JPH01160814A - Secondary battery - Google Patents
Secondary batteryInfo
- Publication number
- JPH01160814A JPH01160814A JP62318689A JP31868987A JPH01160814A JP H01160814 A JPH01160814 A JP H01160814A JP 62318689 A JP62318689 A JP 62318689A JP 31868987 A JP31868987 A JP 31868987A JP H01160814 A JPH01160814 A JP H01160814A
- Authority
- JP
- Japan
- Prior art keywords
- electrode body
- separator
- positive electrode
- negative electrode
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011148 porous material Substances 0.000 claims abstract description 27
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 16
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 10
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 9
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 8
- 239000003792 electrolyte Substances 0.000 claims abstract description 6
- -1 transition metal chalcogen compound Chemical class 0.000 claims description 34
- 239000011149 active material Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 238000002050 diffraction method Methods 0.000 claims description 2
- 239000003575 carbonaceous material Substances 0.000 abstract description 24
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 150000001875 compounds Chemical class 0.000 abstract description 6
- 150000003624 transition metals Chemical class 0.000 abstract description 3
- 239000013543 active substance Substances 0.000 abstract 2
- 239000000843 powder Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000011888 foil Substances 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 239000011255 nonaqueous electrolyte Substances 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 238000003763 carbonization Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 238000000804 electron spin resonance spectroscopy Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229920003986 novolac Polymers 0.000 description 3
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 238000004435 EPR spectroscopy Methods 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910003092 TiS2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 238000005280 amorphization Methods 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000012461 cellulose resin Substances 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000004312 hexamethylene tetramine Substances 0.000 description 2
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052961 molybdenite Inorganic materials 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- GBROPGWFBFCKAG-UHFFFAOYSA-N picene Chemical compound C1=CC2=C3C=CC=CC3=CC=C2C2=C1C1=CC=CC=C1C=C2 GBROPGWFBFCKAG-UHFFFAOYSA-N 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 229920001197 polyacetylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- 229910015898 BF4 Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical class ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 150000008360 acrylonitriles Polymers 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001786 chalcogen compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000006159 dianhydride group Chemical group 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000007578 melt-quenching technique Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- JQQSUOJIMKJQHS-UHFFFAOYSA-N pentaphene Chemical compound C1=CC=C2C=C3C4=CC5=CC=CC=C5C=C4C=CC3=CC2=C1 JQQSUOJIMKJQHS-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 1
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical compound C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、二次電池に関し、更に詳しくは、エネルギー
密度が高く、充放電サイクル寿命が長く、信頼性が優れ
た二次電池に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a secondary battery, and more particularly to a secondary battery that has high energy density, long charge/discharge cycle life, and excellent reliability.
(従来の技術及び問題点)
近年、電子機器の発達に伴い、小型で軽量、かつエネル
ギー密度が高く、繰り返し充放電可能な二次電池の開発
に対する要望が高まってきた。(Prior Art and Problems) In recent years, with the development of electronic devices, there has been an increasing demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged.
そのような二次電池としては、例えばポリアセチレン等
の導電性高分子を正極や負極に使用したもの(固体物理
17 [12] 753 (1982))が知られてい
るが、導電性高分子を正極に使用した場合には、電極容
量が不充分となり、負極に使用した場合には自己放電が
大きく、貯蔵後特性が不安定になるという不都合を生じ
ている。As such a secondary battery, for example, one in which a conductive polymer such as polyacetylene is used as a positive electrode or a negative electrode is known (Solid State Physics 17 [12] 753 (1982)). When used as a negative electrode, the electrode capacity becomes insufficient, and when used as a negative electrode, self-discharge is large and the characteristics after storage become unstable.
また、正極体の主要成分がTiS2.MoS2のような
還移金属のカルコゲン化合物であり、負極体がLi又は
Liを主体とするアルカリ金属である非水電解液二次電
池は、高エネルギー密度を有するので商品化の努力が払
われている。Moreover, the main component of the positive electrode body is TiS2. Efforts are being made to commercialize nonaqueous electrolyte secondary batteries, which are chalcogen compounds of reduced metals such as MoS2, and whose negative electrodes are Li or an alkali metal mainly composed of Li, because they have high energy density. There is.
このような二次電池の1例を第1図に示す0図はボタン
形非水電解液二次電池の縦断面図である。An example of such a secondary battery is shown in FIG. 1, and FIG. 0 is a longitudinal sectional view of a button-type non-aqueous electrolyte secondary battery.
図において、lが正極体である。正極体1は、上記した
ような遷移金属カルコゲン化合物の粉末とポリテトラフ
ルオロエチレンのような結着剤との混合物をペレット化
又はシート化したものである。In the figure, l is the positive electrode body. The positive electrode body 1 is made by pelletizing or sheeting a mixture of the above-mentioned transition metal chalcogen compound powder and a binder such as polytetrafluoroethylene.
2はセパレータで、例えば多孔質ポリプロピレン薄膜、
ポリプロピレン不織布のような保液性を有する材料で構
成され、正極体lの上に載置される。そして、このセパ
レータ2には、プロピレンカーボネート、1.2−ジメ
トキシエタン、1.3−ジオキソランのような非プロト
ン性有機溶媒に、LiCJ104.LiA文04゜Li
BF4 、LiPF6 、LiAsF6のような電解質
を溶解せしめた所定濃度の非水電解液が含浸されている
。2 is a separator, for example, a porous polypropylene thin film,
It is made of a liquid-retentive material such as polypropylene nonwoven fabric, and is placed on the positive electrode body l. This separator 2 is made of LiCJ104. LiA sentence 04゜Li
It is impregnated with a non-aqueous electrolyte of a predetermined concentration in which an electrolyte such as BF4, LiPF6, or LiAsF6 is dissolved.
3は、セパレータ2を介して正極体lに載置されている
負極体で、Li箔又はLiを主体とするアルカリ金属箔
で構成されている。Reference numeral 3 denotes a negative electrode body placed on the positive electrode body l via the separator 2, and is made of Li foil or an alkali metal foil containing Li as a main component.
これら正極体l、セパレータ(非水電解液)2、及び負
極体3は全体として発電要素を構成する。そして、この
発電要素が正極缶4及び負極缶5から成る電池容器に内
蔵されて電池が組立てられる。6は絶縁バッキングであ
り、7は正極体lと正極缶4の間に介在せしめられた集
電体である。この集電体7は、通常、ニッケルネット、
ステンレス鋼製の金属金網、パンチトメタル、フオーム
メタルで構成され、ペレット化又はシート化された正極
体lの片面に圧着されている。These positive electrode body 1, separator (non-aqueous electrolyte) 2, and negative electrode body 3 constitute a power generation element as a whole. Then, this power generation element is housed in a battery container consisting of a positive electrode can 4 and a negative electrode can 5, and a battery is assembled. 6 is an insulating backing, and 7 is a current collector interposed between the positive electrode body l and the positive electrode can 4. This current collector 7 is usually made of nickel net,
It is composed of a stainless steel wire mesh, punched metal, or foam metal, and is crimped onto one side of a pelletized or sheeted positive electrode body l.
上記したような従来構造の二次電池においては、次のよ
うな問題が生じており、その改善が求められている。In the secondary battery having the conventional structure as described above, the following problems have occurred, and improvement thereof is required.
