JP2000249668A - Quantitative analysis device of nonuniform composite tissue sample - Google Patents

Quantitative analysis device of nonuniform composite tissue sample

Info

Publication number
JP2000249668A
JP2000249668A JP11053744A JP5374499A JP2000249668A JP 2000249668 A JP2000249668 A JP 2000249668A JP 11053744 A JP11053744 A JP 11053744A JP 5374499 A JP5374499 A JP 5374499A JP 2000249668 A JP2000249668 A JP 2000249668A
Authority
JP
Japan
Prior art keywords
sample
particle structure
quantitative analysis
weight concentration
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11053744A
Other languages
Japanese (ja)
Inventor
Hideyuki Takahashi
秀之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP11053744A priority Critical patent/JP2000249668A/en
Publication of JP2000249668A publication Critical patent/JP2000249668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately perform a quantitative analysis by performing calculation based on density and atom concentration corresponding to the element of each particle structure in a sample and the volume rate of each particle structure and rapidly measuring weight concentration. SOLUTION: First, for example an electron beam is scanned via an electronic scanning circuit 20 and a scanning coil 5 to obtain a reflection electron image or a secondary electron image on a sample surface. Then, based on it, the center of gravity of each particle structure in a sample is obtained, an electron beam is fixed to the position, and a quantitative analysis is executed by a quantitative analysis means 28. Also, the area of each particle structure in the sample is calculated by a volume rate calculation means 27, the volume rate in the sample of each particle structure is calculated based on it, the weight concentration of each particle structure is calculated by a weight concentration calculation means 29, and the quantitative value of the entire sample is calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、不均一複合組織
試料における各粒子組織の重量濃度を測定し、試料全体
の定量値を高精度で得られるようにした不均一複合組織
試料の定量分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for quantitatively analyzing a heterogeneous composite tissue sample in which the weight concentration of each particle structure in the heterogeneous composite tissue sample is measured so that a quantitative value of the entire sample can be obtained with high accuracy. About.

【0002】[0002]

【従来の技術】従来、波長分散形X線分光器(WDS)
又はエネルギー分散形X線分光器(EDS)を用いた電
子プローブマイクロアナライザ(EPMA)などの表面
分析機器においては、試料の特性X線を検出し標準試料
によるX線強度との比較により定量分析を行うようにし
ており、試料の微小領域の定量分析は、他の分析機器に
比べて高い信頼性をもって行われている。また、コンピ
ュータ制御による試料ステージ又は電子ビームの自動制
御により、連続的な分析が可能になっており、また最近
では、自動的に介在物などの粒子を反射電子像や2次電
子像で検出して、その重心を算出して電子ビームをその
重心点に自動的に移動固定して、定量分析できるシステ
ムが構築されている。そして、試料中に含まれる元素を
定量分析する場合、一般的にZAF補正(Z:原子番号
補正、A:吸収補正、F:蛍光励起補正)やこれを改良
したprz法などを適用して実施されている。
2. Description of the Related Art Conventionally, wavelength dispersion type X-ray spectrometer (WDS)
Alternatively, surface analysis equipment such as an electron probe microanalyzer (EPMA) using an energy dispersive X-ray spectrometer (EDS) detects a characteristic X-ray of a sample and performs quantitative analysis by comparing the X-ray intensity with a standard sample. Quantitative analysis of a minute area of a sample is performed with higher reliability than other analytical instruments. In addition, continuous analysis is possible by automatic control of the sample stage or electron beam controlled by a computer, and recently, particles such as inclusions are automatically detected by reflected electron images or secondary electron images. Thus, a system has been constructed which calculates the center of gravity, automatically moves and fixes the electron beam at the center of gravity, and can perform quantitative analysis. When quantitative analysis of elements contained in a sample is performed, generally, ZAF correction (Z: atomic number correction, A: absorption correction, F: fluorescence excitation correction) or a modified prz method is applied. Have been.

