JPH01161650A - Secondary ion mass analyzer - Google Patents

Secondary ion mass analyzer

Info

Publication number
JPH01161650A
JPH01161650A JP62318560A JP31856087A JPH01161650A JP H01161650 A JPH01161650 A JP H01161650A JP 62318560 A JP62318560 A JP 62318560A JP 31856087 A JP31856087 A JP 31856087A JP H01161650 A JPH01161650 A JP H01161650A
Authority
JP
Japan
Prior art keywords
sample
crystal oscillator
mass
etching
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62318560A
Other languages
Japanese (ja)
Other versions
JPH0578902B2 (en
Inventor
Yasubumi Kameshima
亀島 泰文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62318560A priority Critical patent/JPH01161650A/en
Publication of JPH01161650A publication Critical patent/JPH01161650A/en
Publication of JPH0578902B2 publication Critical patent/JPH0578902B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable measurement and indication, together with its mass analysis, of the etching depth of a sample to be inspected which changes continuously by arranging a crystal oscillator near a sample holding part. CONSTITUTION:A crystal oscillator 6 is arranged near a sample holding part 3, and a film thickness meter is composed of this crystal oscillator 6, an oscillator 7 and a signal processing means 8. Since the oscillation number of this crystal oscillator 6 is reversely proportional to square root of the weight, even if it is small change it is measured accurately in electrical meaning. Though a sputtering phenomenon also changes delicately by impurity and grid defect, since there is an approximate bulk phenomenon in the first place, if mass of the bulk and sputter area are known in advance, it is easy to convert mass change into etching amount. Hereby, the etching depth of a sample to be inspected which changes continuously can be measured and indicated as well as its mass analysis.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、不純物濃度の深さ方向分布の測定に際し、測
定元素の質量分析と同時に被検査試料のエツチング深さ
を計測して表示することのできる二次イオン質量分析装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for measuring and displaying the etching depth of a test sample simultaneously with mass spectrometry of the measured element when measuring the depth distribution of impurity concentration. This invention relates to a secondary ion mass spectrometer that can perform

[従来の技術] 一般に、二次イオン質量分析装置は、酸素やセシウムな
どの一次イオンを試料に照射し、被検査試料から発生す
る二次イオンを質量分析して元素の同定、あるいは面内
深さ方向の分布測定を行うもので、その検出精度は表面
分析機器の中でも最も高く、また通用範囲が水素を含め
てすべての元素に可能であるという、すぐれた長所を有
する。
[Prior Art] In general, a secondary ion mass spectrometer irradiates a sample with primary ions such as oxygen or cesium, and performs mass analysis of the secondary ions generated from the sample to identify elements or perform in-plane depth analysis. This device measures the distribution in the horizontal direction, and its detection accuracy is the highest among surface analysis instruments, and it has the excellent advantage of being applicable to all elements, including hydrogen.

特に、一次イオンで被検査試料をエツチングしなからそ
の表面層から放出される二次イオンを検出するので、深
さ方向の組成分析に非常に有力な分析機器であり、例え
ば半導体にイオン打ち込みされた不純物の濃度プロファ
イルやエピタキシャル層の界面の評価などに有効に使用
されている。
In particular, it detects the secondary ions emitted from the surface layer of the sample to be inspected without etching it with primary ions, so it is a very effective analytical instrument for compositional analysis in the depth direction. It is effectively used to evaluate the concentration profile of impurities and the interface of epitaxial layers.

[発明が解決しようとする問題点] 深さ方向の分析においてはエツチング深さの測定が必須
であり、特に、元素分析と同時に測定時の深さを知るこ
とが肝要である。しかしながら、従来の二次イオン質量
分析装置においては、この要求に応えられるものはなか
った。通常は、分析終了後に光学干渉計や表面粗さ計な
どでエツチング深さを測定し、エツチング時間からエツ
チングレートを算出する。しかし、異なった物質の多層
エピタキシャル結晶や半導体と金属あるいは酸化物の界
面の評価では各層のエツチングレートが当然異なってい
るため、全体のエツチング深さを測定しても、各層のそ
れぞれの厚さを評価することは不可能であり、別途に斜
め研摩などで各層の厚さを測定して、それぞれのエツチ
ングレートを見積っているのが現状である。これは、迅
速な測定結果を得るうえに大きな障害となっている。
[Problems to be Solved by the Invention] In depth direction analysis, it is essential to measure the etching depth, and in particular, it is important to know the depth at the time of measurement at the same time as elemental analysis. However, none of the conventional secondary ion mass spectrometers could meet this demand. Normally, after the analysis is completed, the etching depth is measured using an optical interferometer or surface roughness meter, and the etching rate is calculated from the etching time. However, when evaluating multilayer epitaxial crystals of different materials or interfaces between semiconductors and metals or oxides, the etching rate of each layer is naturally different, so even if the overall etching depth is measured, the thickness of each layer cannot be measured. Currently, it is impossible to evaluate the thickness of each layer, and the etching rate of each layer is estimated by separately measuring the thickness of each layer by diagonal polishing or the like. This is a major obstacle to obtaining quick measurement results.