それは、負極体がLi箔又はLiを主体とするアルカリ
金属の箔そのものであることに基づく問題である。すな
わち、電池の放電時には負極体からLiがLiイオンと
なって電解液に移動し、充電時にはこのLiイオンが金
属L!となって再び負極体に電析するが、この充放電サ
イクルを反復させるとそれに伴って電析する金゛属Li
はデンドライト状となりかつ成長していき、最後には、
このデンドライト形状の金属Li電析物がセパレータを
貫通して正極体に達し、短絡現象を起すという問題であ
る。別言すれば、充放電サイクル寿命が短いという問題
である。This is a problem based on the fact that the negative electrode body is a Li foil or an alkali metal foil mainly composed of Li. That is, when the battery is discharged, Li from the negative electrode body becomes Li ions and moves to the electrolyte, and during charging, these Li ions are converted into metal L! When this charge/discharge cycle is repeated, the metal Li deposited on the negative electrode body is deposited again.
becomes dendrite-like and grows, and finally,
The problem is that this dendrite-shaped metal Li deposit penetrates the separator and reaches the positive electrode body, causing a short circuit phenomenon. In other words, the problem is that the charge/discharge cycle life is short.
かかる現状に鑑み、本発明者らは、よりエネルギー密度
が高く、充放電サイクル寿命が長く、また消費電流の増
大に対応しうる二次電池を開発すべく鋭意検討を重ねた
結果、本発明に到達した。In view of the current situation, the present inventors have conducted intensive studies to develop a secondary battery that has higher energy density, longer charge/discharge cycle life, and can handle increased current consumption, and as a result, has developed the present invention. Reached.
(問題点を解決するための手段と作用)本発明の二次電
池は、正極体と、該正極体に載置されたセパレータと、
該セパレータに保持された電解質と、該セパレータに載
置された負極体と、該正極体及び/又は該負極体に包含
され充放電反応に対応して該正−負極体間を移動する活
物質とから成る発電要素が内蔵された二次電池において
、
(a)正極体が、遷移金属カルコゲン化合物からなり、
(b)負極体が、水素/炭素の原子比0.10未満、X
線広角回折法による(002)面の面間隔(d002)
3.37Å以上3.75Å以下、C軸方向の結晶子の大
きさ(Lc)5Å以上150Å以下、全細孔容積が1
、5X 10−3m17g以上及び平均細孔半径が8〜
100人の炭素質材料からなり。(Means and effects for solving the problems) The secondary battery of the present invention includes a positive electrode body, a separator placed on the positive electrode body,
An electrolyte held in the separator, a negative electrode body placed on the separator, and an active material that is included in the positive electrode body and/or the negative electrode body and moves between the positive and negative electrode bodies in response to charge/discharge reactions. (a) the positive electrode body is made of a transition metal chalcogen compound, (b) the negative electrode body has a hydrogen/carbon atomic ratio of less than 0.10,
Interplanar spacing (d002) of (002) plane by line wide-angle diffraction method
3.37 Å or more and 3.75 Å or less, crystallite size in the C-axis direction (Lc) 5 Å or more and 150 Å or less, total pore volume of 1
,5X 10-3m17g or more and average pore radius 8~
Made of 100 carbonaceous materials.
(c)活物質が、リチウム又はリチウムを主体とするア
ルカリ金属である
ことを特徴とする。(c) The active material is lithium or an alkali metal mainly composed of lithium.
本発明の二次電池は、上記した(a)、 (b) 、
(c)、とりわけ(b)を具備するところに特徴を有す
るものであり、その他の要素は従来の二次電池と同じで
あってよい。The secondary battery of the present invention has the above-mentioned (a), (b),
(c), especially (b), and other elements may be the same as conventional secondary batteries.
まず、本発明にかかる正極体は遷移金属力ルコゲン化合
物からなるが、使用される遷移金属カルコゲン化合物と
しては、例えばV、Mo、Mn、Cr、Ti等の酸化物
や硫化物が挙げられ、■の酸化物、■の硫化物、MOの
酸化物、MOの硫化物、Mnの酸化物、Crの酸化物、
Tiの酸化物及びTiの硫化物が好ましい。さらに好ま
しくは、V20s 、Vs Ot3、MO2、■2S5
、VS2.MoS2.Mo53 、MnO□、Cr30
s、Cr2O5,TiS2及びTiO2である。First, the positive electrode body according to the present invention is made of a transition metal chalcogen compound, and the transition metal chalcogen compounds used include, for example, oxides and sulfides of V, Mo, Mn, Cr, Ti, etc. oxide, ■ sulfide, MO oxide, MO sulfide, Mn oxide, Cr oxide,
Ti oxides and Ti sulfides are preferred. More preferably, V20s, Vs Ot3, MO2, ■2S5
, VS2. MoS2. Mo53, MnO□, Cr30
s, Cr2O5, TiS2 and TiO2.
上記した遷移金属カルコゲン化合物が非晶質である場合
には、非晶質化は通常、溶融急冷法を用いて実施される
。また、非晶質の含水ゲルを調製して用いることもでき
る。本発明における非晶質物とは、X線回折を行なった
ときに、結晶に基づくピークが観察されない状態のもの
をいう、すなわち、非晶質化は、X線的に無定形なブロ
ードなハローを有する回折パターンより確認され、非晶
質物は長距離秩序が消滅した構造を有する。しかし、短
距a秩序は残存していることが各種分析の結果から確認
されている。When the transition metal chalcogen compound described above is amorphous, amorphization is usually carried out using a melt quenching method. Moreover, an amorphous hydrogel can also be prepared and used. In the present invention, an amorphous substance refers to a substance in which no peaks due to crystals are observed when X-ray diffraction is performed. In other words, amorphization means that a broad halo that is amorphous in X-rays is observed. The amorphous material has a structure in which long-range order has disappeared, as confirmed by the diffraction pattern of the amorphous material. However, it has been confirmed from various analyzes that the short-range a order remains.
さらに、なお−層の充放電サイクル特性のレベルアップ
の目的で、上記の遷移金属カルコゲン化合物に、金属L
iまたは遷移金属を添加することができる。添加量は、
遷移金属カルコゲン化合物に対して、Liは50モル%
未満、好ましくは30モル%未満であり、遷移金属は2
0モル%未満、好ましくは10モル%未満である。Furthermore, for the purpose of improving the charge-discharge cycle characteristics of the Na-layer, metal L is added to the above-mentioned transition metal chalcogen compound.
i or a transition metal can be added. The amount added is
Li is 50 mol% relative to the transition metal chalcogen compound
less than 30%, preferably less than 30% by mole, and the transition metal is less than 2% by mole.
It is less than 0 mol%, preferably less than 10 mol%.
本発明にかかる正極体は例えば次のようにして製造され
る。すなわち、まず、上記の遷移金属カルコゲン化合物
を粉砕して所定粒径の粉末にする。その体積平均粒径は
500%以下、好ましくは200戸以下、さらに好まし
くは100戸以下、特に好ましくは50−以下である。The positive electrode body according to the present invention is manufactured, for example, as follows. That is, first, the above-mentioned transition metal chalcogen compound is pulverized into powder having a predetermined particle size. The volume average particle diameter is 500% or less, preferably 200 or less, more preferably 100 or less, particularly preferably 50 or less.
また、その比表面積は好ましくは1rrI′/g以上、
さらに好ましくはtorn’/g以上、特に好ましくは
20rrf/g以上である。Further, the specific surface area is preferably 1rrI'/g or more,
More preferably torn'/g or more, particularly preferably 20rrf/g or more.
