JPH01159962A - Organic electrolyte cell - Google Patents

Organic electrolyte cell

Info

Publication number
JPH01159962A
JPH01159962A JP62316611A JP31661187A JPH01159962A JP H01159962 A JPH01159962 A JP H01159962A JP 62316611 A JP62316611 A JP 62316611A JP 31661187 A JP31661187 A JP 31661187A JP H01159962 A JPH01159962 A JP H01159962A
Authority
JP
Japan
Prior art keywords
foil
lithium
tunnel pit
aluminum foil
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62316611A
Other languages
Japanese (ja)
Other versions
JP2563409B2 (en
Inventor
Shuichi Nishino
西野 秀一
Nobuharu Koshiba
信晴 小柴
Tadashi Sawai
沢井 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62316611A priority Critical patent/JP2563409B2/en
Publication of JPH01159962A publication Critical patent/JPH01159962A/en
Application granted granted Critical
Publication of JP2563409B2 publication Critical patent/JP2563409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0495Chemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the internal resistance during discharge and enhance the pulse characteristics by providing a previously annealed Al foil with a tunnel pit by means of electrochemical etching, and placing this on the reactive surface of neg. electrode lithium. CONSTITUTION:In a button type organic electrolyte cell of for ex. lithium copper monoxide series, Al foil 6 is attached to the metal lithium 3 of neg. electrode active substance. The Al foil 6 has a penetrative tunnel pit, which is formed by subjecting an Al foil annealed previously at a temp. over 250 deg.C, for ex. at 300 deg.C, to electrochemical etching. The electrolyte permeates in the tunnel pit within the Al foil 6, which prevents decrease of the electrolyte and also drop of the reaction efficiency. Increase of the surface area of the Al foil due to tunnel pit makes faster and uniform the speed of Al and Li to be turned into alloy. This provides an alloy layer in the form of fine particles, and thicker Al foil does not generate portions with Al not turned into alloy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機電解質電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in organic electrolyte batteries.

従来の技術 リチウムを活物質とする有機電解質電池は、高エネルギ
ー密度を有するところから、電子ウォノ2A−。
Conventional technology Organic electrolyte batteries using lithium as an active material have a high energy density, so they are popular among electronics users.

チをはじめ各種の小型電子機器用電源として注目されて
いる。しかしながら、金属リチウムは、非常に活性なた
め、リチウム表面へのリチウム化合物膜の形成による内
部抵抗の上昇があシ、さらに放電の進行に伴なってリチ
ウム表面積の低下による内部抵抗の上昇がみられる。こ
のだめに、電子ウォッチなどのパルス放電を行なうと、
閉路電圧の低下が大きくなシ、電池容量を最後まで有効
に使用できなくなる。
It is attracting attention as a power source for various small electronic devices including chips. However, since metallic lithium is very active, internal resistance increases due to the formation of a lithium compound film on the lithium surface, and furthermore, as discharge progresses, internal resistance increases due to a decrease in the lithium surface area. . To no avail, if you use a pulse discharge such as an electronic watch,
If the drop in closed circuit voltage is large, the battery capacity cannot be used effectively to the end.

このような欠点を解消するだめに、リチウム表面にアル
ミニウム箔をはりつけ、合金層の形成によシ発生する負
極の微細化状態やシワ状態によシ負極表面積を増大させ
、内部抵抗を低下させるという提案がなされている。
In order to eliminate these drawbacks, aluminum foil is attached to the lithium surface, which increases the negative electrode surface area and lowers the internal resistance by reducing the fineness and wrinkles of the negative electrode that occur due to the formation of an alloy layer. Suggestions have been made.

発明が解決しようとする問題点 しかしながら、通常のアルミニウム箔を使用するとアル
ミニウム箔の体積分の電解液が減少するため、電池の反
応効率が落ち、容量低下をまねくばかシでなく、放電末
期ではパルス放電特性の低下がおこる。また、通常のア
ルミニウム箔では、37、−7 リチウムとの接触面積が小さいだめ、合金化が均一に進
まず、正極との対向面の合金層は粒子が粗く、負極表面
積の増加も少ないだめ、パルス特性も満足いくものが得
られない。さらにはアルミニウム箔の厚みが厚くなると
、アルミニウム合金化されずに残シ、リチウムの反応を
阻害して放電容量を低下させる等の問題があった。
Problems to be Solved by the Invention However, when ordinary aluminum foil is used, the electrolyte is reduced by the volume of the aluminum foil, which lowers the reaction efficiency of the battery, leading to a decrease in capacity. Deterioration of discharge characteristics occurs. In addition, with ordinary aluminum foil, the contact area with 37,-7 lithium is small, so alloying does not proceed uniformly, the alloy layer on the surface facing the positive electrode has coarse particles, and the increase in the negative electrode surface area is small. Satisfactory pulse characteristics cannot be obtained either. Furthermore, when the thickness of the aluminum foil becomes thicker, there is a problem that the aluminum foil is not alloyed with aluminum, and the reaction of residual lithium is inhibited, resulting in a decrease in discharge capacity.

