JPH0115822B2 - - Google Patents

Info

Publication number
JPH0115822B2
JPH0115822B2 JP55085243A JP8524380A JPH0115822B2 JP H0115822 B2 JPH0115822 B2 JP H0115822B2 JP 55085243 A JP55085243 A JP 55085243A JP 8524380 A JP8524380 A JP 8524380A JP H0115822 B2 JPH0115822 B2 JP H0115822B2
Authority
JP
Japan
Prior art keywords
gel
weight
carboxylic acid
mlim
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55085243A
Other languages
Japanese (ja)
Other versions
JPS5730945A (en
Inventor
Juzo Yanagihara
Koji Noguchi
Makoto Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8524380A priority Critical patent/JPS5730945A/en
Priority to US06/272,230 priority patent/US4368275A/en
Priority to CA000379558A priority patent/CA1157996A/en
Priority to DE8181104826T priority patent/DE3166309D1/en
Priority to EP81104826A priority patent/EP0043074B1/en
Priority to SU813303096A priority patent/SU1311631A3/en
Priority to DD81231105A priority patent/DD159908A5/en
Priority to CS484781A priority patent/CS228510B2/en
Publication of JPS5730945A publication Critical patent/JPS5730945A/en
Publication of JPH0115822B2 publication Critical patent/JPH0115822B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はゲルパーミエーシヨンクロマトグラフ
イー用親水性充填剤の製造方法に関する。更に詳
しくはイソシアヌレート環を骨格に含む架橋ポリ
ビニルアルコールゲルより成り制御されたポアと
十分な強度をもつゲルパーミエーシヨンクロマト
グラフイー用親水性充填剤の製造方法に関する。 〔従来の技術〕 ゲルパーミエーシヨンクロマトグラフイー(以
下GPCという)は、ゲルを充填したカラムを用
い、充填剤(以下ゲルという)内のポアサイズよ
り小さい分子サイズの成分がその大きさに応じて
ゲル内へ浸透し、大きい成分はゲルの外を素通り
する原理を利用して、分子サイズの大きい成分か
ら順次分離溶出させる、液体クロマトグラフイ
ー、の一種である。 GPCは分離または分析の際に用いる溶媒によ
つて有機溶媒系と水溶媒系に分類される。このう
ち、水溶媒系のゲルパーミエーシヨンクロマトグ
ラフイーは生化学関連分野での利用価値が高いた
め、最近注目を集めており、とりわけ高速処理で
きるゲルの開発が強く望まれている。 これまで水溶媒系GPC用ゲルとして、デキス
トランをエピクロルヒドリンで架橋して成るゲル
(商品名セフアデツクス、フアルマシア社、スウ
エーデン)が知られており、よく使用されてい
る。このゲルは水に溶解したデキストランを逆相
懸濁系でエピクロルヒドリンで架橋することによ
り得られ、ウオーターリゲイン(保水量、以下
WRという)がゲルの性質を決定し、WRの高いの
がゲルの利点とされている(特公昭47−21405号
公報参照)。しかし、このゲルは製法や物性から
もわかるように、分離に用いるポアが架橋の網目
からなる軟質ゲルといわれるものであり、機械的
強度が小さいので高速GPC用ゲルとして用いる
ことはできなかつた。 次に、例えば酢酸ビニルと1,4−ブタンジオ
ールジビニルエーテルの共重合体からなる粒子を
ケン化することにより水溶媒系のゲルが得られる
ことも知られている(特公昭44−20917号公報参
照)。しかし当該出願の発明者であるW.Heitzも
認めるように、このゲルは重合に用いた単量体の
共重合性が良くない(W.Heitz.J.Chromatogr.53
37(1970)参照)ので生成したゲルは十分な強
度をもたず、高速GPC用として実用化すること
はできなかつた。 更に、例えばジエチレングリコールジメタクリ
レートやグリシジルメタクリレートと酢酸ビニル
との共重合体粒子をケン化し、そしてエピクロル
ヒドリンで架橋することによつて機械的強度の大
きい水溶媒系ゲルが得られるといわれている(特
開昭52−138077号公報参照)。しかしこの方法で
得られたゲルは、その骨格中にエステル基または
カルボキシル基等の酸や塩基の存在によつて加水
分解したり、被分離成分によつては吸着作用を及
ぼす官能基が存在するので好ましくない。 さらに、また酢酸ビニルとトリアジン環構造を
有する架橋剤よりなる共重合体をケン化すること
によつてポリビニルアルコールゲルが得られるこ
とも公知である(特開昭55−58203号公報参照)。
この方法によると、架橋剤量または重合時に加え
られる希釈剤の種類および量を適当に組み合わせ
ることにより、ゲルの含水量(ポアサイズ)を変
えうるといわれている。しかしこのゲルは、特開
昭55−58203号公報に記載されているように、高
分子水溶液の脱塩に使用することを目的として製
造されたものであり、そのため実際得られたゲル
は、無機イオンだけがゲル内へ浸透できるような
小さいポアをもつもので、塩と分子量が高くゲル
内へ浸透できない蛋白質とを分離するのには使用
できるが、分子量の高い成分を相互に分離する可
能性についてはまつたくふれられていない。しか
も高分子水溶液の脱塩を目的としているため、42
〜28メツシユ(つまり350〜590μm)程度の粒径
の大きいゲルで充分であり、特に機械的強度を必
要とされる50μm以下のゲルについては何ら記載
されていない。 しかし、高速GPCによつて分子量の異なる
種々の成分を分離、分析するためには、被分離成
分の分子の大きさに応じて厳密に制御されたポア
をもち、かつ十分な機械的強度を有する小粒径の
ゲルを充填剤として用いなければならない。 〔発明の目的〕 本発明者らはかかる従来技術の現状に鑑み、上
記した要件を満足するGPC用ゲルを開発すべく
鋭意研究の結果、イソシアヌレート環を骨格に含
む架橋ポリビニルアルコールゲルよりなり、分離
すべき被分離成分の分子量に応じたサイズのポア
を有し、従つて高分子量成分相互の分離も可能で
あり、かつ高速GPCに適した十分な機械的強度
をもつゲルの開発に成功し本発明をなすに至つ
た。 〔発明の構成〕 即ち、本発明に従えば、カルボン酸ビニルエス
テルと下記式(a)で表されるイソシアヌレート環を 有する化合物 (ただしR1、R2およびR3は、それぞれ独立に、−
CH2−CH=CH2、−CH2−C≡CH又は
[Industrial Field of Application] The present invention relates to a method for producing a hydrophilic filler for gel permeation chromatography. More specifically, the present invention relates to a method for producing a hydrophilic packing material for gel permeation chromatography, which is made of a crosslinked polyvinyl alcohol gel containing an isocyanurate ring in its skeleton and has controlled pores and sufficient strength. [Prior art] Gel permeation chromatography (hereinafter referred to as GPC) uses a column packed with gel, and components with a molecular size smaller than the pore size in the packing material (hereinafter referred to as gel) are separated according to their size. It is a type of liquid chromatography that utilizes the principle of penetrating into the gel and allowing larger components to pass through the gel, and sequentially separates and elutes components starting with the larger molecular size. GPC is classified into organic solvent type and aqueous solvent type depending on the solvent used during separation or analysis. Among these, aqueous-based gel permeation chromatography has recently attracted attention because it has high utility in biochemistry-related fields, and there is a strong desire to develop gels that can be processed at high speeds. Gel made by cross-linking dextran with epichlorohydrin (trade name: Cephadex, Pharmacia, Sweden) has been known and often used as a gel for water-based GPC. This gel is obtained by crosslinking dextran dissolved in water with epichlorohydrin in a reversed-phase suspension system, and is
W R ) determines the properties of gels, and a high W R is said to be an advantage of gels (see Japanese Patent Publication No. 47-21405). However, as can be seen from the manufacturing method and physical properties, this gel is a soft gel whose pores used for separation are made up of a crosslinked network, and its mechanical strength is low, so it could not be used as a gel for high-speed GPC. Next, it is also known that a water-based gel can be obtained by saponifying particles made of a copolymer of vinyl acetate and 1,4-butanediol divinyl ether (Japanese Patent Publication No. 44-20917). reference). However, as acknowledged by W. Heitz, the inventor of the application, this gel has poor copolymerizability of the monomers used for polymerization (W. Heitz. J. Chromatogr. 53
37 (1970)), the resulting gel did not have sufficient strength and could not be put to practical use in high-speed GPC. Furthermore, it is said that a water-based gel with high mechanical strength can be obtained by, for example, saponifying copolymer particles of diethylene glycol dimethacrylate or glycidyl methacrylate with vinyl acetate and crosslinking with epichlorohydrin (Unexamined Japanese Patent Publication No. (See Publication No. 52-138077). However, the gel obtained by this method has functional groups in its skeleton that can be hydrolyzed by the presence of acids or bases such as ester groups or carboxyl groups, or have functional groups that act as adsorbents depending on the components to be separated. So I don't like it. Furthermore, it is also known that polyvinyl alcohol gel can be obtained by saponifying a copolymer of vinyl acetate and a crosslinking agent having a triazine ring structure (see Japanese Patent Laid-Open No. 58203/1983).
According to this method, it is said that the water content (pore size) of the gel can be changed by appropriately combining the amount of crosslinking agent or the type and amount of diluent added during polymerization. However, as described in Japanese Patent Application Laid-open No. 55-58203, this gel was manufactured for the purpose of desalting an aqueous polymer solution, and therefore the gel actually obtained was inorganic. It has small pores that allow only ions to penetrate into the gel, and can be used to separate salts and proteins that have a high molecular weight and cannot penetrate into the gel, but it may separate components with high molecular weight from each other. There is no mention of this. Moreover, since the purpose is to desalinate aqueous polymer solutions, 42
A gel with a large particle size of about 28 meshes (that is, 350 to 590 μm) is sufficient, and there is no description of a gel with a particle size of 50 μm or less, which particularly requires mechanical strength. However, in order to separate and analyze various components with different molecular weights using high-speed GPC, it is necessary to have pores that are strictly controlled according to the molecular size of the components to be separated and sufficient mechanical strength. Gels of small particle size must be used as fillers. [Object of the Invention] In view of the current state of the prior art, the present inventors conducted intensive research to develop a gel for GPC that satisfies the above-mentioned requirements. We have succeeded in developing a gel that has pores of a size that corresponds to the molecular weight of the components to be separated, which is also capable of separating high-molecular weight components, and has sufficient mechanical strength suitable for high-speed GPC. The present invention has now been accomplished. [Structure of the Invention] That is, according to the present invention, a compound having a carboxylic acid vinyl ester and an isocyanurate ring represented by the following formula (a) (However, R 1 , R 2 and R 3 are each independently −
CH 2 −CH=CH 2 , −CH 2 −C≡CH or