遷移金属カルコゲン化合物粉末は、通常は所定量の結着
剤を添加して両者を充分に混練する。結着剤としては、
ポリテトラフルオロエチレンのパウダーやディスバージ
ョン、ポリオレフィンのパウダー等が用いられ、好まし
い添加量は、遷移金属カルコゲン化合物に対し1〜lO
重量%である。Usually, a predetermined amount of a binder is added to the transition metal chalcogen compound powder, and the two are sufficiently kneaded. As a binder,
Polytetrafluoroethylene powder, dispersion, polyolefin powder, etc. are used, and the preferable amount added is 1 to 1 O per transition metal chalcogen compound.
Weight%.
このとき、グラファイト、カーボンブラック等の導電材
料の粉末を遷移金属カルコゲン化合物に対して50重量
%未満添加することもでき、好ましくは30重量%未満
、さらに好ましくは15重量%である。At this time, a powder of a conductive material such as graphite or carbon black may be added in an amount of less than 50% by weight, preferably less than 30% by weight, and more preferably 15% by weight based on the transition metal chalcogen compound.
得られた混練物を加圧成形し正極体とするが、遷移金属
カルコゲン化合物を単独で加圧成形して製造した箔を正
極体として使用することもできる。The obtained kneaded product is pressure-molded to form a positive electrode body, but a foil produced by pressure-molding a transition metal chalcogen compound alone can also be used as a positive electrode body.
次に負極体について説明する。Next, the negative electrode body will be explained.
負極体は後述する炭素質材料の粉末成形体である。この
炭素質材料は、H/C(原子比)が0.10未満、d
002が3.37A以上3.75Å以下、Lcが5Å以
上150Å以下、全細孔容積が1 、5X I O−”
wJ/g以上及び平均細孔半径が8〜lOO人のパラメ
ータで特定される。The negative electrode body is a powder compact made of a carbonaceous material, which will be described later. This carbonaceous material has a H/C (atomic ratio) of less than 0.10, d
002 is 3.37 A or more and 3.75 Å or less, Lc is 5 Å or more and 150 Å or less, total pore volume is 1, 5X IO-"
wJ/g or more and the average pore radius is specified with parameters of 8 to 100 people.
本発明にかかる負極体に用いる炭素質材料は、H/Cは
好ましくは0.07未満、さらに好ましくは0.05未
満である。この炭素質材料には、他の原子、例えば窒素
、酸素、ハロゲン等の原子が含まれていてもよいが、他
の原子/炭素原子(原子比)が、好ましくは0.10未
満、さらに好ましくは0.05未満、特に好ましくは0
.03未満である。The H/C of the carbonaceous material used in the negative electrode body according to the present invention is preferably less than 0.07, more preferably less than 0.05. This carbonaceous material may contain other atoms such as nitrogen, oxygen, halogen, etc., but the other atoms/carbon atoms (atomic ratio) is preferably less than 0.10, more preferably is less than 0.05, particularly preferably 0
.. It is less than 03.
また、X線広角回折法により求めた(OO2)面の面間
隔d 002は、好ましくは3.39Å以上3.70Å
以下、さらに好ましくは3.41Å以上3.68Å以下
であり、C軸方向の結晶子の大きさLcは、好ましくは
10Å以上80Å以下、さらに好ましくは12Å以上7
0Å以下、特に好ましくは15Å以上60Å以下である
。Further, the interplanar spacing d 002 of the (OO2) plane determined by X-ray wide-angle diffraction is preferably 3.39 Å or more and 3.70 Å.
The crystallite size Lc in the C-axis direction is preferably 10 Å or more and 80 Å or less, more preferably 12 Å or more and 7
The thickness is 0 Å or less, particularly preferably 15 Å or more and 60 Å or less.
H/C,doo2およびLcのいずれかが上記範囲から
逸脱している場合は、負極体における充放電時の過電圧
が大きくなり、その結果、負極体からガスが発生して電
池の安全性が著しく損われる。If any of H/C, doo2 and Lc deviates from the above range, the overvoltage at the negative electrode during charging and discharging will increase, and as a result, gas will be generated from the negative electrode, significantly reducing the safety of the battery. be damaged.
しかも充放電サイクル特性も不満足になる。Furthermore, the charge/discharge cycle characteristics are also unsatisfactory.
さらに、本発明にかかる負極体に用いる炭素質材料は、
全細孔容積が好ましくは2.0X10−3d/g以上、
さらに好ましくは3.0X10−”rd/g以上、特に
好ましくは4.OXlo−3ml/g以上であり、平均
細孔半径が好ましくはlO〜80A、さらに好ましくは
12〜60A、特に好ましくは14〜40人である。Furthermore, the carbonaceous material used for the negative electrode body according to the present invention is
The total pore volume is preferably 2.0 x 10-3 d/g or more,
More preferably 3.0X10-"rd/g or more, particularly preferably 4.OXlo-3ml/g or more, and the average pore radius is preferably lO to 80A, more preferably 12 to 60A, particularly preferably 14 to There are 40 people.
全細孔容積及び平均細孔半径が上記の範囲を逸脱すると
、活物質の担持量が少なくなり、電池の容量が小さくな
る。If the total pore volume and average pore radius deviate from the above ranges, the amount of active material supported will decrease, and the capacity of the battery will decrease.
全細孔容積及び平均細孔半径は、定容法を用いて平衡圧
力下で試料に吸着したガス量を測定することにより求め
る。The total pore volume and average pore radius are determined by measuring the amount of gas adsorbed on the sample under equilibrium pressure using the constant volume method.
すなわち、本発明において全細孔容積および平均細孔半
径は以下のようにして求めたものを意味する。That is, in the present invention, the total pore volume and average pore radius mean those determined as follows.
全細孔容積は、細孔が例えば液体窒素により充填されて
いると仮定して、定容法を用いて求めた相対圧力P/P
、=0.995 (P:吸着ガスの蒸気圧+PQ:冷却
温度での吸着ガスの飽和蒸気圧)において吸着した窒素
ガスの全容積(Vads)を求め、次いで次式。The total pore volume is the relative pressure P/P determined using the constant volume method, assuming that the pores are filled with liquid nitrogen, for example.
, = 0.995 (P: vapor pressure of adsorbed gas + PQ: saturated vapor pressure of adsorbed gas at cooling temperature), calculate the total volume (Vads) of nitrogen gas adsorbed, and then use the following equation.
[式中、Paは大気圧(kgf/c+a2) 、 Tは
測定温度(K)、Vmは吸着したガスの分子容積(cm
” 1モル;N2では34.7)、Vliqは液体窒素
容積(c鵬3)である]
により、細孔中に充填されている液体窒素量(Vliq
)に換算することによって求める。[In the formula, Pa is the atmospheric pressure (kgf/c+a2), T is the measurement temperature (K), and Vm is the molecular volume of the adsorbed gas (cm
"1 mol; 34.7 for N2), Vliq is the volume of liquid nitrogen (c 3)], the amount of liquid nitrogen filled in the pores (Vliq
).
次に平均細孔半径(γp)は、上述の式(1)より求め
たVliqと、試料のBET比表面積(S)の値から1
次式
%式%
により換算して求める。なお、細孔は円筒形であると仮
定している。Next, the average pore radius (γp) is determined by 1 from the value of Vliq obtained from the above formula (1) and the BET specific surface area (S) of the sample.
It is calculated by converting it using the following formula % formula %. Note that the pores are assumed to be cylindrical.
さらに、本発明にかかる負極体に用いる炭素質材料にあ
っては、次に述べる特性を有することが好ましい。Furthermore, the carbonaceous material used for the negative electrode body according to the present invention preferably has the following characteristics.