本発明は、このような問題点に鑑みて創案されたもので
、連続的に変化する被検査試料のエツチング深さを質量
分析と同時に計測かつ表示可能な二次イオン質量分析装
置を提供することを目的とする。
The present invention was devised in view of these problems, and an object of the present invention is to provide a secondary ion mass spectrometer that can simultaneously measure and display the continuously changing etching depth of a sample to be inspected. With the goal.

[問題点を解決するための手段] 本発明は、一次イオン発生部からのイオンビームを試料
に照射し、その際に放出される二次イオンの質量を分析
することにより、試料表面の元素分布状態を測定する質
量分析装置において、試料保持部の近傍に水晶振動子を
配設し、試料の質量分析と同時に該試料のエツチング深
さを計測・記録表示する膜厚δ1を備えたことを特徴と
する二次イオン質量分析装置である。
[Means for Solving the Problems] The present invention irradiates a sample with an ion beam from a primary ion generator and analyzes the mass of secondary ions emitted at that time to determine the elemental distribution on the sample surface. A mass spectrometer for measuring the state is characterized in that a crystal oscillator is disposed near the sample holder and is equipped with a film thickness δ1 for measuring, recording and displaying the etching depth of the sample at the same time as mass analysis of the sample. This is a secondary ion mass spectrometer.

[作用] 本発明における膜厚計は、試料保持部の近傍に水晶振動
子を配設することにより、その水晶振動子の上にスパッ
タ蒸着される試料からの堆積物質の10尽変化を振動子
の振動数変化として検出し、時々刻々測定しつつある被
検査試料の質1スペクトルの変化とスパッタリングが行
われている面積のデータを参照すれば、振動数変化、即
ち重♀変化をスパッタされたクレータの深さに検線する
ことができる。その信号を外部記録側に表示するか、測
定後のデータ処理システムにより測定時間をクレータ深
さに換停して深さ方向分析のモードに際し、各元素の検
出カウント数とともにエツチング深さを表示すればよい
[Function] The film thickness meter of the present invention has a crystal oscillator disposed near the sample holder, so that the quartz crystal oscillator can measure the changes in the deposited material from the sample sputter-deposited on the quartz crystal oscillator. If we refer to the changes in the quality spectrum of the test sample being measured moment by moment and the data on the area where sputtering is being performed, we can detect changes in frequency, that is, changes in the frequency of sputtering. It is possible to trace the depth of the crater. Either display the signal on the external recording side, or convert the measurement time to crater depth using the data processing system after measurement and display the etching depth along with the number of detected counts for each element in the depth direction analysis mode. Bye.

[実施例] 以下、図面を参照して、本発明の実施例を詳細に説明す
る。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明による質量分析装置の一実施例の構成図
である。図中、1は一部イオン発生部、2は試料である
。一次イオン発生部1は、公知の一部イオン発生機構で
あって、図示しないデュオプラズマトロン、静電コンデ
ンサレンズおよび静電デフレクタ等からなっている。そ
のデュオプラズマトロンで発生した一部イオンは、静電
コンデンVレンズで数ミクロン程度のビーム径に絞られ
、ざらに静電デフレクタで電気的に走査されて、試料保
持部3に保持されている試料2に照射され、試料2は任
意の大ぎさの矩形にエツチングされることになる。この
ときの印加電圧は記憶されてクレータ−面積のデータと
される。一次イオンビームは所定の角度で斜めに試料2
に入射され、発生する二次イオンおよび中性原子はエツ
チング面に対して垂直にとり出される。図中、4は二次
イオンを引出すために加速電界が印加された電極で、1
0kV程度の加速電界により質量分析手段5へ二次イオ
ンを導く。質量分析手段5は、扇形電磁場、電子増倍管
なとよりなる通常の構成のものでよい。
FIG. 1 is a block diagram of an embodiment of a mass spectrometer according to the present invention. In the figure, 1 is a part of the ion generating part, and 2 is a sample. The primary ion generating section 1 is a part of a known ion generating mechanism, and includes a duo plasmatron, an electrostatic condenser lens, an electrostatic deflector, etc. (not shown). Some of the ions generated by the duoplasmatron are narrowed down to a beam diameter of several microns by an electrostatic condenser V lens, roughly electrically scanned by an electrostatic deflector, and held in the sample holder 3. The sample 2 is irradiated, and the sample 2 is etched into a rectangle of arbitrary size. The applied voltage at this time is stored and used as data on the crater area. The primary ion beam is directed diagonally to the sample 2 at a predetermined angle.
The secondary ions and neutral atoms generated are extracted perpendicularly to the etched surface. In the figure, 4 is an electrode to which an accelerating electric field is applied to extract secondary ions;
Secondary ions are guided to the mass spectrometer 5 by an accelerating electric field of about 0 kV. The mass spectrometer 5 may have a conventional configuration such as a fan-shaped electromagnetic field or an electron multiplier.

