ton of hot metal, respectively.
This is shown as a decrease in 2Gcal/THM and 2O0ONm/THM. FIGS. 4(a) and 4(b) are graphs in which the vertical axis represents the occurrence frequency index, and the horizontal axis represents the thermal efficiency of the smelting furnace 10 and the frequency of operational troubles due to the contamination of coarse ore. As a result, the thermal efficiency of the separation and recovery was improved by about 10%, and there were almost no operational troubles such as clogging of the nozzle 24 or tuyere 25, 26 due to the incorporation of coarse particles.

次に本実施例にもとすく具体的数値を挙げる。Next, specific numerical values will be listed in this example.

炭材として石炭を1124kg/THM(製造される溶
銑トン当り、以下同じ)、酸素を798Nm/THM、
使用してODが0.4、着熱効率は90%であった。
As carbon material, coal was used at 1124 kg/THM (per ton of hot metal produced, the same applies hereinafter), oxygen was used at 798 Nm/THM,
When used, the OD was 0.4 and the heat transfer efficiency was 90%.

[本発明の効果] 本発明によれば酸素ランスに設けた2次燃焼用ノズルか
らの酸素によるCOガスの燃焼また製錬炉の炉壁及び炉
底に設けた羽口からの撹拌用ガスの吹き込みにより、製
錬炉の発生ガスの酸化度を0.4乃至0.8に調整して
前記ガスの湿度を300乃至1100℃、予備還元率を
30%以下とすることができるので、製錬炉の熱効率を
向上させ同時に溶融還元装置の余剰エネルギーを製鉄所
全体のエネルギーバランスに見合った適正なものとする
ことが出来る。また予熱予備還元炉の排ガスから細粒も
しくは粉状の鉱石を分離して前記鉱石をキャリアーガス
とともに前記羽口もしくは酸素ランスの専用ノズルから
から吹き込むので熱効率が向上し粗大粒混入による操業
トラブルを解消することが出来る。
[Effects of the present invention] According to the present invention, combustion of CO gas by oxygen from the secondary combustion nozzle provided in the oxygen lance and stirring gas from the tuyere provided on the wall and bottom of the smelting furnace are achieved. By blowing, the degree of oxidation of the gas generated in the smelting furnace can be adjusted to 0.4 to 0.8, the humidity of the gas can be adjusted to 300 to 1100°C, and the preliminary reduction rate can be 30% or less. The thermal efficiency of the furnace can be improved, and at the same time, the surplus energy of the melting reduction device can be made appropriate for the energy balance of the entire steelworks. In addition, fine or powdery ore is separated from the exhaust gas of the preheating pre-reducing furnace, and the ore is blown into the tuyere or the special nozzle of the oxygen lance together with the carrier gas, improving thermal efficiency and eliminating operational troubles caused by coarse grains being mixed in. You can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の溶融還元法に用いられるプロセスの説
明図、第2図は本発明による排ガスの酸化度(OD)と
余剰エネルギーとの関係を示すグラフ図、第3図は本発
明と従来例とを比較したODと炭材原単位、余剰エネル
ギー及び副生ガスとの関係な夫々示すグラフ図、第4図
は熱効率の良否、操業トラブルの大小と発生頻度との関
係を夫々示すグラフ図である。 10・・・製錬炉、11・・・鉄浴、12・・・スラグ
層、14・・・原料用シュート、15 ・・・ガス導管
、16・・・第1の分離装置、21・・・酸素ランス、
22.23.24・・・ノズル、25.26・・・羽口
、27.28・・・加圧装置、30・・・予熱予備還元
炉、35・・・第2の分離装置、40・・・予熱装置、
41・・・切り換え弁、42・・・閉止弁、45・・・
第3の分離装置。
Figure 1 is an explanatory diagram of the process used in the smelting reduction method of the present invention, Figure 2 is a graph showing the relationship between the degree of oxidation (OD) of exhaust gas and surplus energy according to the present invention, and Figure 3 is a diagram showing the relationship between the oxidation degree (OD) of exhaust gas and surplus energy according to the present invention. A graph showing the relationship between OD, carbon material consumption rate, surplus energy and by-product gas in comparison with the conventional example, and Figure 4 is a graph showing the relationship between thermal efficiency, magnitude of operational troubles, and frequency of occurrence. It is a diagram. DESCRIPTION OF SYMBOLS 10... Smelting furnace, 11... Iron bath, 12... Slag layer, 14... Raw material chute, 15... Gas conduit, 16... First separation device, 21...・Oxygen lance,
22.23.24... Nozzle, 25.26... Tuyere, 27.28... Pressurizing device, 30... Preheating preliminary reduction furnace, 35... Second separation device, 40...・・Preheating device,
41...Switching valve, 42...Shutoff valve, 45...
Third separation device.