【式】を示す) との共重合体を加水分解して得られる架橋ポリビ
ニルアルコールゲルにおいて、カルボン酸ビニル
エステルと前記化合物(a)の量を架橋度Xが0.25≦
X≦0.4 (ただし X=W2/M2×3/W1/M1×n1+W1/M2×3 M1:カルボン酸ビニルエステルの分子量 M2:化合物(a)の分子量 W1:重合に用いたカルボン酸ビニルエステルの
重量(g) W2:重合に用いた化合物(a)の重量(g) n1:カルボン酸ビニルエステル1分子が有するビ
ニル基の数) の範囲になるように用い、更に、単量体100重量
部に対し、単量体を溶解するが水には溶解しにく
い有機溶媒20〜200重量部と、単量体に溶解する
線状重合体10重量部以下との混合物を単量体に加
えて懸濁共重合を行い、かつ加水分解して得られ
るゲルが下記の(A)〜(D)の物性 (A) 水酸基密度(qOH)10.2≦qOH≦11.2meq/g (B) 保水量(WR)0.5≦WR≦2.5g/g (C) 比表面積(S)5≦S≦1000m2/g (D) 排除限界分子量(Mlim)104≦Mlim≦108 を有するゲルパーミエーシヨンクロマトグラフイ
ー用親水性充填剤の製造方法が提供される。 本発明のゲルの親水性は水酸基に基因する。水
酸基の密度(以下qOHという)は、ゲル乾燥重量
あたり10.2〜11.2meq/g(ただしX=0.25のと
き)の範囲になるように設定すべきである。この
とき加水分解によつてゲルの骨格中のエステル基
が水酸基に変わつた割合、つまり加水分解率は81
〜100%となり、Xが高い場合も加水分解率がこ
の範囲にあるのがよい。qOHがこの範囲より大き
いとゲルの機械的強度が低下し、逆に小さい場合
には、ゲルの親水性が減少して吸着性が現れるの
でいずれも好ましくない。なお、qOHは、ゲルを
ピリジン溶媒中で無水酢酸と反応させて水酸基と
反応して消費した無水酢酸の量またはゲルの重量
変化を測定し、これから計算して求めることがで
きる。1gの乾燥ゲルが1mmolの無水酢酸と反
応したときのqOHが1meq/gである。 本発明のゲルは、前述の如く、保水量(以下、
WRという)が0.5〜2.5g/gの範囲になければな
らない。WRとはゲルを水と平衡にしたときにゲ
ルが粒子内に含みうる水の量をゲル乾燥重量あた
りの値として表示したものである。つまりWR
GPC作用を及ぼすゲル内の孔量の目安となる。
WRが大きくなると水中においてゲル単位体積あ
たりの骨格を形成する部分、つまりゲルそのもの
の重量が相対的に低下する。そのためWRが大き
すぎると水中においてゲルの機械的強度が低下す
るので、流速を高くすることができず、充填カラ
ムの圧力損失も大きくなる。WRが小さすぎると
GPC作用を及ぼす粒子内孔量が少なくなるので
ゲルの分離性能は低下する。したがつてWRが適
当な範囲にあることは水溶媒系高速GPCゲルの
物性上極めて重要である。 従来の軟質ゲルは排除限界分子量(以下Mlim
という)、つまりゲル粒子内に浸透できない成分
の最低分子量が大きくなれば、必然的にWRが増
大し機械的強度が低下する性質をもつていた。つ
まり、軟質ゲルの場合にはMlimを大きくするた
めには、架橋度を低くして網目を広げなければな
らないので、必然的にWRが高くなりかつ機械的
強度が低下した。これに対し、本発明のゲルは、
Mlimに関係なくWRが0.5〜2.5g/gの範囲にあ
りMlimの高いゲルでも高速GPCに用いることが
可能である。このことは高速GPC用水溶媒系ゲ
ルとして画期的なことである。WRは蒸留水と十
分平衡にしたゲルを遠心分離器にかけてゲル表面
に付着している水を除去したのち、その重量
(W1)を測定しさらにそのゲルを乾燥して乾燥後
の重量(W2)を求め次式によつて求めることが
できる。 WR=W1−W2/W2 WRの値は実用上からは1.0〜2.5g/gの範囲に
あるのが更に好ましい。 本発明のゲルは前述の如くその乾燥状態におけ
る比表面積(以下、Sという)が5〜1000m2/g
の範囲にあることが必要である。この比表面積S
はゲルの構造と密接な関係をもつ。一般に架橋構
造をもつ有機合成高分子はその高分子と親和性の
ある溶媒中で膨潤し、乾燥すると収縮する。膨潤
時に溶媒が満たされているポアが架橋の網目だけ
で維持されている軟質ゲルの場合は、乾燥すると
網目は広がつた状態を維持できなくなつてつぶれ
てしまい、ポアはほとんど消失する。この場合の
比表面積はほとんど粒子の外側だけの値となるた
め一般に1m2/g以下の低い値を示す。一方ポア
がしつかりした構造をもつ硬質ゲルの場合は乾燥
してもポアは多少収縮するものの膨潤時の状態を
ほとんど維持する、つまりパーマネントポアを有
する。したがつて前記比表面積は粒子内部に微細
孔が存在するため、軟質ゲルの値よりはるかに高
い値を示す。本発明のゲルはMlimの高いもので
もポアがしつかりした構造をもつているため乾燥
時の比表面積は高い値を示す。比表面積の値が前
記の範囲より小さいゲルは微細孔をほとんど持た
ない均一架橋型の構造(軟質ゲル)をしているこ
とを意味し、高速GPC用ゲルとして好ましくな
い。本発明のゲルの比表面積は実用上からは10〜
500m2/gの範囲にあるのがより好ましい。 比表面積の測定方法はいろいろあるが、本発明
では最も一般的な窒素ガスによるBET法で求め
るものとする。また比表面積測定に用いるサンプ
ルは十分に乾燥しておかねばならない。本発明の
ゲルは親水性が大で乾燥しにくいので、水にぬれ
たゲルをアセトンと平衡にしたのち60℃以下で減
圧乾燥するのがよい。 本発明のゲルのMlimは広い範囲にわたつて変
えうる。前述の如く、Mlimはゲルのポア内へ浸
透できない分子の分子量の下限を表す値である。
この値より小さい分子量の成分間については
GPCによる分離が可能であるが、この値より大
きい分子量の成分はゲルのポアに入れず、ゲル粒
子の間隙を素通りして出て行き、分子量に関係な
くほとんど同じ溶出容量をもつため、分離するこ
とができない。MlimはGPCの検量線から求めら
れる。検量線はゲルを充填したカラムについて横
軸に溶出容量、縦軸に分子量の対数を目盛つたグ
ラフに分子量既知のサンプルの測定データをプロ
ツトして得られ、縦軸にほとんど平衡な線と、そ
れに続く負の勾配をもつた線からなる。 本発明におけるMlimは、分子量既知の標準物
質としてポリエチレングリコールまたはデキスト
ランを用い、蒸留水を溶媒として求めた検量線の
縦軸に平行な線の延長と、傾斜した線の延長が交
わる点の縦軸の値として表される。なお、通常市
販されている水溶性標準高分子は分子量200万以
下のものしかないので、Mlimが200万以上のゲ
ルについては完全な検量線を求めることができな
い。したがつてこのようなゲルのMlimは正確に
は求められないが、分子量200万までの検量線の
延長と、同様な条件で測定したMlimの低いゲル
の縦軸に平行な線の延長との交点よりMlimの値
を推定する。本発明のゲルは、ポリエチレングリ
コールやデキストランの分子量既知の標準サンプ
ルを用いて得られた値で104〜108の広い範囲の
Mlimをもつ。 本発明のゲルの平均粒径(以下Wという)は
通常は4〜200μm、好ましくは4〜100μmの範
囲にあるのが良く、高速GPC用ゲルとして用い
る場合は、5〜50μmの範囲にあるのが更に好ま
しい。Wは、小粒径の場合はコールターカウン
ター(米国コールターエレクトロニクス社)によ
り、また大粒径の場合は顕微鏡またはフルイを用
いて測定し粒子径diの表れる頻度をniとすれば次
式によつて求められる。 W=Σ(nidi4)/Σ(nidi3) 充填剤を小粒径化することによりGPCの分離
能が向上することはよく知られている。しかし小
粒径のゲルを充填したカラムに高流速で溶媒を通
液するためには、ゲルの機械的強度が十分大きく
なければならない。従来の軟質ゲルの場合、小粒
径化と共に通液速度が低下したが、本発明のゲル
は機械的強度が大きいので前述のような小粒径で
も高流速に耐えられる。 前記のような物性をもつ本発明のゲルは、前述
の如く、カルボン酸ビニルエステルとイソシアヌ
レート環を有するビニル化合物(a)をこれらの単量
体を溶解するが水には溶解しにくい有機溶媒、ま
たは該有機溶媒と前記単量体に溶解する線状重合
体との混合物の共存下に懸濁重合し、得られた共
重合体を加水分解することによつて得られる。 本発明において用いられるカルボン酸ビニルエ
ステルとは、重合可能なカルボン酸ビニルエステ
ル基を一つ以上有する化合物のことで、酢酸ビニ
ル、プロピオン酸ビニル、酪酸ビニル、カプロン
酸ビニル、ピバリン酸ビニル、アジピン酸ジビニ
ル、等の脂肪族カルボン酸ビニルエステル化合物
や安息香酸ビニル、フタル酸ジビニル等の芳香族
カルボン酸ビニルエステル化合物のことである。
なかでも重合性や重合後の加水分解の容易性から
酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、
カプロン酸ビニル、アジピン酸ジビニル等が好ま
しく、さらに孔径や孔径分布の制御し易さより、
アジピン酸ジビニルを単独でもしくは他のカルボ
ン酸ビニルエステルと併用して用いるのが特に好
ましい。 次に本発明において使用するトリアリルイソシ
アヌレート環を有する化合物とは下記(a)の構造を
もつ化合物のことで本発明において架橋剤として
用いられる。 (ただし、R1、R2及びR3は、それぞれ独立に、−
CH2−CH=CH2・−CH2−C≡CH又は
In the crosslinked polyvinyl alcohol gel obtained by hydrolyzing a copolymer with [formula]), the amount of carboxylic acid vinyl ester and the compound (a) is adjusted so that the crosslinking degree X is 0.25≦
X 0.4 ( However , _ _ _ _ : Weight of carboxylic acid vinyl ester used in polymerization (g) W 2 : Weight of compound (a) used in polymerization (g) n 1 : Number of vinyl groups possessed by one molecule of carboxylic acid vinyl ester) Furthermore, per 100 parts by weight of the monomer, 20 to 200 parts by weight of an organic solvent that dissolves the monomer but is difficult to dissolve in water, and 10 parts by weight of a linear polymer that dissolves in the monomer. A mixture of the following is added to the monomer to carry out suspension copolymerization, and the gel obtained by hydrolysis has the following physical properties (A) to (D): (A) Hydroxyl group density (q OH ) 10.2≦q OH ≦11.2meq/g (B) Water retention capacity (W R ) 0.5≦W R ≦2.5g/g (C) Specific surface area (S) 5≦S≦1000m 2 /g (D) Exclusion limit molecular weight (Mlim) 10 A method for producing a hydrophilic packing material for gel permeation chromatography having 4 ≦Mlim≦10 8 is provided. The hydrophilicity of the gel of the present invention is due to hydroxyl groups. The density of hydroxyl groups (hereinafter referred to as q OH ) should be set in the range of 10.2 to 11.2 meq/g (when X = 0.25) per gel dry weight. At this time, the rate at which ester groups in the gel skeleton were converted to hydroxyl groups due to hydrolysis, that is, the hydrolysis rate was 81
~100%, and even when X is high, it is preferable that the hydrolysis rate is within this range. If q OH is larger than this range, the mechanical strength of the gel will decrease, while if it is smaller, the hydrophilicity of the gel will decrease and adsorptivity will appear, so both are unfavorable. Note that q OH can be determined by reacting the gel with acetic anhydride in a pyridine solvent, measuring the amount of acetic anhydride consumed by reacting with the hydroxyl group, or the change in weight of the gel, and calculating from this. When 1 g of dry gel is reacted with 1 mmol of acetic anhydride, q OH is 1 meq/g. As mentioned above, the gel of the present invention has a water retention capacity (hereinafter referred to as
(referred to as W R ) must be in the range of 0.5 to 2.5 g/g. W R is the amount of water that the gel can contain within the particles when the gel is brought into equilibrium with water, expressed as a value per dry weight of the gel. In other words, W R is
This is a guideline for the amount of pores in the gel that exerts the GPC effect.
As W R increases, the weight of the part forming the skeleton per unit volume of gel in water, that is, the weight of the gel itself, decreases relatively. Therefore, if W R is too large, the mechanical strength of the gel decreases in water, making it impossible to increase the flow rate and increasing pressure loss in the packed column. If W R is too small
The separation performance of the gel decreases because the amount of internal pores that exert GPC action decreases. Therefore, it is extremely important for the physical properties of a water-based high-speed GPC gel that W R be within an appropriate range. Conventional soft gels have exclusion limit molecular weight (Mlim)