本発明は上記のような問題点を解消し、電解液の減少を
少なくし、合金化を均一にして内部抵抗が低く、パルヌ
放電にすぐれた有機電解質電池を提供することを目的と
する。
It is an object of the present invention to solve the above-mentioned problems, to provide an organic electrolyte battery that reduces the loss of electrolyte solution, uniformly alloys it, has low internal resistance, and has excellent Parnu discharge.

問題点を解決するだめの手段 このような問題点を解決するために本発明は、あらかじ
め焼鈍、好ましくは250℃以上で焼鈍されたアルミニ
ウム箔に電気化学的エツチング法でトンネルヒントを設
け、これを負極のリチウム反応表面に載置して電池を構
成したものである。
Means to Solve the Problems In order to solve these problems, the present invention provides a tunnel tip by an electrochemical etching method on an aluminum foil that has been annealed in advance, preferably at 250° C. or higher. The battery is constructed by placing it on the lithium reaction surface of the negative electrode.

作   用 このアルミニウム箔を使用して電池を構成することによ
り、アルミニウム箔内部のトンネルピット中に電解液が
浸透し、電解液の減少を防いで、反応効率の低下を防ぐ
。また、アルミニウム箔の表面積がトンネルピットによ
り増大することにより、アルミニウムとリチウムとの合
金化のスヒードが早、均一で、微細な粒子状の合金層を
得ることができ、アルミニウム箔を厚くする場合におい
ても合金化されないアルミニウム部分が発生することが
なくなり、内部抵抗が低くパルス放電特性にすぐれ、安
定した放電特性を得ることが可能となる。
Function: By constructing a battery using this aluminum foil, the electrolyte permeates into the tunnel pit inside the aluminum foil, preventing the electrolyte from decreasing and reducing reaction efficiency. In addition, since the surface area of the aluminum foil is increased by the tunnel pit, the alloying process between aluminum and lithium is quick and uniform, and a fine particle-like alloy layer can be obtained. This eliminates the occurrence of unalloyed aluminum parts, resulting in low internal resistance and excellent pulse discharge characteristics, making it possible to obtain stable discharge characteristics.

実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

第1図はりチウム−酸化銅系のボタン型有機電解質電池
を示す。第1図において、1は厚さ0.2鮎の片面にニ
ッケルメッキしたステンレス鋼板を打ち抜き加工した正
極ケース、2は厚さ0.2順の片面ニッケルメッキを施
しだヌテンレス鋼製封口板、3は負極活物質の金属リチ
ウムで、封口板2の内面の凹凸部に圧着固定されている
。4は酸化銅を主成分とする活物質に導電材としての黒
鉛と5 ・“\−/ 結着剤とを混合して成形し、これを正極ケースに位置さ
せ、断面り字状のステンレス製正極リング5とともに加
圧圧着した正極、6は本発明によるアルミニウム箔で、
あらかじめ3oO℃で焼鈍したアルミニウム箔を電気化
学的にエツチングし、貫通形のトンネルピントを有して
いる。焼鈍はアルミニウム箔の酸化防止のだめ窒素雰囲
気中で行なった。通常冷間圧延された硬質箔では、複雑
な転位セルが存在するが、250 ”C以上で焼鈍する
ことにより再結晶粒子が成長し、エツチングの際に、表
面くずれが少なく箔面に対して垂直でピント数の多い箔
が得られる。箔の厚みは40μmを使用した。7はポリ
プロピレン製のセパレータ8はポリプロピレン製のガス
ケットである。電解液ニハ、炭酸プロピレンと、1−2
ジメトキシエタンとの混合有機溶媒に、過塩素酸リチウ
ムを溶解しだ液を使用し電池サイズは、外径9.511
11.高さ2.7酊としだ。
FIG. 1 shows a button-type organic electrolyte battery based on lithium-copper oxide. In Fig. 1, 1 is a positive electrode case made by punching a stainless steel plate with nickel plating on one side of sweetfish having a thickness of 0.2, 2 is a sealing plate made of nutless steel with nickel plating on one side of 0.2 in thickness, and 3 is metal lithium, which is a negative electrode active material, and is crimped and fixed to the uneven portion of the inner surface of the sealing plate 2. 4 is an active material whose main component is copper oxide, graphite as a conductive material, and a binder 5 is mixed and molded, and this is placed in a positive electrode case, and a stainless steel case with an angular cross section is formed. The positive electrode 6 is an aluminum foil according to the present invention, which is press-bonded together with the positive electrode ring 5.
An aluminum foil that has been annealed in advance at 300°C is electrochemically etched to have a through tunnel pin. Annealing was performed in a nitrogen atmosphere to prevent oxidation of the aluminum foil. Normally cold-rolled hard foils have complex dislocation cells, but annealing at 250"C or higher causes recrystallized grains to grow, resulting in less surface deformation and perpendicular to the foil surface during etching. A foil with a large number of focuses can be obtained.The thickness of the foil used was 40 μm.7 is a polypropylene separator 8 is a polypropylene gasket.Electrolyte Niha, propylene carbonate, and 1-2
Lithium perchlorate is dissolved in a mixed organic solvent with dimethoxyethane, and the battery size is 9.511 mm in outer diameter.
11. Height 2.7cm.