図中、6は水晶振動子で、試料保持部3近傍の前記試料
2の表面と前記引出し電極4との間の空間に、所定の立
体角を見込むように配設されていて、発撮器7の共振回
路の一部を構成している。該共振回路で測定された共振
撮動数は、信号処理手段8において、スパッタ面積およ
び質量数のデータに対応する深さに変換されたのち、記
録討9に記録かつ表示される。上記の水晶振動子6、発
撮器7および信号処理手段8で、本発明の膜厚計が構成
されることになる。
In the figure, reference numeral 6 denotes a crystal oscillator, which is disposed in the space between the surface of the sample 2 near the sample holder 3 and the extraction electrode 4 so as to allow a predetermined solid angle to be observed. 7 constitutes a part of the resonant circuit. The resonance imaging number measured by the resonance circuit is converted into a depth corresponding to the sputter area and mass number data in the signal processing means 8, and then recorded and displayed on the recorder 9. The above-mentioned crystal oscillator 6, camera 7, and signal processing means 8 constitute the film thickness meter of the present invention.

以上の機能を実現させるためには、試料2の表面から、
引出し電極4迄の空間に二次イオン引出しの障害になら
ない方向に水晶振動子6を配設する必要がある。引出し
電極4はアース電位に置かれるのが通常であるから、水
晶振動子6も同電位に設定する。試料2の表面からスパ
ッタされる状態は、大部分が中性原子であり、照射一次
イオン条件で中性原子状態とイオン状態の割合が規定さ
れるので、水晶振動子6の上に捕捉された物質の重量は
試料2からスパッタされた全物質の重量に比例する。水
晶振動子6の振動数は重量の平方根に逆比例するので、
微小変化でも電気的に正確に計測される。スパッタリン
グ現象は不純物、格子欠陥によっても微妙に変化するが
、第1次近似的にはバルクの現象であるので、あらかじ
めバルクの質量とスパッタ面積とがわかっていれば、質
量変化をエツチングωに換算するのは容易である。
In order to realize the above functions, from the surface of sample 2,
It is necessary to arrange the crystal resonator 6 in the space up to the extraction electrode 4 in a direction that does not interfere with secondary ion extraction. Since the extraction electrode 4 is normally placed at ground potential, the crystal oscillator 6 is also set at the same potential. Most of the sputtered atoms from the surface of the sample 2 are neutral atoms, and the ratio of the neutral atomic state to the ionic state is determined by the primary ion irradiation conditions. The weight of material is proportional to the weight of total material sputtered from Sample 2. Since the frequency of the crystal oscillator 6 is inversely proportional to the square root of the weight,
Even minute changes can be accurately measured electrically. The sputtering phenomenon changes slightly depending on impurities and lattice defects, but in the first approximation it is a bulk phenomenon, so if the mass of the bulk and the sputtering area are known in advance, the change in mass can be converted to etching ω. It's easy to do.

本発明は、二次イオン質量分析装置において、特にその
深さ方向分析の機能を高めるものである。
The present invention particularly improves the depth direction analysis function of a secondary ion mass spectrometer.

即ち、数種の材料からなるいくつかの多層膜のデプスプ
ロファイルを分析する際に、横軸を単に測定時間による
目盛ではなく、現実の各層の厚さをあてはめることがで
きる。このようなデータの集積は各材料のスパッタリン
グレートという基本的物性定数を知るためにも役立つと
考えられる。なお、本発明の方法の適用は、上記の質量
分析装置のみならず、イオンによって表面を物理的にエ
ツチングする機構を有する装置、例えば電子顕微鏡試料
作製装置、オージェ電子分光分析装置などにおいても試
料のエツチング深さをその場で観察できる点で充分有用
であることはいうまでもない。
That is, when analyzing the depth profile of several multilayer films made of several materials, it is possible to apply the actual thickness of each layer to the horizontal axis instead of simply using a scale based on measurement time. The accumulation of such data is considered useful for understanding the fundamental physical property constant of each material, such as the sputtering rate. The method of the present invention can be applied not only to the above-mentioned mass spectrometers, but also to devices that have a mechanism for physically etching the surface with ions, such as electron microscope sample preparation devices, Auger electron spectrometers, etc. Needless to say, this method is quite useful in that the etching depth can be observed on the spot.

[発明の効果] 以−ヒ、説明したとおり、本発明によれば、連続的に変
化する被検査試料のエツチング深さを質量分析と同時に
h′1測かつ表示可能な二次イオン質量分析装置を提供
することができる。
[Effects of the Invention] As explained above, according to the present invention, there is provided a secondary ion mass spectrometer capable of measuring and displaying h'1 of the continuously changing etching depth of a sample to be inspected at the same time as mass spectrometry. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図である。 1・・・一次イオン発生部  2・・・試料3・・・試
料保持部 4・・・二次イオン引出し電極 5・・・質は分析手段    6・・・水晶振動子7・
・・発振器       8・・・信号処理手段9・・
・記録^1
FIG. 1 is a block diagram of an embodiment of the present invention. 1...Primary ion generating section 2...Sample 3...Sample holding section 4...Secondary ion extraction electrode 5...Quality is analysis means 6...Crystal oscillator 7.
...Oscillator 8...Signal processing means 9...
・Record ^1

Claims (1)

【特許請求の範囲】[Claims] (1)一次イオン発生部からのイオンビームを試料に照
射し、その際に放出される二次イオンの質量を分析する
ことにより、試料表面の元素分布状態を測定する質量分
析装置において、試料保持部の近傍に水晶振動子を配設
し、試料の質量分析と同時に該試料のエッチング深さを
計測・記録表示する膜厚計を備えたことを特徴とする二
次イオン質量分析装置。
(1) A sample is held in a mass spectrometer that measures the elemental distribution state on the sample surface by irradiating the sample with an ion beam from the primary ion generator and analyzing the mass of the secondary ions released at that time. 1. A secondary ion mass spectrometer, characterized in that a crystal oscillator is disposed near the sample, and a film thickness meter is provided for simultaneously measuring, recording and displaying the etching depth of the sample while performing mass analysis of the sample.
JP62318560A 1987-12-18 1987-12-18 Secondary ion mass analyzer Granted JPH01161650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62318560A JPH01161650A (en) 1987-12-18 1987-12-18 Secondary ion mass analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62318560A JPH01161650A (en) 1987-12-18 1987-12-18 Secondary ion mass analyzer

Publications (2)

Publication Number Publication Date
JPH01161650A true JPH01161650A (en) 1989-06-26
JPH0578902B2 JPH0578902B2 (en) 1993-10-29

Family

ID=18100494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62318560A Granted JPH01161650A (en) 1987-12-18 1987-12-18 Secondary ion mass analyzer

Country Status (1)

Country Link
JP (1) JPH01161650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794563B2 (en) * 2005-06-08 2010-09-14 Tdk Corporation Etching depth measuring device, etching apparatus, and etching depth measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794563B2 (en) * 2005-06-08 2010-09-14 Tdk Corporation Etching depth measuring device, etching apparatus, and etching depth measuring method

Also Published As

Publication number Publication date
JPH0578902B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
US6855928B2 (en) Analysis of semiconductor surfaces by secondary ion mass spectrometry and methods
Graczyk et al. Scanning electron diffraction attachment with electron energy filtering
US10054557B2 (en) Method for measuring the mass thickness of a target sample for electron microscopy
US20050061971A1 (en) Method and apparatus for observing inside structures, and specimen holder
Meijer et al. PIXE microprobe for geoscience applications
JPH01161650A (en) Secondary ion mass analyzer
JP2000249668A (en) Quantitative analysis device of nonuniform composite tissue sample
JPS6341185B2 (en)
JP3127875B2 (en) Total reflection X-ray fluorescence analysis method and apparatus
JP2903874B2 (en) Ion-excitation X-ray analyzer with focused ion beam
JPH063295A (en) Surface analyzing device
JP2002310957A (en) X-ray analyzer by electron excitation
Žitnik et al. 3D-reconstruction of an object by means of a confocal micro-PIXE
Bulpett Electron probe X-ray microanalysis of surfaces and thin films
JPS62285048A (en) Element density distribution measurement
JPH07183343A (en) X-ray photoelectric spectral analyzer
JPS62144052A (en) 2-d distribution measuring apparatus for film thickness and component element of surface-treated layer of surface treated metal plate and measurement thereby
Unguris et al. Scanning electron microscopy with polarization analysis studies of Ni-Fe magnetic memory elements
Kossowsky Analytical Techniques for Electronic Materials-A Comparative Evaluation
JPH0443541A (en) Surface analysis device and surface analysis method
JPS62278404A (en) Measurement of width of minute line
Oswald et al. Measurement and modelling of primary beam shape in an ion microprobe mass analyser
Conzemius et al. Electrical Measurements of Mass Resolved Ion Beams
Andrews Electron optical metallographic instruments
Eckelmeyer Bulk Elemental Analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060411

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060424

Free format text: JAPANESE INTERMEDIATE CODE: A61

LAPS Cancellation because of no payment of annual fees