), that is, if the minimum molecular weight of the component that cannot penetrate into the gel particles increases, W R inevitably increases and mechanical strength decreases. In other words, in the case of a soft gel, in order to increase Mlim, the degree of crosslinking must be lowered and the network expanded, which inevitably resulted in higher W R and lower mechanical strength. In contrast, the gel of the present invention
W R is in the range of 0.5 to 2.5 g/g regardless of Mlim, and even gels with high Mlim can be used for high-speed GPC. This is a breakthrough as an aqueous solvent-based gel for high-speed GPC. W R involves centrifuging the gel that has been equilibrated with distilled water to remove water adhering to the gel surface, then measuring its weight (W 1 ), and then drying the gel to obtain the dry weight ( W 2 ) can be obtained using the following formula. From a practical standpoint, the value of W R =W 1 −W 2 /W 2 W R is more preferably in the range of 1.0 to 2.5 g/g. As mentioned above, the gel of the present invention has a specific surface area (hereinafter referred to as S) in the dry state of 5 to 1000 m 2 /g.
It is necessary to be within the range of . This specific surface area S
is closely related to the structure of the gel. Generally, organic synthetic polymers with a crosslinked structure swell in a solvent that has an affinity for the polymer, and shrink when dried. In the case of a soft gel in which the solvent-filled pores are maintained only by a network of crosslinks during swelling, when the gel dries, the network can no longer maintain its expanded state and collapses, and most of the pores disappear. In this case, the specific surface area is almost only the value on the outside of the particle, so it generally shows a low value of 1 m 2 /g or less. On the other hand, in the case of a hard gel with a firm structure of pores, the pores shrink somewhat even when dried, but maintain most of their swollen state, that is, have permanent pores. Therefore, the specific surface area is much higher than that of a soft gel due to the presence of micropores inside the particles. Even if the gel of the present invention has a high Mlim, it has a structure with tight pores, so the specific surface area when dried exhibits a high value. A gel with a specific surface area value smaller than the above range means that it has a homogeneously crosslinked structure (soft gel) with almost no micropores, and is not preferable as a gel for high-speed GPC. From a practical point of view, the specific surface area of the gel of the present invention is 10~
More preferably, it is in the range of 500 m 2 /g. Although there are various methods for measuring the specific surface area, in the present invention, it is determined by the most common BET method using nitrogen gas. In addition, the sample used for specific surface area measurement must be sufficiently dry. Since the gel of the present invention is highly hydrophilic and difficult to dry, it is preferable to equilibrate the water-wet gel with acetone and then dry it under reduced pressure at 60°C or lower. The Mlim of the gels of the invention can vary over a wide range. As mentioned above, Mlim is a value representing the lower limit of the molecular weight of molecules that cannot penetrate into the pores of the gel.
For components with molecular weights smaller than this value,
Separation by GPC is possible, but components with a molecular weight larger than this value do not enter the gel pores and exit through the gaps between gel particles, and have almost the same elution volume regardless of molecular weight, so it is difficult to separate them. I can't. Mlim is determined from the GPC calibration curve. A calibration curve is obtained by plotting the measurement data of a sample with a known molecular weight on a graph of a column packed with gel, with the elution volume on the horizontal axis and the logarithm of the molecular weight on the vertical axis. It consists of a line with a continuous negative slope. In the present invention, Mlim is the vertical axis at the intersection of the extension of a line parallel to the vertical axis and the extension of the inclined line of a calibration curve obtained using polyethylene glycol or dextran as a standard substance with a known molecular weight and distilled water as a solvent. expressed as the value of It should be noted that since the only commercially available water-soluble standard polymers have a molecular weight of less than 2 million, it is not possible to obtain a complete calibration curve for gels with Mlim of 2 million or more. Therefore, the Mlim of such a gel cannot be determined accurately, but the extension of the calibration curve up to a molecular weight of 2 million and the extension of the line parallel to the vertical axis of a gel with a low Mlim measured under similar conditions can be calculated. Estimate the value of Mlim from the intersection. The gel of the present invention has a wide range of values from 10 4 to 10 8 obtained using standard samples of known molecular weights of polyethylene glycol and dextran.
Has Mlim. The average particle size (hereinafter referred to as W ) of the gel of the present invention is usually in the range of 4 to 200 μm, preferably 4 to 100 μm, and when used as a gel for high-speed GPC, it is in the range of 5 to 50 μm. is even more preferable. W is measured using a Coulter Counter (Coulter Electronics, Inc., USA) for small particles, or using a microscope or sieve for large particles, and is calculated using the following formula, where ni is the frequency at which the particle size di appears: Desired. W = Σ(nidi 4 )/Σ(nidi 3 ) It is well known that the separation ability of GPC is improved by reducing the particle size of the packing material. However, in order to pass a solvent at a high flow rate through a column filled with a gel of small particle size, the mechanical strength of the gel must be sufficiently large. In the case of conventional soft gels, the liquid passing rate decreased as the particle size decreased, but the gel of the present invention has high mechanical strength and can withstand high flow rates even with the aforementioned small particle size. As described above, the gel of the present invention having the above-mentioned physical properties is produced by combining the vinyl compound (a) having a carboxylic acid vinyl ester and an isocyanurate ring with an organic solvent that dissolves these monomers but is difficult to dissolve in water. , or by carrying out suspension polymerization in the coexistence of a mixture of the organic solvent and a linear polymer dissolved in the monomer, and hydrolyzing the obtained copolymer. The carboxylic acid vinyl ester used in the present invention refers to a compound having one or more polymerizable carboxylic acid vinyl ester groups, such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl pivalate, and adipic acid. It refers to aliphatic carboxylic acid vinyl ester compounds such as divinyl, and aromatic carboxylic acid vinyl ester compounds such as vinyl benzoate and divinyl phthalate.
Among them, vinyl acetate, vinyl propionate, vinyl butyrate,
Vinyl caproate, divinyl adipate, etc. are preferred, and moreover, from the viewpoint of ease of controlling the pore size and pore size distribution,
Particular preference is given to using divinyl adipate alone or in combination with other carboxylic acid vinyl esters. Next, the compound having a triallylisocyanurate ring used in the present invention refers to a compound having the structure (a) below, and is used as a crosslinking agent in the present invention. (However, R 1 , R 2 and R 3 are each independently −
CH 2 −CH=CH 2・−CH 2 −C≡CH or