第2図イ2口は、本発明によるアルミニウム箔の表面の
金属組織と断面の金属組織を示す写真で6、−7 ある。
Figure 2A2 shows photographs 6 and 7 showing the metal structure on the surface and the metal structure in cross section of the aluminum foil according to the present invention.

第3図は上記サイズの電池を温度20 ”C下で30K
Qの負荷をつないで放電した場合の特性を示す。
Figure 3 shows a battery of the above size at 30K at a temperature of 20"C.
This shows the characteristics when a Q load is connected and discharged.

図中Aは、本発明のアルミニウム箔を使用した電池、B
は通常のアルミニウム箔を使用した電池、Cはアルミニ
ウム箔を使用しない電池の放電曲線である。
In the figure, A is a battery using the aluminum foil of the present invention, and B is a battery using the aluminum foil of the present invention.
C is a discharge curve of a battery using ordinary aluminum foil, and C is a discharge curve of a battery using no aluminum foil.

第4図は、−10℃下で5にΩの負荷を毎秒7.8m5
ecかけ、72時間後の閉路電圧を放電深度側に示しだ
もので、図中Aは本発明のアルミニウム箔を使用した電
池、Bは通常のアルミニウム箔を使用した電池、Cはア
ルミニウム箔を使用しない電池である。
Figure 4 shows a load of 5 to 7.8 m5 per second at -10°C.
EC is applied, and the closed circuit voltage after 72 hours is shown on the depth of discharge side. In the figure, A is a battery using the aluminum foil of the present invention, B is a battery using ordinary aluminum foil, and C is a battery using aluminum foil. It is a battery that does not work.

なお実施例では、正極活物質に酸化銅を使用した例につ
いて述べたが、正極にフッ化黒鉛、二酸化マンガン、硫
化鉄、酸化ビスマス等を使用した場合でも同様な効果が
得られた。
In the examples, an example was described in which copper oxide was used as the positive electrode active material, but similar effects were obtained when fluorinated graphite, manganese dioxide, iron sulfide, bismuth oxide, etc. were used in the positive electrode.

発明の効果 以上のように、あらかじめ250℃以上で焼鈍されたア
ルミニウム箔を電気化学的エツチングで7 \ 。
Effects of the Invention As described above, aluminum foil that has been annealed in advance at 250°C or higher is electrochemically etched.