【0003】[0003]

【発明が解決しようとする課題】ところで、EPMAな
どの表面分析機器を用いて定量分析が行われる試料とし
ては、介在物や偏析及び晶出物などを立体的に多数含む
不均一複合組織のものがある。このような不均一複合組
織の試料の定量分析においては、電子ビームを拡げて分
析を行っても、ZAF補正などの定量精度は低下してし
まう。これはZAF補正などの定量補正理論が固溶体な
どの均一試料を基に構築されているためである。
By the way, as a sample to be quantitatively analyzed using a surface analysis device such as an EPMA, a sample having a heterogeneous composite structure containing a large number of inclusions, segregation and crystallized substances in a three-dimensional manner is used. There is. In the quantitative analysis of such a heterogeneous composite tissue sample, even if the analysis is performed by expanding the electron beam, the quantitative accuracy such as ZAF correction is reduced. This is because quantitative correction theory such as ZAF correction is constructed based on a homogeneous sample such as a solid solution.

【0004】一方、特開平10−26593号公報にお
いては、面積比率と元素密度を考慮して定量分析を行う
手法が開示されているが、この手法においては試料の元
素分布領域の面積比率は考慮されているが、試料の深さ
方向の分布は考慮されていないので、高精度の定量分析
が期待できない。
On the other hand, Japanese Patent Application Laid-Open No. Hei 10-26593 discloses a technique for performing quantitative analysis in consideration of an area ratio and an element density. In this technique, the area ratio of an element distribution region of a sample is taken into consideration. However, since the distribution in the depth direction of the sample is not taken into account, high-precision quantitative analysis cannot be expected.

【0005】本発明は、不均一複合組織試料の定量分析
定量分析における上記問題点を解消するためになされた
もので、不均一複合組織の試料においても迅速に重量濃
度を測定し、高精度で定量分析できるようにした不均一
複合組織試料の定量分析装置を提供することを目的とす
る。
The present invention has been made to solve the above problems in quantitative analysis of a heterogeneous composite tissue sample. The present invention measures the weight concentration quickly even in a sample of a heterogeneous composite tissue and achieves high accuracy. An object of the present invention is to provide an apparatus for quantitatively analyzing a heterogeneous composite tissue sample which enables quantitative analysis.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
め、本発明は、試料表面を電子像又はX線像として観察
する試料表面観察手段と、該試料表面観察手段により得
られる試料中の各粒子組織の面積に基づいて各粒子組織
の体積率を算出する手段と、試料に照射した電子線によ
り発生する特性X線に基づく各粒子組織の定量分析を行
う手段と、定量分析手段で得られた各粒子組織の元素に
対応する密度及び原子濃度並びに前記体積率算出手段で
得られた各粒子組織の体積率とに基づいて重量濃度を算
出する手段とで不均一複合組織試料の定量分析装置を構
成するものである。
In order to solve the above problems, the present invention provides a sample surface observing means for observing a sample surface as an electronic image or an X-ray image, and a method for observing a sample obtained by the sample surface observing means. Means for calculating the volume fraction of each particle structure based on the area of each particle structure, means for performing quantitative analysis of each particle structure based on characteristic X-rays generated by an electron beam irradiated to the sample, and quantitative analysis means. Means for calculating the weight concentration based on the density and the atomic concentration corresponding to the element of each particle structure obtained and the volume ratio of each particle structure obtained by the volume ratio calculation means, quantitative analysis of the heterogeneous composite tissue sample It constitutes the device.

【0007】このように構成した不均一複合組織試料の
定量分析装置においては、各粒子組織の面積に基づいて
体積率を算出する手段を備え、各粒子組織の体積率を算
出して各粒子組織の深さ方向の平均的な分布を考慮して
重量濃度を算出するようにしているので、不均一複合組
織試料においても重量濃度を迅速に測定すし、高精度で
定量分析を行うことができる。
The apparatus for quantitatively analyzing a heterogeneous composite tissue sample constructed as described above includes means for calculating a volume ratio based on the area of each particle structure, and calculates the volume ratio of each particle structure to calculate each particle structure. Since the weight concentration is calculated in consideration of the average distribution in the depth direction, the weight concentration can be quickly measured even in a heterogeneous composite tissue sample, and quantitative analysis can be performed with high accuracy.