【式】を示す。) 中でもR1、R2、およびR3がすべて−CH2−CH
=CH2であるトリアリルイソシアヌレートは入手
が容易であり、ビニルエステル類との共重合性が
良く、かつ得られるゲルの物性をすぐれているの
で好ましい。 単量体中のイソシアヌレート環を有する化合物
の割合は架橋度Xが0.25≦X≦0.4(Xの定義は前
記した通り)の範囲になるように設定すべきであ
る。架橋度Xの値が前記範囲より低いと十分な機
械的強度をもつたゲルが得られず、高いと被分離
成分を吸着することがあるためいずれも好ましく
ない。 また本発明ではカルボン酸ビニルとイソシアヌ
レート環を有する化合物(a)とを懸濁共重合させる
際に、単量体を溶解するが水には溶解しにくい有
機溶媒、または該有機溶媒と単量体に溶解する線
状重合体の混合物を単量体に加えなければならな
い。これらの有機溶媒や線状重合体は得られる共
重合体にパーマネントポアを形成させると共にそ
のポアの孔量、孔径あるいは孔径分布を制御する
ために用いられる。 単量体を溶解するが水に溶解しにくい有機溶媒
とは、水への溶解度が20℃で3g/水100g以下
の溶媒を意味し、具体的には、トルエン、キシレ
ン、ヘプタン、オクタン、シクロヘキサン、酢酸
n−ブチル、酢酸iso−ブチル、酢酸n−ヘキシ
ル、メチルイソブチルケトン、n−ヘプタノール
等のことである。 該有機溶媒は単量体100重量部に対して20〜200
重量部の範囲で用いられる。この範囲より少ない
とゲルの孔量が少なくなりすぎるため分離性能が
低下し、多すぎるとゲルの機械的強度が不足する
のでいずれも好ましくない。有機溶媒の量は実用
上からは30〜150重量部の範囲にあるのがよい。 単量体に溶解する線状重合体とは、単量体に1
重量%以上の濃度で溶解する線状重合体のこと
で、例えばポリ酢酸ビニルやポリスチレンのこと
で、単量体100重量部に対して10重量部以下、好
ましくは0.1〜10重量部、更に好ましくは0.3〜10
重量部の範囲で用いられる。かかる線状重合体を
前記有機溶媒と併用することによつて、より孔径
の大きい、即ちMlimが104〜108のゲルを製造す
ることができる。ただし、線状重合体の量が10重
量部を超えると、ゲルの機械的強度が不十分とな
るので好ましくない。 重合に際して用いられる開始剤は、通常の懸濁
重合に用いられる一般的なラジカル重合開始剤で
よく、例えば2−2′−アゾビスイソブチロニトリ
ル、2−2′−アゾビス−(2,4−ジメチルバレ
ロニトリル)、等のアゾ系の開始剤や、過酸化ベ
ンゾイル、過酸化ラウロイル等の過酸化物系の開
始剤を用いることができる。 懸濁重合を行う際には、水相にはポリビニルア
ルコールやメチルセルロース等の通常用いられる
有機高分子系の懸濁安定剤を加えておくのがよ
く、必要によりリン酸ナトリウム等のPH緩衝剤を
併用してもよい。懸濁安定剤の種類や量或いは撹
拌速度を変えることによつて、重合によつて得ら
れる粒状共重合体の粒径を変えることができる。 重合によつて得られた粒状共重合体を抽出して
線状重合体、残留単量体あるいは有機溶媒を除い
たのち、生成共重合体の加水分解反応を行う。加
水分解反応とはケン化反応またはエステル交換反
応のことで、水やアルコールまたはその混合液を
溶媒として、酸またはアルカリを用いて公知のよ
うにして行われる。加水分解反応後、得られたゲ
ルは必要により分級を行つてGPC用の充填剤と
して用いることができる。 本発明のゲルはMlimの大きいものでもWRが適
当に小さく、乾燥状態における比表面積が高いと
いう特性をもつ。このような特性から本発明ゲル
は湿潤状態と乾燥状態でポアの構造変化の少な
い、いわゆるパーマネントポアをもつた硬質ゲル
であることが明らかである。したがつて、軟質ゲ
ルにくらべて、Mlimの大小にかかわらずゲルの
機械的強度が大きく、小粒径化してもゲルを充填
したカラムに溶媒を高流速で通液できる。一般に
クロマトグラフイーでは充填剤が小さくなると分
離性能が良くなる傾向にある。本発明のゲルは粒
径を小さくすることにより高分離能化が可能であ
り、しかも高流速で通液できるため、分離時間を
著しく短縮できる。このような本発明のゲルのす
ぐれた特性はゲルの製造時にイソシアヌレート環
を有するビニル化合物、および単量体混合液に加
えられる有機溶媒や線状重合体の量が前述の範囲
で用いられたときに得られる。いずれの範囲が満
たされなくても本発明のゲルは得られない。たと
えば前記した特開昭55−58203号公報の実施例に
従つて製造されたゲル(以下の比較例参照)はい
ずれもパーマネントポアをもたないため比表面積
がほとんどない。つまり機械的強度の小さい軟質
ゲルのような構造をもつので平均粒径10μm前後
の小粒径のゲルを用いると充填カラムへの溶媒の
通液速度が遅くなり高速GPC用ゲルとして用い
ることはできない。さらに比較例で得られたゲル
はMlimが低く高分子水溶液に脱塩はできても高
分子量成分相互の分離に不適当なことは明らかで
ある。 さらに本発明のゲルは水酸基を親水性基として
骨格に保有しているので水に溶媒するほとんどの
成分に対して吸着を示さない。したがつて水溶性
合成高分子、多糖類あるいは蛋白質等の分離、分
析において溶出容量と分子量の対数の関係がほと
んど直線、またはなめらかな曲線である検量線が
えられる。しかもゲルのポアサイズは被分離成分
の分子の大きさに応じてコントロールすることが
可能である。したがつて高分子水溶液の脱塩のみ
ならず広い範囲の分子量をもつ水溶性合成高分
子、多糖類、あるいは蛋白質等の高速GPCによ
る短時間の分離、分析に用いることが可能になつ
た。 以下に本発明の実施例を比較例と共に説明する
が、本発明の技術的範囲をこれらの実施例に限定
するものでないことはいうまでもない。 実施例 1 酢酸ビニル100g及びトリアリルイソシアヌレ
ート32g(X=0.25)、酢酸ブチル99g、ポリ酢
酸ビニル(重合度500)6.6g並びに2,2′−アゾ
ビスイソブチロニトリル2.6gよりなる均一混合
液とポリビニルアルコール(重合度500、ケン化
率89%)2%を含む水溶液1を2フラスコに
入れ、撹拌しながら65℃で18時間さらに75℃で5
時間加熱して懸濁重合を行い粒状共重合体を得
た。濾過、水洗、次いでアセトン抽出後、カセイ
ソーダ47g及びメタノール2よりなる溶液中で
40℃で20時間、共重合体の加水分解反応を行つ
た。得られた粒子を水中で沈降分級を行つて平均
粒径(W)14.2μmの架橋ポリビニルアルコール
ゲルを得た。乾燥したゲル一定量をピリジン−無
水酢酸溶液中で105℃で反応し、反応前後のゲル
の重量変化より水酸基密度(qOH)を求めたとこ
ろ11.2meq/gであつた。また水と平衡状態にあ
るゲルをグラスフイルターに入れ3000rpmで遠心
脱水したのち、グラスフイルター上部のゲルを一
定量秤量し、さらにゲルを乾燥したのち再度秤量
し、前後の重量変化よりゲルの保水量(WR)を
求めたところ1.80g/gであつた。さらに乾燥ゲ
ルの比表面積を窒素ガスを用いたBET法で求め
たところ65m2/gであつた。 このゲルを内径7.5mm、長さ50cmのステンレス
製カラムに充填してデキストランやポリエチレン
グリコールの水溶液を測定したところ、分子量の
大きい方が先に溶出した。デキストランの排除限
界分子量は1.5×106であつた。また0.075N硫酸ナ
トリウムおよび0.1Mリン酸ナトリウムを含む水
溶液を溶媒として、アルブミン、オブアルブミン
及びミオグロビンの分析をUV検出器(280nm)
を用いて行つたところ、分子量の高い順にかつ高
い回収率で溶出された。サンプルの測定は流速1
ml/minでおこなわれいずれも20分以内で分析を
終了した。 実施例 2 酢酸ビニル100g及びトリアリルイソシアヌレ
ート32g(X=0.25)、酢酸ブチル99gポリ酢酸
ビニル(重合度500)4.0g並びに2,2′−アゾビ
スイソブチロニトリル2.6gよりなる均一混合液
を実施例1と同様に懸濁重合し、得られた粒子の
加水分解反応を行つた。得られたゲルの物性は、
W=15.1μm、qOH=10.8meq/g、WR=1.92
g/g及び比表面積42m2/gであつた。このゲル
を実施例1と同様にカラムに充填し、デキストラ
ンを分析に求めたMlimは8×105であつた。 比較例 1 酢酸ビニル90g及びトリアリルイソシアヌレー
ト4.5g(X=0.017)、ドルエン60g並びに過酸
化ベンゾイル0.9gよりなる均一混合液をポリビ
ニルアルコール(重合度500、ケン化率89%)2
%を含む水溶液210gと共に1フラスコに入れ
60℃、16時間の懸濁重合を行つた。得られた粒子
をカセイソーダ50g、メタノール100g及び100g
の混合液中で60℃でケン化反応を行つた。得られ
たゲルの物性はW=14.8μm、qOH=18.2meq/
g、WR=3.31g/g及び比表面積0.1m2/gで乾
燥時にはゲル内にほとんどポアがないことが示さ
れた。さらにこのゲルを本発明と同様に内径7.5
mm長さ50cmのステンレス製カラム充填して水を流
そうとしたが、約0.1ml/min以上の流速では圧
力が著しく上昇し、極めて低流速でしか分析に使
用できなかつた。ポリエチレングリコール水溶液
を分析して求めたMlimは約1000でありアルブミ
ン、オブアルブミン、ミオグロビンを分析したと
ころいずれもほとんど同じ溶出容量(下表)で溶
出された。このことからこのゲルはこれらの蛋白
質相互の分離には用い得ないことがわかつた。ま
たそれぞれのサンプルの測定には2〜3時間の長
時間を要した。
[Formula] is shown. ) Among them, R 1 , R 2 , and R 3 are all −CH 2 −CH
Triallylisocyanurate where =CH 2 is easily available, has good copolymerizability with vinyl esters, and provides excellent physical properties of the resulting gel, so it is preferred. The proportion of the compound having an isocyanurate ring in the monomer should be set so that the degree of crosslinking X is in the range of 0.25≦X≦0.4 (the definition of X is as described above). If the value of crosslinking degree In addition, in the present invention, when carrying out suspension copolymerization of vinyl carboxylate and the compound (a) having an isocyanurate ring, an organic solvent that dissolves the monomer but is difficult to dissolve in water, or the organic solvent and the monomer are used. A mixture of linear polymers that are soluble in the body must be added to the monomer. These organic solvents and linear polymers are used to form permanent pores in the resulting copolymer and to control the pore volume, pore size, or pore size distribution of the pores. Organic solvents that dissolve monomers but are difficult to dissolve in water refer to solvents with a solubility in water of 3 g/100 g of water or less at 20°C, and specifically include toluene, xylene, heptane, octane, and cyclohexane. , n-butyl acetate, iso-butyl acetate, n-hexyl acetate, methyl isobutyl ketone, n-heptanol, etc. The organic solvent is used in an amount of 20 to 200 parts by weight per 100 parts by weight of the monomer.