すなわち、X線広角回折分析における(110)面の面
間隔dllOの2倍の距離5Lo (= 2 d l
1o)が、好ましくは2.38Å以上かつ2.47A以
下、さらに好ましくは2.39Å以上かつ2.46Å以
下、特に好ましくは2.40λ以上かつ2.45A以下
;a軸方向の結晶子の大きさLaが好ましくは10Å以
上、さらに好ましくは15Å以上かつ150Å以下、と
くに好ましくは19Å以上かつ70Å以下である。In other words, the distance 5Lo (= 2 d l
1o) is preferably 2.38 Å or more and 2.47 Å or less, more preferably 2.39 Å or more and 2.46 Å or less, particularly preferably 2.40 λ or more and 2.45 Å or less; crystallite size in the a-axis direction La is preferably 10 Å or more, more preferably 15 Å or more and 150 Å or less, particularly preferably 19 Å or more and 70 Å or less.
また、波長5145人のアルゴンイオンレーザ光を用い
たラマンスペクトル分析において、下記式:
1360±100cm−’の波数域におけるスペクトル
強度の積分値で定義されるG値が2.5未満であること
が好ましく、さらに好ましくは0.1〜1.5であり、
特に好ましくは0.2〜1.2である。In addition, in Raman spectrum analysis using argon ion laser light with a wavelength of 5145 nm, the G value defined by the integral value of the spectral intensity in the wave number range of 1360 ± 100 cm-' is less than 2.5. Preferably, more preferably 0.1 to 1.5,
Particularly preferably, it is 0.2 to 1.2.
さらに電子スピン共鳴スペクトル分析において、−次微
分吸収曲線のシグナルの線幅(ΔHpp)がlOガウス
以上であるか、10ガウス未満の線幅のシグナルを有し
ないことが好ましい。Furthermore, in electron spin resonance spectroscopy, it is preferable that the linewidth (ΔHpp) of the signal of the −th order differential absorption curve is 10 Gauss or more, or there is no signal with a linewidth of less than 10 Gauss.
上述した本発明にかかる負極体に用いる炭素質材料は、
各種の形状をとりうるが、粒径10〇−以下の粒子であ
ることが好ましい。さらには比表面積が好ましくはln
17g以上、さらに好ましくは2ml/g以上、特に好
ましくは4 rn” / g以上である。上述の範囲を
逸脱すると活物質の相持量が減少し、電池の容量が小さ
くなる。The carbonaceous material used for the negative electrode body according to the present invention described above is
Although they can take various shapes, they are preferably particles with a particle size of 100 mm or less. Furthermore, the specific surface area is preferably ln
It is 17 g or more, more preferably 2 ml/g or more, particularly preferably 4 rn''/g or more. If the amount exceeds the above range, the amount of active material supported will decrease, and the capacity of the battery will decrease.
このような炭素質材料は、例えば有機高分子化合物、縮
合多環炭化水素化合物、縮合多環炭化水素化合物、多環
複素環系化合物等の有機化合物の1種又は2種以上を焼
成し、炭素化することによって製造することができる。Such carbonaceous materials can be produced by firing one or more organic compounds such as organic polymer compounds, fused polycyclic hydrocarbon compounds, fused polycyclic hydrocarbon compounds, and polycyclic heterocyclic compounds. It can be manufactured by
そのような出発源としては、具体的には1例えばセルロ
ース樹脂;フェノール樹脂;ポリアクリロニトリル、ポ
リ(α−ハロゲン化アクリロニトリル)などのアクリル
樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ塩素
化塩化ビニルなどのハロゲン化ビニル樹脂;ポリアミド
イミド樹脂;ポリアミド樹脂;ポリアセチレン、ポリ(
p−フェニレン)などの共役系樹脂のような任意の有機
高分子化合物;例えば、ナフタレン、フェナントレン、
アントラセン、トリフェニレン、ピレン、クリセン。Examples of such starting sources include, for example, cellulose resins; phenolic resins; acrylic resins such as polyacrylonitrile and poly(α-halogenated acrylonitrile); polyvinyl chloride, polyvinylidene chloride, polychlorinated vinyl chloride, etc. halogenated vinyl resin; polyamide-imide resin; polyamide resin; polyacetylene, poly(
Any organic polymer compound such as conjugated resin such as p-phenylene; for example, naphthalene, phenanthrene,
Anthracene, triphenylene, pyrene, chrysene.
ナフタセン、ピセン、ペリレン、ペンタフェン。naphthacene, picene, perylene, pentaphene.
ペンタセンのような3員環以上の単環炭化水素化合物が
互いに2個以上縮合してなる縮合多環炭化水素化合物、
又は、上記化合物のカルボン酸、カルボン酸無水物、カ
ルボン酸イミドのような誘導体、上記各化合物の混合物
を主成分とする各種のピッチ;例えば、インドール、イ
ソインドール。A condensed polycyclic hydrocarbon compound formed by condensing two or more monocyclic hydrocarbon compounds with three or more members such as pentacene,
Alternatively, various pitches containing derivatives of the above compounds such as carboxylic acids, carboxylic acid anhydrides, and carboxylic acid imides, and mixtures of the above compounds; for example, indole and isoindole.
キノリン、イソキノリン、キノキサリン、フタラジン、
カルバゾール、アクリジン、フェナジン。quinoline, isoquinoline, quinoxaline, phthalazine,
Carbazole, acridine, phenazine.
フェナントレンのような3員環以上の複素単環化合物が
互いに少なくとも2個以上結合するか、又は1個以上の
3員環以上の単環炭化水素化合物と結合してなる縮合複
素環化合物、上記各化合物のカルボン酸、カルボン酸無
水物、カルボン酸イミドのような誘導体、更にベンゼン
の1.2,4.5−テトラカルボン酸、その二無水物ま
たはそのジイミド;などをあげることができる。A fused heterocyclic compound formed by at least two or more 3-membered or more-membered monocyclic compounds such as phenanthrene bonded to each other, or bonded to one or more 3- or more-membered monocyclic hydrocarbon compounds, each of the above. Examples include derivatives of compounds such as carboxylic acids, carboxylic acid anhydrides, and carboxylic acid imides, as well as 1,2,4,5-tetracarboxylic acid of benzene, its dianhydrides, and its diimides.
好ましくは、フェノール樹脂、セルロース樹脂、アクリ
ル樹脂、さらに好ましくはフェノール樹脂である。Preferred are phenolic resins, cellulose resins, and acrylic resins, and more preferred are phenolic resins.
次いで、上述の出発源を後述の条件で焼成する。すなわ
ち、前述の全細孔容積を求めたと同様に定容法を用いて
求めた相対圧力P/P0=0.995(P、Paは前記
と同義)において吸着したガス容量(V)が、焼成前の
ものについて求めた吸着ガス容量(Vo )の1.5倍
以上、好ましくは3倍以上、さらに好ましくは5倍以上
、特に好ましくは10倍以上となるまで、不活性ガス流
下または真空下に、350−1000℃で焼成する。不
活性ガスとしては、例えばN2、Ar、He等を用いる
ことができるが、経済性等の点からN2が好ましい。ま
た、焼成温度は好ましくは400〜1000℃、さらに
好ましくは500〜1000℃、特に好ましくは600
〜1000℃である0通常は2℃/時〜500℃/分、
好ましくは5℃/時〜100℃/分、さらに好ましくは
10℃/時〜50℃/分、特に好ましくは20℃/時〜
lO℃/分の昇温速度で上述の焼成温度まで昇温し、さ
らにその温度で。Next, the above-mentioned starting material is fired under the conditions described below. In other words, the adsorbed gas volume (V) at the relative pressure P/P0 = 0.995 (P and Pa have the same meanings as above), which was determined using the constant volume method in the same way as the total pore volume described above, is under an inert gas flow or under vacuum until the adsorbed gas capacity (Vo ) determined for the previous one is at least 1.5 times, preferably at least 3 times, more preferably at least 5 times, particularly preferably at least 10 times. , 350-1000°C. As the inert gas, for example, N2, Ar, He, etc. can be used, but N2 is preferable from the point of view of economy and the like. Further, the firing temperature is preferably 400 to 1000°C, more preferably 500 to 1000°C, and particularly preferably 600°C.