【0008】[0008]

【発明の実施の形態】次に実施の形態について説明す
る。図1は、本発明に係る不均一複合組織試料の定量分
析装置の実施の形態を示す概略構成図で、この実施の形
態は本発明をEPMAに適用したものを示している。図
1において、1は電子銃、2はコンデンサレンズコイ
ル、3は対物絞り、4はファラデーカップ、5は走査
(偏向)コイル、6は非点補正コイル、7は対物レン
ズ、8は反射電子検出器、9は2次電子検出器、10は試
料、11は試料ステージ、12はステージ駆動モータであ
る。13はX線分光素子、14はX線検出器、15はX線分光
素子駆動用モータで、これらでWDS(波長分散形X線
分光器)16を構成している。17はEDS(エネルギー分
散形X線分光器)、18は光学顕微鏡、19はEDSX線信
号データ取込み装置、20は電子走査回路、21は2次電子
信号データ取込み装置、22は反射電子信号データ取込み
装置、23はステージモータ制御回路、24はWDSX線信
号データ取込み装置、25は中央演算装置、26は大容量記
憶装置で、中央演算装置25内には2次電子信号データ又
は反射電子信号データによる試料電子像に基づいて試料
中の各粒子組織の面積を求め、該面積に基づいて体積率
を算出する手段27と、EDSX線信号データ又はWDS
X線信号データに基づいて定量分析を実行する手段28
と、該定量分析手段で得られた各粒子組織の元素に対応
する密度及び原子濃度並びに前記体積率算出手段で得ら
れた各粒子組織の体積率とに基づいて重量濃度を算出す
る手段29を備えている。
Next, an embodiment will be described. FIG. 1 is a schematic configuration diagram showing an embodiment of a quantitative analysis apparatus for a heterogeneous composite tissue sample according to the present invention. This embodiment shows a case where the present invention is applied to EPMA. In FIG. 1, 1 is an electron gun, 2 is a condenser lens coil, 3 is an objective aperture, 4 is a Faraday cup, 5 is a scanning (deflection) coil, 6 is an astigmatism correction coil, 7 is an objective lens, and 8 is reflected electron detection. , 9 is a secondary electron detector, 10 is a sample, 11 is a sample stage, and 12 is a stage drive motor. Reference numeral 13 denotes an X-ray spectroscopy element, 14 denotes an X-ray detector, 15 denotes an X-ray spectroscopy element driving motor, and these constitute a WDS (Wavelength Dispersion X-ray Spectrometer) 16. 17 is an EDS (energy dispersive X-ray spectrometer), 18 is an optical microscope, 19 is an EDSX-ray signal data acquisition device, 20 is an electronic scanning circuit, 21 is a secondary electron signal data acquisition device, 22 is a reflected electron signal data acquisition. Device, 23 is a stage motor control circuit, 24 is a WDS X-ray signal data acquisition device, 25 is a central processing unit, 26 is a large capacity storage device, and in the central processing unit 25, secondary electron signal data or reflected electron signal data is used. Means 27 for determining the area of each particle structure in the sample based on the sample electronic image and calculating the volume ratio based on the area; EDSX-ray signal data or WDS
Means 28 for performing quantitative analysis based on X-ray signal data
And means 29 for calculating the weight concentration based on the density and atomic concentration corresponding to the element of each particle structure obtained by the quantitative analysis means and the volume ratio of each particle structure obtained by the volume ratio calculation means. Have.