Used in parts by weight. If the amount is less than this range, the pore volume of the gel becomes too small, resulting in a decrease in separation performance, and if it is too large, the mechanical strength of the gel becomes insufficient, so neither is preferable. Practically speaking, the amount of the organic solvent is preferably in the range of 30 to 150 parts by weight. A linear polymer that dissolves in a monomer is one that dissolves in a monomer.
A linear polymer that dissolves at a concentration of % by weight or more, such as polyvinyl acetate or polystyrene, is 10 parts by weight or less, preferably 0.1 to 10 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the monomer. is 0.3~10
Used in parts by weight. By using such a linear polymer in combination with the organic solvent, a gel having a larger pore size, that is, Mlim of 10 4 to 10 8 can be produced. However, if the amount of linear polymer exceeds 10 parts by weight, the mechanical strength of the gel will be insufficient, which is not preferable. The initiator used in the polymerization may be a general radical polymerization initiator used in normal suspension polymerization, such as 2-2'-azobisisobutyronitrile, 2-2'-azobis-(2,4 -dimethylvaleronitrile), and peroxide initiators such as benzoyl peroxide and lauroyl peroxide can be used. When carrying out suspension polymerization, it is best to add a commonly used organic polymer suspension stabilizer such as polyvinyl alcohol or methyl cellulose to the aqueous phase, and if necessary, add a PH buffer such as sodium phosphate. May be used together. By changing the type and amount of the suspension stabilizer or the stirring speed, the particle size of the particulate copolymer obtained by polymerization can be changed. After the granular copolymer obtained by polymerization is extracted to remove the linear polymer, residual monomer, or organic solvent, the resulting copolymer is subjected to a hydrolysis reaction. The hydrolysis reaction refers to a saponification reaction or a transesterification reaction, and is carried out in a known manner using an acid or an alkali in water, alcohol, or a mixture thereof as a solvent. After the hydrolysis reaction, the resulting gel can be classified if necessary and used as a packing material for GPC. The gel of the present invention has the characteristics that even if it has a large Mlim, the W R is appropriately small and the specific surface area in the dry state is high. From these characteristics, it is clear that the gel of the present invention is a hard gel with so-called permanent pores, with little change in pore structure between wet and dry states. Therefore, compared to soft gels, the mechanical strength of the gel is greater regardless of the size of Mlim, and even when the particle size is reduced, the solvent can be passed through a gel-packed column at a high flow rate. In general, in chromatography, the smaller the packing material, the better the separation performance tends to be. By reducing the particle size of the gel of the present invention, high separation performance can be achieved, and since the gel can be passed through at a high flow rate, the separation time can be significantly shortened. Such excellent properties of the gel of the present invention are due to the fact that the amounts of the vinyl compound having an isocyanurate ring and the organic solvent and linear polymer added to the monomer mixture are within the above-mentioned ranges during the production of the gel. sometimes obtained. Even if any of the ranges is not satisfied, the gel of the present invention cannot be obtained. For example, the gels produced according to the examples of JP-A-55-58203 mentioned above (see Comparative Examples below) do not have permanent pores and therefore have almost no specific surface area. In other words, it has a soft gel-like structure with low mechanical strength, so if a gel with a small average particle size of around 10 μm is used, the rate of solvent passage through the packed column will be slow and it cannot be used as a gel for high-speed GPC. . Furthermore, it is clear that the gel obtained in the comparative example has a low Mlim and is unsuitable for separating high molecular weight components from each other, although it can desalt an aqueous polymer solution. Furthermore, since the gel of the present invention has a hydroxyl group as a hydrophilic group in its skeleton, it does not show adsorption to most components that are solvated in water. Therefore, in the separation and analysis of water-soluble synthetic polymers, polysaccharides, proteins, etc., a calibration curve in which the relationship between elution volume and logarithm