~1000°C 0 typically 2°C/hour ~ 500°C/min,
Preferably 5°C/hour to 100°C/min, more preferably 10°C/hour to 50°C/min, particularly preferably 20°C/hour to
The temperature was increased to the above-mentioned calcination temperature at a heating rate of 10° C./min, and then at that temperature.
1分〜lO時間、好ましくは5分〜8時間、さらに好ま
しくはlO分〜5時間、特に好ましくは20分〜3時間
保持することにより焼成を実施する。Firing is carried out by holding for 1 minute to 10 hours, preferably 5 minutes to 8 hours, more preferably 10 minutes to 5 hours, particularly preferably 20 minutes to 3 hours.
さらに、焼成を経た材料を不活性ガス流下または真空下
に1000℃を越え、かつ3000℃以下の温度で炭素
化する。このとき、系内の02濃度は好ましくは110
00pp以下、さらに好ましくは100 ppm以下、
特に好ましくは1 ppm〜50ppmである。02濃
度がこの範囲を超えると良好な炭素化が行われない。Furthermore, the fired material is carbonized under an inert gas stream or under vacuum at a temperature of over 1000°C and below 3000°C. At this time, the 02 concentration in the system is preferably 110
00 ppm or less, more preferably 100 ppm or less,
Particularly preferably 1 ppm to 50 ppm. If the 02 concentration exceeds this range, good carbonization will not occur.
次いで、焼成舎炭素化の後は機械的粉砕等により、所定
粒径に粉砕して目的とする炭素質材料を得ることができ
る。Next, after carbonization in the kiln, the target carbonaceous material can be obtained by pulverizing to a predetermined particle size by mechanical pulverization or the like.
また、出発源としてカーボンブラックを用い、これを適
当な条件でさらに炭素化等の処理を施して炭素質材料と
してもよい。Alternatively, carbon black may be used as a starting source and subjected to further treatment such as carbonization under appropriate conditions to produce a carbonaceous material.
かくして得られた炭素質材料から本発明にかかる負極体
を製造するには、例えば次のようにして行う。In order to manufacture the negative electrode body according to the present invention from the carbonaceous material obtained in this way, it is carried out, for example, as follows.
上述の炭素質材料を単独で、または導電材、結着剤等と
混練した後、加圧成形して負極体とする。このとき使用
される導電材としてはアセチレンブラック、カーボンブ
ラック、膨張黒鉛、金属粉等が挙げられ、これらを必要
に応じて炭素質材料に対して50重量%未満、好ましく
は30重量%未満、とくに好ましくは0.1〜lO重量
%添加する。また、結着剤としては、ポリオレフィン系
樹脂、ポリテトラフル゛オロエチレン等のフッ素系樹舶
等が挙げられ、これらを炭素質材料に対して20重量%
未満、好ましくは1〜lO重量%添加する。The above-mentioned carbonaceous material is used alone or after being kneaded with a conductive material, a binder, etc., and then pressure-molded to form a negative electrode body. Examples of the conductive material used at this time include acetylene black, carbon black, expanded graphite, metal powder, etc. If necessary, these may be added in an amount of less than 50% by weight, preferably less than 30% by weight, based on the carbonaceous material. It is preferably added in an amount of 0.1 to 10% by weight. In addition, examples of the binder include polyolefin resins, fluorine-based resins such as polytetrafluoroethylene, etc., and these are used in an amount of 20% by weight based on the carbonaceous material.
less than 1% by weight, preferably from 1 to 10% by weight.
次に活物質について述べる0本発明の二次電池における
活物質は、リチウム又はリチウムを主体とするアルカリ
金属であり、この活物質は、電池の充放電に対応して正
極体と負極体との間を往復移動する。活物質はあらかじ
め前述の正極体及び/又は負極体に担持させる。担持の
方法としては、例えば所定濃度のLiイオン又はアルカ
リ金属イオンを含有する電解液中に負極体を浸漬し、か
つ対極にLiをアノードとして用い、負極体をカソード
にして電気分解させる方法を適用することができる。ま
た、同様の方法で正極体にリチウム又はリチウムを主体
とするアルカリ金属を担持させることができる。活物質
の担持は、このような電気化学的方法以外に化学的方法
、物理的方法によっても行うことができる。また、負極
体にLi金属シートをはり合わせて電池セルを構成し、
充放電反応によりLi金属を負極体に担持させることも
できる。Next, we will discuss the active material. The active material in the secondary battery of the present invention is lithium or an alkali metal mainly composed of lithium. move back and forth between The active material is supported on the above-mentioned positive electrode body and/or negative electrode body in advance. As a method of supporting, for example, a method is applied in which a negative electrode body is immersed in an electrolytic solution containing a predetermined concentration of Li ions or alkali metal ions, and Li is used as a counter electrode as an anode to cause electrolysis using the negative electrode body as a cathode. can do. Further, in a similar manner, lithium or an alkali metal mainly composed of lithium can be supported on the positive electrode body. In addition to such an electrochemical method, the active material can be supported by a chemical method or a physical method. In addition, a battery cell is constructed by gluing a Li metal sheet to the negative electrode body,
Li metal can also be supported on the negative electrode body through a charge/discharge reaction.
本発明の二次電池は、上述した活物質を担持させた負極
体及び正極体を従来と同様の方法で他の要素と共に組込
んで製作することができる。すなわち、正極体と負極体
をセパレータを介して対峙させ、セパレータには通常、
Li金属塩又はアルカリ金属塩を溶解させた非水電解液
を保持させる。このとき用いられる非水電解液は前記し
た従来の二次電池に使用されるものを用いる。あるいは
、Liイオン又はアルカリ金属イオンの導電体である固
体電解質を正極体及び負極体の間に介在させることもで
きる。The secondary battery of the present invention can be manufactured by incorporating the negative electrode body and the positive electrode body carrying the above-described active material together with other elements in a conventional manner. That is, the positive electrode body and the negative electrode body are faced to each other with a separator interposed between them, and the separator usually contains
A nonaqueous electrolyte in which Li metal salt or alkali metal salt is dissolved is held. The nonaqueous electrolyte used at this time is the one used in the conventional secondary battery described above. Alternatively, a solid electrolyte that is a conductor of Li ions or alkali metal ions can be interposed between the positive electrode body and the negative electrode body.
かくして、本発明の二次電池においては、次のような反
応が進行する。すなわち、
充電時:
正極体では、V205 (Li) →!
V2 o、+xLi” +xe
負極体では、C+xLi” +xe+CsLi。Thus, in the secondary battery of the present invention, the following reaction proceeds. In other words, during charging: In the positive electrode body, V205 (Li) →! V2 o, +xLi” +xe In the negative electrode body, C+xLi” +xe+CsLi.
放電時:
正極体では、V205 +xLi” +xe−+V20
5 (Li)X
負極体では、Cm Li +c+XL、t” +Xeの
反応である。During discharge: In the positive electrode body, V205 +xLi” +xe-+V20
5 (Li)X In the negative electrode body, the reaction is Cm Li +c+XL, t'' +Xe.