【0009】次に、このように構成されている不均一複
合組織試料の定量分析装置の動作について説明する。ま
ず、電子走査回路20及び走査コイル5を介しての電子ビ
ーム走査、又はステージモータ制御回路23及びステージ
モータ12を介しての試料ステージ11の走査を行い、試料
表面からの反射電子又は2次電子を反射電子検出器8又
は2次電子検出器9で検出し、反射電子信号データ取込
み装置22又は2次電子信号データ取込み装置21を介し
て、試料表面の反射電子像又は2次電子像を得る。
Next, the operation of the apparatus for quantitatively analyzing a heterogeneous composite tissue sample configured as described above will be described. First, electron beam scanning through the electronic scanning circuit 20 and the scanning coil 5 or scanning of the sample stage 11 through the stage motor control circuit 23 and the stage motor 12 is performed, and reflected electrons or secondary electrons from the sample surface are scanned. Is detected by the reflected electron detector 8 or the secondary electron detector 9, and a reflected electron image or a secondary electron image of the sample surface is obtained via the reflected electron signal data acquisition device 22 or the secondary electron signal data acquisition device 21. .

【0010】次いで、試料表面の反射電子像又は2次電
子像に基づいて、試料中の各粒子組織の重心を求め、各
各粒子の重心位置に試料ステージ11又は電子ビームを順
次移動させて電子ビームを固定し、WDS16又はEDS
17により定量分析動作を行う。そしてWDSX線信号デ
ータ取込み装置24又はEDSX線信号データ取込み装置
19を介して取り込んだ分析データに基づいて定量分析手
段28で定量分析を実行する。また試料表面の電子像に基
づいて、体積率算出手段27により試料中の各粒子組織の
面積を算出し、その面積に基づいて各粒子組織の試料中
の体積率を算出する。次いで、定量分析手段28で得られ
た各粒子組織の元素の密度及び原子濃度を文献などによ
り導き、更に前記体積率算出手段27で得られた体積率に
基づいて、重量濃度算出手段29で各粒子組織の重量濃度
を算出し、試料全体の定量値を算出する。
Next, based on the reflected electron image or the secondary electron image of the sample surface, the center of gravity of each particle structure in the sample is obtained, and the sample stage 11 or the electron beam is sequentially moved to the position of the center of gravity of each particle to obtain the electron. Fix the beam, WDS16 or EDS
17 performs a quantitative analysis operation. And a WDSX-ray signal data acquisition device 24 or an EDSX-ray signal data acquisition device
Quantitative analysis is performed by quantitative analysis means 28 based on the analysis data taken in via 19. Further, the area ratio of each particle structure in the sample is calculated by the volume ratio calculating means 27 based on the electronic image of the sample surface, and the volume ratio of each particle structure in the sample is calculated based on the area. Next, the density and atomic concentration of the element in each particle structure obtained by the quantitative analysis unit 28 are derived from literatures and the like, and further, based on the volume ratio obtained by the volume ratio calculation unit 27, each weight concentration calculation unit 29 The weight concentration of the particle structure is calculated, and the quantitative value of the whole sample is calculated.

【0011】次に、具体例として、図2に示すように2
3cm3の純鉄31中に1cm3 のカーボン(黒鉛)32が含まれ
ている場合におけるカーボン及び鉄の重量濃度CC ,C
Feは、カーボン及び鉄の密度をρC ,ρFeとすると、次
式(1),(2)で表される。 CC =〔13 ×ρC /{13 ×ρC +(23 −13 )×ρFe}〕×100 =〔(1×2.25)/(1×2.25+7×7.86)〕×100 =3.9 (%) ・・・・・・・・・・(1) CFe=[(23 −13 )×ρFe/{13 ×ρC +(23 −13 )×ρFe}] ×100 =[ 7×7.86/(1×2.25+7×7.86)] ×100 =96.1(%) ・・・・・・・・・・(2)
Next, as a specific example, as shown in FIG.
Carbon and iron weight concentrations C C , C when 1 cm 3 of carbon (graphite) 32 is contained in 3 cm 3 of pure iron 31
Fe is represented by the following equations (1) and (2), where ρ C and ρ Fe are the densities of carbon and iron. C C = [1 3 × ρ C / {1 3 × ρ C + (2 3 -1 3) × ρ Fe} ] × 100 = [(1 × 2.25) / (1 × 2.25 + 7 × 7.86) ] × 100 = 3.9 (%) ·········· (1 ) C Fe = [(2 3 -1 3) × ρ Fe / {1 3 × ρ C + (2 3 -1 3) × ρ Fe }] X 100 = [7 x 7.86 / (1 x 2.25 + 7 x 7.86)] x 100 = 96.1 (%) ... (2)

【0012】一般的に、試料総面積をS,試料中の組織
である元素Aの面積をSA ,マトリックス(母体)の密
度をρM ,元素Aの密度をρA ,マトリックスの原子濃
度をcM ,元素Aの原子濃度をcA とすると、組織(元
素A)の重量濃度CA は次式(3)で表される。 CA =(SA 3/2 ×ρA ×cA )/ {(S3/2 −SA 3/2 )×ρM ×cM +SA 3/2 ×ρA ×cA } ・・・・・・・・・・(3) また、試料中の組織として2元素A,Bが存在している
場合の組織(元素A)の重量濃度CA は、次式(4)で
表される。なお、元素Bの面積をSB ,密度をρ B ,原
子濃度をcB とする。 CA =(SA 3/2 ×ρA ×cA )/{(S3/2 −SA 3/2 −SB 3/2 ) ×ρM ×cM +(SA 3/2 ×ρA ×cA )+(SB 3/2 ×ρB ×cB )} ・・・・・・・・・・(4) 元素Bの重量濃度や、3元素以上の場合の重量濃度も同
様にして求められる。
In general, the total area of a sample is S, and the tissue in the sample is
Is the area of element AA, Matrix (maternal) dense
Degree ρM, The density of element A is ρA, Atomic concentration of matrix
Degree cM, The atomic concentration of element A is cAThen the organization (ex
Weight concentration C of element A)AIs represented by the following equation (3). CA= (SA 3/2× ρA× cA) / {(S3/2-SA 3/2) × ρM× cM+ SA 3/2× ρA× cA} ・ ・ ・ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 (2)
Weight concentration C of the structure (element A) in the caseAIs given by the following equation (4).
expressed. Note that the area of the element B is SB, Density ρ B,original
The child concentration is cBAnd CA= (SA 3/2× ρA× cA) / {(S3/2-SA 3/2-SB 3/2) × ρM× cM+ (SA 3/2× ρA× cA) + (SB 3/2× ρB× cB(4) The same applies to the weight concentration of element B and the weight concentration in the case of three or more elements.
Is requested in a similar manner.

【0013】なお、上記実施の形態においては、2次電
子像あるいは反射電子像に基づいて試料面上の各組織の
面積を求めて体積率を算出するようにしたものを示した
が、X線像に基づいて体積率を算出するようにしてもよ
い。
In the above embodiment, the volume ratio is calculated by calculating the area of each tissue on the sample surface based on the secondary electron image or the backscattered electron image. The volume ratio may be calculated based on the image.

【0014】[0014]

【発明の効果】以上実施の形態に基づいて説明したよう
に、本発明によれば、電子像又はX線像により得られる
試料中の各粒子組織の面積に基づいて各粒子組織の体積
率を算出して、各粒子組織の深さ方向の分布を考慮して
重量濃度を算出するようにしているので、不均一複合組
織試料においても試料全体の定量結果を精度よく迅速に
得ることができる。
As described above with reference to the embodiments, according to the present invention, the volume ratio of each particle structure is determined based on the area of each particle structure in the sample obtained by an electron image or an X-ray image. Since the weight concentration is calculated in consideration of the distribution in the depth direction of each particle structure, a quantitative result of the entire sample can be quickly and accurately obtained even in a heterogeneous composite tissue sample.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る不均一複合組織試料の定量分析装
置の実施の形態を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of a quantitative analysis device for a heterogeneous composite tissue sample according to the present invention.