トンネルピットを設け、これを負極リチウムの反応表面
に載置することによって、放電中の内部抵抗が低く、パ
ルス特性にすぐれた有機電解質電池が得られた。
By providing a tunnel pit and placing it on the reaction surface of the lithium negative electrode, an organic electrolyte battery with low internal resistance during discharge and excellent pulse characteristics was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による有機電解質電池の縦断面
図、第2図イ9口は本発明のアルミニウム箔の金属組織
を示す写真、第3図は放電カーブを示す図、第4図は放
電深度別の閉路電圧を示す図である。 1・・・・正極ケース、2・・・・封口板、3・・・・
・・負極、4 ・・・正極、5・・・・・正極リング、
6・・・・アルミニウム箔、ア・・・・セパレータ、8
・・・・ガスケット。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
−−ケース 2゛−1灯U板 3− ※糧 4−f膓 5−−一正顆リング 第1図     r−フルゞ°〜ゝ 7−−−セへ°し−り 8−−Trtケ、ト q−一一金属ネット 手続補正書(方式) 昭和63年4 月26日
FIG. 1 is a longitudinal cross-sectional view of an organic electrolyte battery according to an embodiment of the present invention, FIG. is a diagram showing the closed circuit voltage according to the depth of discharge. 1... Positive electrode case, 2... Sealing plate, 3...
...Negative electrode, 4...Positive electrode, 5...Positive electrode ring,
6... Aluminum foil, a... Separator, 8
····gasket. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
--Case 2゛-1 Light U plate 3- *Food 4-f 5--Issei condylar ring Fig. 1 , TOQ-11 Metal Net Procedures Amendment (Method) April 26, 1988

Claims (2)

【特許請求の範囲】[Claims] (1)リチウムを活物質とする負極と、有機電解質と正
極とからなる電池であって、負極の反応側表面に、電気
化学的エッチング法による貫通形のトンネルピットを有
するアルミニウム箔を載置したことを特徴とする有機電
解質電池。
(1) A battery consisting of a negative electrode using lithium as an active material, an organic electrolyte, and a positive electrode, in which an aluminum foil having a through-hole tunnel pit formed by electrochemical etching is placed on the reaction side surface of the negative electrode. An organic electrolyte battery characterized by:
(2)電気化学的エッチングを行なうアルミニウム箔が
、あらかじめ焼鈍されたものであることを特徴とする特
許請求の範囲第1項に記載の有機電解質電池。
(2) The organic electrolyte battery according to claim 1, wherein the aluminum foil to be electrochemically etched is annealed in advance.
JP62316611A 1987-12-15 1987-12-15 Organic electrolyte battery Expired - Lifetime JP2563409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62316611A JP2563409B2 (en) 1987-12-15 1987-12-15 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62316611A JP2563409B2 (en) 1987-12-15 1987-12-15 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH01159962A true JPH01159962A (en) 1989-06-22
JP2563409B2 JP2563409B2 (en) 1996-12-11

Family

ID=18078996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62316611A Expired - Lifetime JP2563409B2 (en) 1987-12-15 1987-12-15 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2563409B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042050A (en) * 1990-04-18 1992-01-07 Matsushita Electric Ind Co Ltd Organic electrolyte primary battery
KR20030042841A (en) * 2001-11-24 2003-06-02 핀튜브텍(주) Intercooler For Diesel Engine And Fin-Tube Manufacturing Method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042050A (en) * 1990-04-18 1992-01-07 Matsushita Electric Ind Co Ltd Organic electrolyte primary battery
KR20030042841A (en) * 2001-11-24 2003-06-02 핀튜브텍(주) Intercooler For Diesel Engine And Fin-Tube Manufacturing Method

Also Published As

Publication number Publication date
JP2563409B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
US4820599A (en) Non-aqueous electrolyte type secondary cell
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JPH05258741A (en) Separator for nonaqueous electrolyte secondary cell
JPH0665044B2 (en) Lithium organic primary battery
JPS63126156A (en) Lithium cell
JPH01159962A (en) Organic electrolyte cell
JP3152307B2 (en) Lithium secondary battery
JP2844829B2 (en) Organic electrolyte primary battery
JP3349362B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
CA1067142A (en) Zinc electrode for alkaline reserve batteries
JP3478030B2 (en) Alkaline storage battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JPS61208748A (en) Lithium organic secondary battery
JP4033377B2 (en) Non-aqueous electrolyte battery
JP2006049237A (en) Anode material for lithium ion battery
JP2664469B2 (en) Non-aqueous electrolyte battery
JP2673836B2 (en) Non-aqueous electrolyte secondary battery
JPH0588506B2 (en)
JPS61163564A (en) Nonaqueous electrolytic solution
JPH01283765A (en) Organic electrolyte cell
JP3082551B2 (en) Non-aqueous electrolyte battery and its manufacturing method
JP2714078B2 (en) Non-aqueous electrolyte battery
JPH0254870A (en) Organic electrolyte battery
JP2771580B2 (en) Manufacturing method of lithium alloy plate