すなわち1本発明の二次電池において、例えば負極体で
は充電時にLiイオンのドープ現象が起り、また放電時
には負極体に担持されているLiイオンの脱ドープ現象
が生起゛して、可逆的な電気化学的酸化還元反応が充放
電に伴って進行するため、負極体がLi箔であった場合
にその表面で生起したデンドライト形状の電析物の形成
はなくなるのである。That is, in the secondary battery of the present invention, for example, a doping phenomenon of Li ions occurs in the negative electrode body during charging, and a dedoping phenomenon of Li ions supported on the negative electrode body occurs during discharging, resulting in reversible electricity generation. Since the chemical oxidation-reduction reaction progresses with charging and discharging, the formation of dendrite-shaped deposits that occur on the surface of the negative electrode when it is made of Li foil disappears.
なお、本発明において1元素分析、X線広角回折、なら
びに電子スピン共鳴スペクトルの各測定は下記方法によ
り実施した。In the present invention, single-element analysis, X-ray wide-angle diffraction, and electron spin resonance spectroscopy were carried out by the following methods.
「元素分析」
サンプルを120℃で約15時間減圧乾燥し、その後ド
ライボックス内のホットプレート上で100℃において
1時間乾燥した。ついで、アルゴン雰囲気中でアルミニ
ウムカップにサンプリングし、燃焼により発生するCO
2ガスの重量から炭素含有量を、また、発生するH2O
の重量から水素含有量を求める。なお、後述する本発明
の実施例では、パーキンエルマー240C型元素分析計
を使用して測定した。"Elemental Analysis" Samples were dried under reduced pressure at 120° C. for about 15 hours, then dried at 100° C. for 1 hour on a hot plate in a dry box. The CO generated by combustion was then sampled in an aluminum cup in an argon atmosphere.
2 The carbon content from the weight of the gas, and the generated H2O
Determine the hydrogen content from the weight of. In the Examples of the present invention described later, measurements were made using a PerkinElmer 240C elemental analyzer.
rXX線広角回折
(1) (002)面の面間隔(do02 )および
(110)面の面間隔(dllo)
炭素質材料が粉末の場合はそのまま、微小片状の場合に
はメノウ乳鉢で粉末化し、試料に対して約15重量%の
X線標準用高純度シリコン粉末を内部標準物質として加
え混合し、試料セルにつめ、グラファイトモノクロメー
タ−で単色化したCuKα線を線源とし、反射式デイフ
ラクトメーター法によって広角X線回折曲線を測定する
。曲線の補正には、いわゆるローレンツ、偏光因子、吸
収因子、原子散乱因子等に関する補正は行なわず次の簡
便法を用いる。即ち(002)、および(110)回折
に相当する曲線のベースラインを引き、ベースラインか
らの実質強度をプロットし直して(002)面、および
(110)面の補正曲線を得る。この曲線のピーク高さ
の3分の2の高さに引いた角度軸に平行な線が回折曲線
と交わる線分の中点を求め、中点の角度を内部標準で補
正し、これを回折角の2倍とし、CuKα線の波長入と
から次式のブラッグ式によってd 002およびdll
Oを求める。rXX-ray wide-angle diffraction (1) Interplanar spacing between (002) planes (do02) and interplanar spacing between (110) planes (dllo) If the carbonaceous material is in the form of a powder, it can be used as is, or if it is in the form of minute particles, it can be powdered in an agate mortar. Approximately 15% by weight of high-purity silicon powder for X-ray standards was added to the sample as an internal standard substance, mixed, packed into a sample cell, and a reflection type detector using CuKα rays made monochromatic with a graphite monochromator as a radiation source. Wide-angle X-ray diffraction curves are measured by the fractometer method. To correct the curve, the following simple method is used without making corrections regarding so-called Lorentz, polarization factors, absorption factors, atomic scattering factors, etc. That is, baselines of curves corresponding to (002) and (110) diffraction are drawn, and the real intensities from the baseline are plotted again to obtain correction curves for the (002) and (110) planes. Find the midpoint of the line segment where a line parallel to the angular axis drawn at two-thirds of the peak height of this curve intersects with the diffraction curve, correct the angle at the midpoint using an internal standard, and calculate this. d 002 and dll by the following Bragg equation from the wavelength input of the CuKα ray.
Find O.
λ λ入:1.54
18人
θ、θ’ : d002.dllOに相当する回折角(
2)c軸およびa軸方向の結晶子の大きさ:Lc ;
La
前項で得た補正回折曲線において、ピーク高さの半分の
位置におけるいわゆる半値巾βを用いてC軸およびa軸
方向の結晶子の大きさを次式より求める。λ λ input: 1.54
18 people θ, θ': d002. The diffraction angle corresponding to dllO (
2) Crystallite size in c-axis and a-axis directions: Lc;
La In the corrected diffraction curve obtained in the previous section, the size of the crystallite in the C-axis and a-axis directions is determined from the following equation using the so-called half-width β at a position half the peak height.
β’cosθ
β°cosθ′
形状因子Kについては種々議論もあるが、に=0.09
を用いた、λ、θおよびθ′については前項と同じ意味
である。β'cosθ β°cosθ' There are various discussions about the shape factor K, but = 0.09
λ, θ, and θ' have the same meaning as in the previous section.
「電子スピン共鳴の線幅:ΔHPPJ
電子スピン共鳴の一次微分吸収スベクトルはJEOL
JES−FE IX ESRスペクトロメーター
を用い、Xバンドで測定する。粉末状の試料はそのまま
、微小片状試料はメノウ乳鉢で粉末化して、外径2m1
の毛細管に入れ、さらに毛細管を外径5IIIIのES
R管に入れる。高周波磁場の変調中は6.3ガウスとす
る0以上すべて、空気雰囲気下、23℃で行う、−次微
分吸収スペクトルのピーク間の線If@(ΔHpp)は
。“Linewidth of electron spin resonance: ΔHPPJ The first-order differential absorption vector of electron spin resonance is JEOL
Measure in the X band using a JES-FE IX ESR spectrometer. Powdered samples are left as they are, and minute flake samples are pulverized in an agate mortar, with an outer diameter of 2 m1.
into a capillary tube with an outer diameter of 5III.
Put it in the R tube. During the modulation of the radio frequency magnetic field, the peak-to-peak line If@(ΔHpp) of the −th order differential absorption spectrum is taken as 6.3 Gauss and above 0, all performed at 23° C. in an air atmosphere.
M n ” / M g O標準試料を用いて決定する
。Determine using M n ”/M g O standard sample.
(実施例) 以下、実施例をあげて本発明を説明する。(Example) The present invention will be explained below with reference to Examples.
(1)正極体の製造
M n O2粉末80g、導電材としてのカーボンブラ
ック15gおよび結着剤としての粉末状のポリテトラフ
ルオロエチレン5gとを混練し、得られた混練物をロー
ル成形して厚み0.4mrAのシートとした。(1) Manufacture of positive electrode body 80 g of MnO2 powder, 15 g of carbon black as a conductive material, and 5 g of powdered polytetrafluoroethylene as a binder were kneaded, and the resulting kneaded product was roll-formed to give a thickness. It was made into a sheet of 0.4 mrA.
このシートの片面を集電体である線径0.llll11
.60メツシユのステンレス鋼ネットに圧着して正極と
した。One side of this sheet is a current collector with a wire diameter of 0. llll11
.. The positive electrode was crimped onto a 60 mesh stainless steel net.