【図2】純鉄中にカーボンが含まれている場合における
重量濃度を算出する態様を模式的に示す図である。
FIG. 2 is a diagram schematically illustrating a mode of calculating a weight concentration when pure iron contains carbon.

【符号の説明】[Explanation of symbols]

1 電子銃 2 コンデンサレンズコイル 3 対物絞り 4 ファラデーカップ 5 走査(偏向)コイル 6 非点補正コイル 7 対物レンズ 8 反射電子検出器 9 2次電子検出器 10 試料 11 試料ステージ 12 ステージ駆動モータ 13 X線分光素子 14 X線検出器 15 X線分光素子駆動用モータ 16 WDS 17 EDS 18 光学顕微鏡 19 EDSX線信号データ取込み装置 20 電子走査回路 21 2次電子信号データ取込み装置 22 反射電子信号データ取込み装置 23 ステージモータ制御回路 24 WDSX線信号データ取込み装置 25 中央演算装置 26 大容量記憶装置 27 体積率算出手段 28 定量分析手段 29 重量濃度算出手段 Reference Signs List 1 electron gun 2 condenser lens coil 3 objective aperture 4 Faraday cup 5 scanning (deflection) coil 6 astigmatism correction coil 7 objective lens 8 backscattered electron detector 9 secondary electron detector 10 sample 11 sample stage 12 stage drive motor 13 X-ray Spectroscopic element 14 X-ray detector 15 Motor for driving X-ray spectroscopic element 16 WDS 17 EDS 18 Optical microscope 19 EDSX X-ray signal data acquisition device 20 Electronic scanning circuit 21 Secondary electron signal data acquisition device 22 Reflected electron signal data acquisition device 23 Stage Motor control circuit 24 WDS X-ray signal data acquisition device 25 Central processing unit 26 Mass storage device 27 Volume ratio calculation means 28 Quantitative analysis means 29 Weight concentration calculation means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料表面を電子像又はX線像として観察
する試料表面観察手段と、該試料表面観察手段により得
られる試料中の各粒子組織の面積に基づいて各粒子組織
の体積率を算出する手段と、試料に照射した電子線によ
り発生する特性X線に基づく各粒子組織の定量分析を行
う手段と、定量分析手段で得られた各粒子組織の元素に
対応する密度及び原子濃度並びに前記体積率算出手段で
得られた各粒子組織の体積率とに基づいて重量濃度を算
出する手段とを備えていることを特徴とする不均一複合
組織試料の定量分析装置。
1. A sample surface observation means for observing a sample surface as an electronic image or an X-ray image, and a volume ratio of each particle structure is calculated based on an area of each particle structure in the sample obtained by the sample surface observation means. Means for performing quantitative analysis of each particle structure based on characteristic X-rays generated by an electron beam irradiated on the sample; density and atomic concentration corresponding to the element of each particle structure obtained by the quantitative analysis means; Means for calculating a weight concentration based on the volume ratio of each particle structure obtained by the volume ratio calculating means.
JP11053744A 1999-03-02 1999-03-02 Quantitative analysis device of nonuniform composite tissue sample Pending JP2000249668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11053744A JP2000249668A (en) 1999-03-02 1999-03-02 Quantitative analysis device of nonuniform composite tissue sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11053744A JP2000249668A (en) 1999-03-02 1999-03-02 Quantitative analysis device of nonuniform composite tissue sample

Publications (1)

Publication Number Publication Date
JP2000249668A true JP2000249668A (en) 2000-09-14

Family

ID=12951334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11053744A Pending JP2000249668A (en) 1999-03-02 1999-03-02 Quantitative analysis device of nonuniform composite tissue sample

Country Status (1)

Country Link
JP (1) JP2000249668A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7979217B2 (en) 2004-08-03 2011-07-12 Fei Company Method and system for spectroscopic data analysis
US8880356B2 (en) 2008-02-06 2014-11-04 Fei Company Method and system for spectrum data analysis
US8937282B2 (en) 2012-10-26 2015-01-20 Fei Company Mineral identification using mineral definitions including variability
US9048067B2 (en) 2012-10-26 2015-06-02 Fei Company Mineral identification using sequential decomposition into elements from mineral definitions
US9091635B2 (en) 2012-10-26 2015-07-28 Fei Company Mineral identification using mineral definitions having compositional ranges
US9188555B2 (en) 2012-07-30 2015-11-17 Fei Company Automated EDS standards calibration
US9194829B2 (en) 2012-12-28 2015-11-24 Fei Company Process for performing automated mineralogy
US9714908B2 (en) 2013-11-06 2017-07-25 Fei Company Sub-pixel analysis and display of fine grained mineral samples
US9778215B2 (en) 2012-10-26 2017-10-03 Fei Company Automated mineral classification

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7979217B2 (en) 2004-08-03 2011-07-12 Fei Company Method and system for spectroscopic data analysis
US8589086B2 (en) 2004-08-03 2013-11-19 Fei Company Method and system for spectroscopic data analysis
US8880356B2 (en) 2008-02-06 2014-11-04 Fei Company Method and system for spectrum data analysis
US9188555B2 (en) 2012-07-30 2015-11-17 Fei Company Automated EDS standards calibration
US8937282B2 (en) 2012-10-26 2015-01-20 Fei Company Mineral identification using mineral definitions including variability
US9048067B2 (en) 2012-10-26 2015-06-02 Fei Company Mineral identification using sequential decomposition into elements from mineral definitions
US9091635B2 (en) 2012-10-26 2015-07-28 Fei Company Mineral identification using mineral definitions having compositional ranges
US9778215B2 (en) 2012-10-26 2017-10-03 Fei Company Automated mineral classification
US9194829B2 (en) 2012-12-28 2015-11-24 Fei Company Process for performing automated mineralogy
US9714908B2 (en) 2013-11-06 2017-07-25 Fei Company Sub-pixel analysis and display of fine grained mineral samples

Similar Documents

Publication Publication Date Title
US20040099805A1 (en) Electron microscope including apparatus for x-ray analysis and method of analyzing specimens using same
Zou et al. Quantitative electron diffraction—new features in the program system ELD
US7579591B2 (en) Method and apparatus for analyzing sample
JPH05240808A (en) Method for determining fluorescent x rays
JP2848751B2 (en) Elemental analysis method
JPH05101800A (en) Method for obtaining target region in electronic microanalysis system on surface of sample
JP2000249668A (en) Quantitative analysis device of nonuniform composite tissue sample
JP2002039976A (en) Method for correcting measured data of electron beam micro-analyzer
JP2928688B2 (en) Pollution element analysis method and device
US11499927B2 (en) Analysis method and X-ray fluorescence analyzer
EP3869186B1 (en) Auger electron microscope and analysis method
JP2000235009A (en) Particle analyzing device by means of electron probe microanalyzer
JP2010223898A (en) Sample analysis method and sample analyzer
Kosior et al. Study of radiation effects on the cell structure and evaluation of the dose delivered by x-ray and α-particles microscopy
JP4111805B2 (en) X-ray analyzer
Joy et al. Inner-Shell Electron Spectroscopy for Microanalysis: Chemical, structural, and electronic data are obtained by analysis of electron energy losses.
JP2002062270A (en) Method of displaying face analysis data in surface analyzer using electron beam
JP3373698B2 (en) X-ray analysis method and X-ray analyzer
US6753525B1 (en) Materials analysis using backscatter electron emissions
JPH07270346A (en) Method for analyzing minute part
JPH06288941A (en) Method for analyzing state of foreign matter
JP3069305B2 (en) X-ray fluorescence analysis method and apparatus
JP3164720B2 (en) Pollutant element concentration analyzer and pollutant element concentration analysis method
JP2001167726A (en) Apparatus of producing work function image
JP2645227B2 (en) X-ray fluorescence analysis method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040928