of molecular weight is almost a straight line or a smooth curve can be obtained. Furthermore, the pore size of the gel can be controlled depending on the molecular size of the component to be separated. Therefore, it has become possible to use it not only for desalting aqueous polymer solutions, but also for the short-time separation and analysis of water-soluble synthetic polymers, polysaccharides, or proteins having a wide range of molecular weights by high-speed GPC. Examples of the present invention will be described below together with comparative examples, but it goes without saying that the technical scope of the present invention is not limited to these Examples. Example 1 A homogeneous mixture consisting of 100 g of vinyl acetate, 32 g of triallyl isocyanurate (X = 0.25), 99 g of butyl acetate, 6.6 g of polyvinyl acetate (degree of polymerization 500), and 2.6 g of 2,2'-azobisisobutyronitrile. Aqueous solution 1 containing 2% of polyvinyl alcohol (polymerization degree 500, saponification rate 89%) was placed in two flasks and heated at 65°C for 18 hours with stirring, and then at 75°C for 5 hours.
Suspension polymerization was carried out by heating for a period of time to obtain a particulate copolymer. After filtration, washing with water, and extraction with acetone, in a solution consisting of 47 g of caustic soda and 2 methanol.
Hydrolysis reaction of the copolymer was carried out at 40°C for 20 hours. The obtained particles were subjected to sedimentation classification in water to obtain a crosslinked polyvinyl alcohol gel having an average particle size ( W ) of 14.2 μm. A certain amount of the dried gel was reacted in a pyridine-acetic anhydride solution at 105°C, and the hydroxyl group density (q OH ) was determined from the change in weight of the gel before and after the reaction, and was found to be 11.2 meq/g. In addition, after putting the gel in equilibrium with water into a glass filter and centrifugally dehydrating it at 3000 rpm, weigh a certain amount of the gel at the top of the glass filter, dry the gel, weigh it again, and determine the water retention amount of the gel from the weight change before and after. (W R ) was determined to be 1.80 g/g. Further, the specific surface area of the dried gel was determined by BET method using nitrogen gas and was found to be 65 m 2 /g. When this gel was packed into a stainless steel column with an inner diameter of 7.5 mm and a length of 50 cm and aqueous solutions of dextran and polyethylene glycol were measured, those with larger molecular weights eluted first. The exclusion limit molecular weight of dextran was 1.5×10 6 . In addition, albumin, ovalbumin, and myoglobin were analyzed using a UV detector (280 nm) using an aqueous solution containing 0.075N sodium sulfate and 0.1M sodium phosphate as a solvent.
As a result, the molecules were eluted in descending order of molecular weight and at a high recovery rate. Sample measurement at flow rate 1
The analysis was carried out at a rate of ml/min and was completed within 20 minutes. Example 2 A homogeneous liquid mixture consisting of 100 g of vinyl acetate, 32 g of triallylisocyanurate (X = 0.25), 99 g of butyl acetate, 4.0 g of polyvinyl acetate (degree of polymerization 500), and 2.6 g of 2,2'-azobisisobutyronitrile. was subjected to suspension polymerization in the same manner as in Example 1, and the resulting particles were subjected to a hydrolysis reaction. The physical properties of the obtained gel are
D W = 15.1 μm, q OH = 10.8 meq/g, W R = 1.92
g/g and specific surface area of 42 m 2 /g. This gel was packed into a column in the same manner as in Example 1, and Mlim determined for dextran analysis was 8×10 5 . Comparative Example 1 A homogeneous mixed solution consisting of 90 g of vinyl acetate, 4.5 g of triallyl isocyanurate (X = 0.017), 60 g of doluene, and 0.9 g of benzoyl peroxide was mixed with polyvinyl alcohol (degree of polymerization 500, saponification rate 89%) 2
% in a flask with 210 g of an aqueous solution containing
Suspension polymerization was carried out at 60°C for 16 hours. The obtained particles were mixed with 50g of caustic soda, 100g of methanol, and 100g of
The saponification reaction was carried out at 60°C in a mixed solution of The physical properties of the obtained gel are W = 14.8 μm, q OH = 18.2 meq/
g, W R =3.31 g/g and a specific surface area of 0.1 m 2 /g, indicating that there were almost no pores in the gel when dry. Furthermore, this gel was prepared with an inner diameter of 7.5 as in the present invention.
An attempt was made to fill the stainless steel column with a length of 50 cm and allow water to flow through it, but the pressure rose significantly at a flow rate of about 0.1 ml/min or higher, and it could only be used for analysis at extremely low flow rates. Mlim determined by analyzing an aqueous polyethylene glycol solution was approximately 1000, and when albumin, ovalbumin, and myoglobin were analyzed, all were eluted with almost the same elution volume (table below). This indicates that this gel cannot be used to separate these proteins from each other. Furthermore, it took a long time of 2 to 3 hours to measure each sample.