(2)負極体の製造
オルトクレゾール108g、バラホルムアルデヒF32
gおよびエチルセロソルブ240gを硫#10gととも
に反応器に仕込み、攪拌しながら115℃で4時間反応
させた0反応終了後N a HCOs 17 gと水
30gとを加えて中和した。ついで、高速で攪拌しなが
ら水2文中に反応液を投入して沈澱してくる生成物をか
別乾燥して115gの線状高分子量ノボラック樹脂を得
た。(2) Manufacture of negative electrode body 108 g of orthocresol, rose formaldehyde F32
g and 240 g of ethyl cellosolve were charged into a reactor together with 10 g of sulfur #1 and reacted at 115° C. for 4 hours with stirring. After the reaction was completed, 17 g of Na HCOs and 30 g of water were added to neutralize. Then, the reaction solution was poured into two volumes of water while stirring at high speed, and the precipitated product was separated and dried to obtain 115 g of a linear high molecular weight novolak resin.
上記のノボラック樹に225 gとへキサミン25gを
500−のメノウ製容器に入れ、直径30mmのメノウ
製ポール5個と直径20mmのメノウ製ボール10個を
入れてボールミルにセットし、20分間粉砕、混合した
。Put 225 g of the above novolac tree and 25 g of hexamine into a 500-mm agate container, add 5 agate poles with a diameter of 30 mm and 10 agate balls with a diameter of 20 mm, set it in a ball mill, and grind for 20 minutes. Mixed.
かくして得られたノボラック樹脂とへキサミンとの混合
パウダーを、N2ガス中、250℃で3時間加熱処理を
行った。さらに、このものを電気加熱炉にセットし、N
2ガス流下に250℃/時の速度で800℃まで昇温し
た。そのままの温度で、定容法を用いて求めた相対圧力
P/Po=0.995(P、Poは前記と同義)におい
て吸着したガス容量(V)が昇温前のものについて求め
た吸着ガス容量(Va )の5倍以上となるまで熱焼成
を実施した。The thus obtained mixed powder of novolac resin and hexamine was heat-treated at 250° C. for 3 hours in N2 gas. Furthermore, set this thing in an electric heating furnace, and
The temperature was raised to 800°C at a rate of 250°C/hour under two gas flows. At the same temperature, the adsorbed gas capacity (V) was determined using the constant volume method at a relative pressure of P/Po = 0.995 (P and Po have the same meanings as above) before the temperature was raised. Thermal firing was performed until the capacity (Va) reached 5 times or more.
次に、焼成後の材料を別な電気炉にセットし。Next, the fired materials are placed in a separate electric furnace.
真空下に20℃/分の速度で1700℃まで昇温し、そ
のままの温度でさらに1.5時間加熱し、炭素化を実施
した。The temperature was raised to 1700° C. at a rate of 20° C./min under vacuum, and carbonization was carried out by heating at that temperature for an additional 1.5 hours.
かくして得られた炭素化物を250−のメノウ製容器に
入れ、直径30mmのメノウ製ポール1個、直径25m
■のメノウ製ポール3個、及び直径20+a+eのメノ
ウ製ポール9個を入れてボールミルにセットし、10分
間粉砕し、平均粒径46.9戸の炭素質材料を得た。The carbonized product thus obtained was placed in a 250-mm agate container, and one agate pole with a diameter of 30 mm and a diameter of 25 m were placed.
Three agate poles (3) and nine agate poles with a diameter of 20+a+e were placed in a ball mill and ground for 10 minutes to obtain a carbonaceous material with an average particle size of 46.9 mm.
この炭素質材料は、元素分析、X線広角回折等の分析の
結果、以下の特性を有していた。As a result of analysis such as elemental analysis and X-ray wide-angle diffraction, this carbonaceous material had the following characteristics.
水素/炭素(原子比)=0.04
d□o2 =3.67A、Lc=12.8人ao(2d
002)= 2 、42人、La=20.9人全細孔容
積 4.96683X10−3m//g(湯銭アイオニ
クス社製オートソーブを使用し、液体窒素を用いて測定
した)
BET比表面積 4.59572rn’/g平均細孔半
径 21.6150A
この炭素質材料に、体積平均粒径20−のポリエチレン
粉末を7重量%混合した混合物50+sgを加圧成形し
て、厚み0.5■のペレットとした。Hydrogen/carbon (atomic ratio) = 0.04 d□o2 = 3.67A, Lc = 12.8 people ao (2d
002) = 2, 42 people, La = 20.9 people Total pore volume 4.96683X10-3 m//g (measured using liquid nitrogen using Autosorb manufactured by Yusen Ionics) BET specific surface area 4. 59572rn'/g Average pore radius 21.6150A 50+sg of a mixture of this carbonaceous material mixed with 7% by weight of polyethylene powder with a volume average particle size of 20- was pressure-molded to form pellets with a thickness of 0.5cm. .
(3)電池の組立
ステンレス鋼製の正極缶に、上記した正極体を集電体を
下にして着設し、その上にポリプロピレン不織布を載置
したのち、そこにLiC見04を濃度1モル/交でプロ
ピレンカーボネートに溶解せしめた非水電解液を含浸せ
しめた。ついでその上に上記負極体を載置して発電要素
を構成した。(3) Assembly of the battery Place the above-mentioned positive electrode body in a stainless steel positive electrode can with the current collector facing down, place a polypropylene nonwoven fabric on top of it, and then add LiC04 at a concentration of 1 molar. A non-aqueous electrolytic solution dissolved in propylene carbonate was impregnated with a mixture of: Then, the negative electrode body was placed thereon to form a power generation element.
なお、正極体は、電池に組込むに先立ち、濃度1モル/
文のLiイオン電解液中に浸漬し、正極体をカソードと
し、リチウムをアノードとする電解処理に付した。電解
条件は、浴温20℃、電流密度1 mA/cm2.電解
時間10時間とした。このような処理により、正極体に
は容量6.OmAhのLiが担持されたことになる。Note that the positive electrode body should be prepared at a concentration of 1 mol/min before being incorporated into the battery.
The sample was immersed in a Li-ion electrolyte solution prepared by the manufacturer, and subjected to an electrolytic treatment using the positive electrode body as a cathode and lithium as an anode. The electrolytic conditions were a bath temperature of 20°C and a current density of 1 mA/cm2. The electrolysis time was 10 hours. Through such treatment, the positive electrode body has a capacity of 6. This means that OmAh of Li is supported.
かくして、第1図に示したようなボタン形二次電池を製
作した。In this way, a button-shaped secondary battery as shown in FIG. 1 was manufactured.
(4)電池の特性
このようにして製作した電池について、3〜2vの間で
定電圧充電−20にΩ定抵抗放電を反復し、5サイクル
及び100サイクルにおける電池の充電容量及び放電容
量を測定した。その結果を表1に示した。(4) Characteristics of the battery The battery manufactured in this way was repeatedly charged at a constant voltage of 3 to 2 V and discharged at a constant resistance of -20 Ω, and the charging capacity and discharging capacity of the battery were measured at 5 cycles and 100 cycles. did. The results are shown in Table 1.
比較例1 (1)正極体の製造 実施例1と同様にして正極体を製造した。Comparative example 1 (1) Manufacture of positive electrode body A positive electrode body was manufactured in the same manner as in Example 1.
(2)負極体の製造
メゾフェースピッチlOgを300℃、1.5ton/
am2に加熱・加圧してシート状に成形した。(2) Manufacture of negative electrode body mesoface pitch lOg at 300℃, 1.5ton/
It was heated and pressurized to am2 and formed into a sheet shape.
次いでこのシートをN2ガス中で1000℃/時の速度
で3000℃まで昇温し、さらにこの温度で1時間加熱
後自然放冷した。この焼成物を実施例1と同様にして粉
砕し、平均粒径500−の炭素質材料を得た。Next, this sheet was heated to 3000° C. at a rate of 1000° C./hour in N2 gas, further heated at this temperature for 1 hour, and then allowed to cool naturally. This fired product was pulverized in the same manner as in Example 1 to obtain a carbonaceous material with an average particle size of 500-.
この炭素質材料は、分析の結果以下の特性を有していた
。As a result of analysis, this carbonaceous material had the following properties.
水素/炭素(原子比)=0.01
dQ02=3.38人、Lc=156人lO〜250人
の細孔半径を有する細孔の積算細孔容積 1 、5
X 10−”sJ/ g未満この炭素質材料粉末とポリ
エチレン粉末7重量%とを混合し、混合物を圧縮成形し
て厚み0.5mmのペレットにした。Hydrogen/carbon (atomic ratio) = 0.01 dQ02 = 3.38 people, Lc = 156 people lO - Cumulative pore volume of pores with pore radius of 250 people 1,5
This carbonaceous material powder was mixed with 7% by weight of polyethylene powder, and the mixture was compression molded into pellets with a thickness of 0.5 mm.
(3)電池の組立 実施例1と同様にして電池を組み立てた。(3) Battery assembly A battery was assembled in the same manner as in Example 1.
(4)電池の特性
実施例1と同様にして同一の条件で、電池特性を測定し
、結果を表1に併記した。(4) Battery characteristics Battery characteristics were measured in the same manner as in Example 1 under the same conditions, and the results are also listed in Table 1.
比較例2
Li金属箔を負極体として用いた以外は実施例1と同様
にして、電池を組み立て、同一条件で電池特性を測定し
、その結果を表1に併記した。Comparative Example 2 A battery was assembled in the same manner as in Example 1 except that Li metal foil was used as the negative electrode body, and battery characteristics were measured under the same conditions. The results are also listed in Table 1.
[発明の効果]
本発明の二次電池は、充放電サイクル寿命が長く、信頼
性の高い電池であるので、繰返し充放電を行うことがで
き、種々の電子機器への使用が可能である。[Effects of the Invention] The secondary battery of the present invention has a long charge/discharge cycle life and is a highly reliable battery, so it can be repeatedly charged and discharged and can be used in various electronic devices.
第1図はボタン形構造の非水電解液二次電池の縦断面図
である。
1・・・正極体 2・・・セパレータ3・・・負極体
4・・・正極缶
5・・・負極缶 6・・・絶縁バッキング7・・・集
電体
第1図FIG. 1 is a longitudinal sectional view of a non-aqueous electrolyte secondary battery having a button-shaped structure. 1... Positive electrode body 2... Separator 3... Negative electrode body 4... Positive electrode can 5... Negative electrode can 6... Insulating backing 7... Current collector Figure 1
Claims (1)
パレータに保持された電解質と、該セパレータに載置さ
れた負極体と、該正極体及び/又は該負極体に包含され
充放電反応に対応して該正・負極体間を移動する活物質
とから成る発電要素が内蔵された二次電池において、 (a)正極体が、遷移金属カルコゲン化合物からなり、 (b)負極体が、水素/炭素の原子比0.10未満、X
線広角回折法による(002)面の面間隔(d_0_0
_2)3.37Å以上3.75Å以下、C軸方向の結晶
子の大きさ(Lc)5Å以上150Å以下、全細孔容積
が1.5×10^−^3ml/g以上及び平均細孔半径
が8〜100Åの炭素質材料からなり、 (c)活物質が、リチウム又はリチウムを主体とするア
ルカリ金属である ことを特徴とする二次電池。[Claims] A positive electrode body, a separator placed on the positive electrode body, an electrolyte held in the separator, a negative electrode body placed on the separator, and the positive electrode body and/or the negative electrode body. (a) the positive electrode body is made of a transition metal chalcogen compound; b) The negative electrode body has a hydrogen/carbon atomic ratio of less than 0.10,
Interplanar spacing (d_0_0) of (002) plane by line wide-angle diffraction method
_2) 3.37 Å or more and 3.75 Å or less, crystallite size in the C-axis direction (Lc) 5 Å or more and 150 Å or less, total pore volume 1.5 x 10^-^3 ml/g or more, and average pore radius 8 to 100 Å, and (c) the active material is lithium or an alkali metal mainly composed of lithium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62318689A JP2578452B2 (en) | 1987-12-18 | 1987-12-18 | Rechargeable battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62318689A JP2578452B2 (en) | 1987-12-18 | 1987-12-18 | Rechargeable battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01160814A true JPH01160814A (en) | 1989-06-23 |
JP2578452B2 JP2578452B2 (en) | 1997-02-05 |
Family
ID=18101917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62318689A Expired - Lifetime JP2578452B2 (en) | 1987-12-18 | 1987-12-18 | Rechargeable battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2578452B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007227368A (en) * | 2006-01-27 | 2007-09-06 | Mitsubishi Chemicals Corp | Lithium ion secondary battery |
US9029022B2 (en) | 2005-10-20 | 2015-05-12 | Mitsubishi Chemical Corporation | Lithium secondary batteries and nonaqueous electrolyte for use in the same |
-
1987
- 1987-12-18 JP JP62318689A patent/JP2578452B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9029022B2 (en) | 2005-10-20 | 2015-05-12 | Mitsubishi Chemical Corporation | Lithium secondary batteries and nonaqueous electrolyte for use in the same |
US11769871B2 (en) | 2005-10-20 | 2023-09-26 | Mitsubishi Chemical Corporation | Lithium secondary batteries and nonaqueous electrolyte for use in the same |
JP2007227368A (en) * | 2006-01-27 | 2007-09-06 | Mitsubishi Chemicals Corp | Lithium ion secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP2578452B2 (en) | 1997-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62122066A (en) | Nonaqueous solvent battery | |
JPH04147573A (en) | Nonaqueous electrolyte secondary battery | |
JPH05286763A (en) | Electrode material | |
JP3291756B2 (en) | Non-aqueous solvent secondary battery and its electrode material | |
JPH0544143B2 (en) | ||
JPH01161677A (en) | Secondary battery | |
JPH0439859A (en) | Secondary battery electrode | |
JPH01160814A (en) | Secondary battery | |
JP3154714B2 (en) | Electrodes for secondary batteries | |
JPS63193463A (en) | Nonaqueous solvent secondary battery | |
JPH0254866A (en) | Secondary battery | |
JPH01161675A (en) | Secondary battery | |
JP3291758B2 (en) | Non-aqueous solvent secondary battery and its electrode material | |
JPH01274360A (en) | Secondary battery | |
JPH05217604A (en) | Nonaqueous solvent secondary battery | |
JP2749826B2 (en) | Rechargeable battery | |
JPH01161676A (en) | Secondary battery | |
JPS63114056A (en) | Nonaqueous solvent secondary battery | |
JPH02230660A (en) | Secondary battery | |
JP2957202B2 (en) | Rechargeable battery | |
JPH04206168A (en) | Secondary battery | |
JPH05290888A (en) | Nonaqueous solvent secondary battery | |
JP2691555B2 (en) | Rechargeable battery | |
JP2685777B2 (en) | Rechargeable battery | |
JP3153223B2 (en) | Secondary battery electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 12 |