Claims (4)

【特許請求の範囲】[Claims] (1)鉱石を流動層型の予熱予備還元炉で予熱、予備還
元して炭材、造滓材とともに製錬炉に装入し、上吹き酸
素ランスから酸素を吹き込むとともに、製錬炉の側壁及
び炉底に設けられた羽口から撹拌用ガスを吹き込んで鉱
石を溶融還元する方法であつて、前記製錬炉から予熱予
備還元炉に導入されるガスの温度を300乃至1100
℃、前記製錬炉で生成するガスの酸化度、 [(H_2O+CO_2)/(H_2+H_2O+CO
+CO_2)]を0.4乃至0.8、予熱予備還元炉で
の予備還元率を30%以下として、前記予熱予備還元炉
からキャリーオーバーする鉱石の微粒子を排ガスと分離
し、分離された前記微粒子の一部または全部を前記予熱
予備還元炉に戻し、その残余があるときはこれを予熱さ
れた高温状態のまま、単味または粉炭材と混合して前記
羽口または酸素ランスに設けた専用のノズルから製錬炉
内に吹き込むことを特徴とする溶融還元法。
(1) The ore is preheated and pre-reduced in a fluidized bed type preheating pre-reducing furnace and charged into the smelting furnace together with carbonaceous material and slag material. Oxygen is blown from the top-blowing oxygen lance and the side wall of the smelting furnace is heated and pre-reduced. and a method of melting and reducing ore by blowing stirring gas through tuyeres provided at the bottom of the furnace, the temperature of the gas introduced from the smelting furnace to the preheating pre-reduction furnace being 300 to 1100.
°C, the degree of oxidation of the gas produced in the smelting furnace, [(H_2O+CO_2)/(H_2+H_2O+CO
+CO_2)] from 0.4 to 0.8, and the pre-reduction rate in the pre-heated pre-reduction furnace is set to 30% or less, and the ore fine particles carried over from the pre-heated pre-reduction furnace are separated from the exhaust gas, and the separated fine particles are A part or all of the carbon is returned to the preheated pre-reducing furnace, and if there is any residue, it is left in the preheated high-temperature state and mixed with plain or powdered coal material, and is then heated in a dedicated furnace installed in the tuyere or oxygen lance. A smelting reduction method characterized by blowing into the smelting furnace through a nozzle.
(2)予備還元された粗粒及び微粒の鉱石を混合して上
方から製錬炉に重力落下により装入することを特徴とす
る特許請求の範囲第1項に記載の溶融還元法。
(2) The smelting reduction method according to claim 1, characterized in that the pre-reduced coarse and fine ores are mixed and charged into the smelting furnace from above by falling by gravity.
(3)粗粒または塊状の炭材を製錬炉に上方から重力落
下により装入することを特徴とする特許請求の範囲第1
項乃至第2項のいずれか1項に記載の溶融還元法。
(3) Coarse-grained or lumpy carbonaceous material is charged into the smelting furnace from above by falling by gravity. Claim 1
The melting reduction method according to any one of Items 1 to 2.
(4)鉱石を流動層型の予熱予備還元炉で予熱、予備還
元して炭材、造滓材とともに製錬炉に装入し、脱炭用及
び2次燃焼用の酸素ノズルを有する上吹き酸素ランスか
ら酸素を吹き込むとともに、製錬炉の側壁及び炉底に設
けられた羽口から撹拌用ガスを吹き込んで鉱石を溶融還
元する装置あって、粉体吹込用のノズルを有する前記酸
素ランスと、前記製錬炉の排ガスから粉体を分離する第
1の分離装置と、前記予熱予備還元炉の排ガスから粉体
を分離する第2の分離装置と、前記第2の分離装置の排
ガスと原料供給装置から導入される鉱石を予熱する予熱
装置と、前記予熱装置40の排ガスから微粒の鉱石を分
離する第3の分離装置と、を具備することを特徴とする
溶融還元装置。
(4) The ore is preheated and pre-reduced in a fluidized bed type preheating pre-reduction furnace and charged into a smelting furnace along with carbon material and slag material, and is top-blown with an oxygen nozzle for decarburization and secondary combustion. There is a device for melting and reducing ore by blowing oxygen from an oxygen lance and stirring gas from tuyeres provided on the side wall and bottom of a smelting furnace, the oxygen lance having a nozzle for blowing powder; , a first separation device that separates powder from the exhaust gas of the smelting furnace, a second separation device that separates the powder from the exhaust gas of the preheating pre-reduction furnace, and the exhaust gas and raw material of the second separation device. A smelting reduction apparatus comprising: a preheating device that preheats ore introduced from a supply device; and a third separation device that separates fine ore from the exhaust gas of the preheating device 40.
JP32232887A 1987-12-18 1987-12-18 Smelting reduction method and equipment Expired - Fee Related JP2600229B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP32232887A JP2600229B2 (en) 1987-12-18 1987-12-18 Smelting reduction method and equipment
US07/283,218 US4995906A (en) 1987-12-18 1988-12-12 Method for smelting reduction of iron ore
AU26831/88A AU604589C (en) 1987-12-18 1988-12-13 Method for smelting reduction of iron ore and apparatus therefor
BR888806668A BR8806668A (en) 1987-12-18 1988-12-16 PROCESS AND APPARATUS FOR REDUCING IRON ORE BY FOUNDATION
CA000586081A CA1336744C (en) 1987-12-18 1988-12-16 Method for smelting reduction of iron ore and apparatus therefor
KR1019880016851A KR910008142B1 (en) 1987-12-18 1988-12-17 Method for smelting reduction of iron ore
EP88121236A EP0320999B1 (en) 1987-12-18 1988-12-19 Method for smelting reduction of iron ore and apparatus therefor
AT88121236T ATE103638T1 (en) 1987-12-18 1988-12-19 METHOD AND DEVICE FOR SMELTING REDUCTION OF IRON ORES.
DE3888803T DE3888803T2 (en) 1987-12-18 1988-12-19 Method and device for smelting reduction of iron ores.
US07/599,679 US5074530A (en) 1987-12-18 1990-10-17 Apparatus for smelting reduction of iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32232887A JP2600229B2 (en) 1987-12-18 1987-12-18 Smelting reduction method and equipment