【表】 比較例 2 比較例1においてトルエン60gのかわりにトル
エン30g用いた以外は、比較例1と同様に行つて
ゲルを得た。ゲルの物性はW=14.1μm qOH
19.5meq/g及びWR=2.65g/gで、比表面積は
ほとんど0でこのゲルも乾燥時にはポアをもたな
かつた。このゲルのMlimを比較例1と同様にし
て求めたところ約800であつた。アルブミン等蛋
白は当然のことながらほとんど同じ溶出容量で溶
出され、蛋白質相互の分離には用い得ないことが
示された。
[Table] Comparative Example 2 A gel was obtained in the same manner as in Comparative Example 1, except that 30 g of toluene was used instead of 60 g in Comparative Example 1. The physical properties of the gel are W = 14.1μm q OH =
19.5 meq/g and W R =2.65 g/g, the specific surface area was almost 0, and this gel also had no pores when dried. The Mlim of this gel was determined in the same manner as in Comparative Example 1 and was found to be approximately 800. As a matter of course, proteins such as albumin were eluted with almost the same elution volume, indicating that this method could not be used to separate proteins from each other.

Claims (1)

【特許請求の範囲】 1 カルボン酸ビニルエステルと下記式(a)で表さ
れるイソシアヌレート環を有する化合物 (ただしR1、R2およびR3は、それぞれ独立に、−
CH2−CH=CH2、−CH2−C≡CH又は
【式】を示す) との共重合体を加水分解して得られる架橋ポリビ
ニルアルコールゲルにおいて、カルボン酸ビニル
エステルと前記化合物(a)の量を架橋度Xが0.25≦
X≦0.4 (ただし X=W2/M2×3/W1/M1×n1+W2/M2×3 M1:カルボン酸ビニルエステルの分子量 M2:化合物(a)の分子量 W1:重合に用いたカルボン酸ビニルエステルの
重量(g) W2:重合に用いた化合物(a)の重量(g) n1:カルボン酸ビニルエステル1分子が有するビ
ニル基の数) の範囲になるように用い、更に、単量体100重量
部に対し、単量体を溶解するが水には溶解しにく
い有機溶媒20〜200重量部と、単量体に溶解する
線状重合体10重量部以下との混合物を単量体に加
えて懸濁共重合を行い、かつ加水分解して得られ
るゲルが下記の(A)〜(D)の物性を有することを特徴
とするゲルパーミエーシヨンクロマトグラフイー
用親水性充填剤の製造方法。 (A) 水酸基密度(qOH)10.2≦qOH≦11.2meq/g (B) 保水量(WR)0.5≦WR≦2.5g/g (C) 比表面積(S)5≦S≦1000m2/g (D) 排除限界分子量(Mlim)104≦Mlim≦108
[Claims] 1. A compound having a carboxylic acid vinyl ester and an isocyanurate ring represented by the following formula (a) (However, R 1 , R 2 and R 3 are each independently −
CH 2 -CH=CH 2 , -CH 2 -C≡CH or [Formula]) In the crosslinked polyvinyl alcohol gel obtained by hydrolyzing a copolymer with carboxylic acid vinyl ester and the above compound (a) The amount of crosslinking degree X is 0.25≦
X 0.4 ( However , _ _ _ _ : Weight of carboxylic acid vinyl ester used in polymerization (g) W 2 : Weight of compound (a) used in polymerization (g) n 1 : Number of vinyl groups possessed by one molecule of carboxylic acid vinyl ester) Furthermore, per 100 parts by weight of the monomer, 20 to 200 parts by weight of an organic solvent that dissolves the monomer but is difficult to dissolve in water, and 10 parts by weight of a linear polymer that dissolves in the monomer. Gel permeation chromatography, characterized in that the gel obtained by adding a mixture of the following to monomers, carrying out suspension copolymerization, and hydrolyzing the mixture has the following physical properties (A) to (D): A method for producing a hydrophilic filler for graffiti. (A) Hydroxyl group density (q OH ) 10.2≦q OH ≦11.2meq/g (B) Water retention capacity (W R )0.5≦W R ≦2.5g/g (C) Specific surface area (S) 5≦S≦1000m 2 /g (D) Exclusion limit molecular weight (Mlim) 10 4 ≦Mlim≦10 8
JP8524380A 1980-06-25 1980-06-25 Hydrophilic filler for gel permeation chromatography Granted JPS5730945A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP8524380A JPS5730945A (en) 1980-06-25 1980-06-25 Hydrophilic filler for gel permeation chromatography
US06/272,230 US4368275A (en) 1980-06-25 1981-06-10 Isocyanurate-vinyl alcohol-vinyl ester chromatographic packing
CA000379558A CA1157996A (en) 1980-06-25 1981-06-11 High speed liquid chromatographic packing and process for production thereof
DE8181104826T DE3166309D1 (en) 1980-06-25 1981-06-23 High speed liquid chromatographic packing and process for production thereof
EP81104826A EP0043074B1 (en) 1980-06-25 1981-06-23 High speed liquid chromatographic packing and process for production thereof
SU813303096A SU1311631A3 (en) 1980-06-25 1981-06-24 Tip for liquid chromatography
DD81231105A DD159908A5 (en) 1980-06-25 1981-06-24 FUEL MATERIAL FOR QUICK-FLUID CHROMATOGRAPHY AND METHOD FOR THE PRODUCTION THEREOF
CS484781A CS228510B2 (en) 1980-06-25 1981-06-25 Method for producing a packing prod for quick liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8524380A JPS5730945A (en) 1980-06-25 1980-06-25 Hydrophilic filler for gel permeation chromatography

Publications (2)

Publication Number Publication Date
JPS5730945A JPS5730945A (en) 1982-02-19
JPH0115822B2 true JPH0115822B2 (en) 1989-03-20

Family

ID=13853116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8524380A Granted JPS5730945A (en) 1980-06-25 1980-06-25 Hydrophilic filler for gel permeation chromatography

Country Status (2)

Country Link
JP (1) JPS5730945A (en)
CS (1) CS228510B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967456A (en) * 1982-10-12 1984-04-17 Asahi Chem Ind Co Ltd Separation of albumin by chromatography
GB201405624D0 (en) * 2014-03-28 2014-05-14 Synthomer Uk Ltd Method of making a branched polymer, a branched polymer and uses of such a polymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558203A (en) * 1978-10-26 1980-04-30 Kureha Chem Ind Co Ltd Hard polyvinyl alcohol gel and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558203A (en) * 1978-10-26 1980-04-30 Kureha Chem Ind Co Ltd Hard polyvinyl alcohol gel and its preparation

Also Published As

Publication number Publication date
JPS5730945A (en) 1982-02-19
CS228510B2 (en) 1984-05-14

Similar Documents

Publication Publication Date Title
Kayaman et al. Structure and protein separation efficiency of poly (N‐isopropylacrylamide) gels: Effect of synthesis conditions
Arshady Beaded polymer supports and gels: I. Manufacturing techniques
EP0256293B1 (en) Process for producing porous cross-linked polyvinyl alcohol particles
US5639861A (en) Crosslinked methacrylic anhydride copolymers
JP2896571B2 (en) Composite separating agent and method for producing the same
US4339500A (en) Hydrophilic packing material for chromatography
US4246362A (en) Hydrophilic separating carrier and preparation thereof
JPS5858026B2 (en) Packing material for chromatography and its manufacturing method
JP5280604B2 (en) Post-modification of porous support
US4368275A (en) Isocyanurate-vinyl alcohol-vinyl ester chromatographic packing
JP2005510593A5 (en)
Kim et al. Effect of crosslinking agents on the morphology of polymer particles produced by one-step seeded polymerization
US4238569A (en) Preparation of hydrophilic material for gel chromatography
JPH0373848A (en) Packing material for liquid chromatography and production thereof
JP3626774B2 (en) High density high surface area adsorbent
JPH0115822B2 (en)
JPH09503865A (en) Method of gel permeation chromatography and support
JPH02280833A (en) Compounding and separating agent and its preparation
JPH0727754A (en) Filler for cation chromatography and its preparation
JP3424255B2 (en) Method for producing packing material for liquid chromatography
JPH0219902B2 (en)
JP2890481B2 (en) Method for producing hydrophilic crosslinked copolymer particles
JPS583482B2 (en) Manufacturing method of hard polyvinyl alcohol
JPS59232102A (en) Hydrophilic crosslinked copolymer
JP6676976B2 (en) Separation materials and columns