Publications (2)

Publication Number Publication Date
JPH01162712A true JPH01162712A (en) 1989-06-27
JP2600229B2 JP2600229B2 (en) 1997-04-16

Family

ID=18142412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32232887A Expired - Fee Related JP2600229B2 (en) 1987-12-18 1987-12-18 Smelting reduction method and equipment

Country Status (1)

Country Link
JP (1) JP2600229B2 (en)

Also Published As

Publication number Publication date
JP2600229B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
EP1034311B1 (en) Direct smelting process for producing metals from metal oxides
CA1223740A (en) Method for the production of iron
EP0308925B1 (en) Method and apparatus for smelting and reducing iron ores
US4804408A (en) A mill arrangement and a process of operating the same using off gases to refine pig iron
US3912501A (en) Method for the production of iron and steel
US4957545A (en) Smelting reduction process using reducing gas generated in precombustor
JPS5871319A (en) Improvement of steel manufacture
CA3171742A1 (en) Integration of dr plant and electric dri melting furnace for producing high performance iron
CA1336744C (en) Method for smelting reduction of iron ore and apparatus therefor
US5558696A (en) Method of direct steel making from liquid iron
US5746805A (en) Process for the continuous manufacture of steel
JP2600733B2 (en) Smelting reduction method
EP0950117B1 (en) A method for producing metals and metal alloys
JP2638861B2 (en) Melt reduction method
JPH01162712A (en) Method and device for smelting reduction
JP2600732B2 (en) Smelting reduction method and equipment
JP2668913B2 (en) Smelting reduction method
JP2668912B2 (en) Smelting reduction method
JPH0723490B2 (en) Batch production method of hot metal
JP2666397B2 (en) Hot metal production method
JPH01104709A (en) Smelting reduction method
JPH01104707A (en) Smelting reduction method
AU9147798A (en) Direct smelting process for producing metals from metal oxides
JPS6132366B2 (en)
JP2003105414A (en) Melting and reducing furnace operating method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees