JPH01157524A - Control of gap by means of diffraction grating - Google Patents

Control of gap by means of diffraction grating

Info

Publication number
JPH01157524A
JPH01157524A JP62315272A JP31527287A JPH01157524A JP H01157524 A JPH01157524 A JP H01157524A JP 62315272 A JP62315272 A JP 62315272A JP 31527287 A JP31527287 A JP 31527287A JP H01157524 A JPH01157524 A JP H01157524A
Authority
JP
Japan
Prior art keywords
gap
wafer
mask
diffraction grating
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62315272A
Other languages
Japanese (ja)
Inventor
Atsunobu Une
宇根 篤▲のぶ▼
Masanori Suzuki
雅則 鈴木
Kenichi Kodama
賢一 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Nikon Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Telegraph and Telephone Corp filed Critical Nikon Corp
Priority to JP62315272A priority Critical patent/JPH01157524A/en
Publication of JPH01157524A publication Critical patent/JPH01157524A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To set a gap safely and surely by a method wherein a first object and a second object are faced in advance by keeping a comparatively large gap, its value is measured and a final gap which is smaller than the gap is set. CONSTITUTION:A height value and an inclination value of a mask 2 and a wafer 3 are measured by using other means; a levelling stage 12 is shifted upward in such a way that height values of three diffraction gratings G1, G2, G3 are all situated near the middle of positions Z1 and Z2; a position in a Z direction during this operation is stored as Hb. Then, while control circuits 10, 11 moves the stage 12 upward from the position Hb, the control circuits 10, 11 store its height position as Hsu when a monotonous change of an envelope wave EW is continued by H in the Z direction. In addition, while the stage is moved from a position Ht downward, a height position obtained in the same manner is stored as Hsd. When one forward and backward scanning operation has been completed, a height value HP' of a wafer 3 where an intensity value I of the envelope wave EW becomes a maximum is obtained by a mean value after these two positions have been added. By this setup, a coarse gap-detecting operation is completed; then, a precise gap-setting operation is started.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、集積回路を製造するだめの近接(ブロキソミ
ティ)露光装置におりるマスクと被転写基板(ウェハ等
)との間隔(ギャップ)を制御する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention aims to reduce the distance (gap) between a mask and a transferred substrate (wafer, etc.) in a close proximity (broxomity) exposure apparatus for manufacturing integrated circuits. Concerning how to control.

〔従来の技術〕[Conventional technology]

従来より、この種の露光装置ではマスクとウェハとの間
隔(ギャップ)を正確に設定する必要があり、各種のギ
ャップ検出方法、設定方法か提塞されている。これら提
案のうち、極めて精密て簡華な手法として、マスクに回
折格子を設け、ウェハ上の対応する領域を反射面とし、
その回折格子にレーザ等のコヒーレント光、又は準単色
光を照射し、回折格子と反射面の夫々で回折、反射され
た回折光の強度信号に基づいてギヤノブを所定値に設定
する技術が知られている。この技術は、例えば特開昭6
0−173835号公報に詳細に開示されている通りで
ある。
Conventionally, in this type of exposure apparatus, it has been necessary to accurately set the distance (gap) between the mask and the wafer, and various gap detection and setting methods have been used. Among these proposals, an extremely precise and simple method is to provide a diffraction grating on the mask and use the corresponding area on the wafer as a reflective surface.
A known technique is to irradiate the diffraction grating with coherent light such as a laser or quasi-monochromatic light, and to set the gear knob to a predetermined value based on the intensity signal of the diffracted light that is diffracted and reflected by the diffraction grating and the reflecting surface. ing. This technology, for example,
This is as disclosed in detail in Japanese Patent No. 0-173835.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の技術においては、初めからマスクとウェハと
を最終的な微小ギャップに設定するようになっていたた
め、マスクとウェハが接触して傷付くといった問題点が
あった。特にマスクがX線露光用の場合、マスクのパタ
ーンを担持する部材はチソ化シリコン(SiN)、チッ
化ボロン(BN)等の1〜2μm程度の厚さの薄膜であ
る。このためウェハとの接触時に高価なマスクが破損し
てしまうといった危険が高かった。
In the above-mentioned conventional technology, since the mask and the wafer were set to have a final minute gap from the beginning, there was a problem that the mask and the wafer came into contact and were damaged. Particularly when the mask is for X-ray exposure, the member that carries the pattern of the mask is a thin film of about 1 to 2 μm thick, such as silicon thioside (SiN) or boron nitride (BN). Therefore, there was a high risk that the expensive mask would be damaged when it came into contact with the wafer.

また、マスクとウェハとの平行度が悪い場合、マスクの
薄膜を保持するフレーム部がウェハと接触した後、それ
以上ギャップを縮められないとい゛った問題もあった。
Furthermore, if the parallelism between the mask and the wafer is poor, there is a problem in that the gap cannot be further reduced after the frame portion of the mask that holds the thin film comes into contact with the wafer.

本発明はこのような問題薫に鑑みてなされたもので、安
全かつ確実にギャップ設定を行なう制御方法を提供する
ことを目的とする。
The present invention was made in view of these problems, and an object of the present invention is to provide a control method for safely and reliably setting a gap.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は、従来の回折格子を用いたギャップ制御方法を
基礎として、この方法で得られる強度信号の包絡波形が
、マスク(第1物体)とウェハ(第2物体)とのギャッ
プ量の変化に応じて周期的に最大値をとることに着目し
、本来設定すべきギャップ量(設定ギャップ量)よりも
大きなギャップ量にマスクとウェハとを位置付けし、そ
の近傍で包絡波形上の最大値が得られるようにマスクと
ウェハとのギャップを調整し、その後、設定ギャップ量
に対応した包絡波形上の最大値が得られるように、マス
クとウェハを近付けるようにした。
The present invention is based on a conventional gap control method using a diffraction grating, and the envelope waveform of the intensity signal obtained by this method changes depending on the change in the amount of gap between the mask (first object) and the wafer (second object). The mask and wafer are positioned at a gap larger than the gap that should be originally set (set gap), and the maximum value on the envelope waveform is obtained near that gap. The gap between the mask and the wafer was adjusted so that the gap amount could be adjusted, and then the mask and wafer were moved closer together so that the maximum value on the envelope waveform corresponding to the set gap amount was obtained.

(作用) 本発明においては、包絡波形上の最大値を検出するギャ
ップ検出系があればよく、このギャップ検出系によって
マスクとウェハの最終的なギャップ量の検出及び設定と
、それに至る前の粗ギャップ量の検出及び設定との両方
の動作が可能である。
(Function) In the present invention, it is only necessary to have a gap detection system that detects the maximum value on the envelope waveform, and this gap detection system can detect and set the final gap amount between the mask and the wafer, and perform rough correction before that. Both the detection and setting of the gap amount are possible.

そのため粗ギャップ検出、設定用の他の検出系を用意し
たり、マスク、又はウェハ上に粗ギャップ設定用の特別
のマークパターンを設けるといった不都合が生じない。
Therefore, there is no need to prepare another detection system for coarse gap detection and setting, or to provide a special mark pattern for coarse gap setting on a mask or wafer.

従って従来の方式を利用して、マスクとウェハを接触さ
せることなく確実なギャップ設定が達成される。
Thus, using conventional techniques, reliable gap setting is achieved without contact between the mask and the wafer.

〔実施例〕〔Example〕

第1図は本発明の実施例による方法を概略的に示し、第
2図は従来の構成によって得られる強度信号の変化を示
す。
FIG. 1 schematically shows a method according to an embodiment of the invention, and FIG. 2 shows the variation of the intensity signal obtained by a conventional arrangement.

第1図に示すように、−次元の回折格子1が形成された
マスク2と、回折格子1の対向部に反射面が形成された
ウェハ3とは、ギャップZで近接配置される。そして回
折格子lの上方から垂直にコヒーレントな平行光Bを照
射すると、回折格子1で直接反射して上方に進む回折光
DICDI’)、回折格子1の裏側に進み、ウェハ3の
反射面で正反射してから再び回折格子1で回折される回
折光D2(D2’)、及び回折格子1の裏側に向けて進
み、ウェハ3の反射面で反射して上方に進む回折光D+
(D、+’)とが発生する。回折光子D+、Dz、D3
は空間的に干渉した光DTとなり、回折光DI’、D2
’、D3′は空間的に干渉した光DT’となり、それぞ
れ光電検出される。検出された光電信号(強度信号)の
大きさは、マスク2とウェハ3とのギャップ量に応じて
変化する。
As shown in FIG. 1, a mask 2 on which a minus-dimensional diffraction grating 1 is formed and a wafer 3 on which a reflective surface is formed on the opposite side of the diffraction grating 1 are placed close to each other with a gap Z between them. When coherent parallel light B is irradiated perpendicularly from above the diffraction grating 1, the diffracted light DICDI') is directly reflected by the diffraction grating 1 and travels upward, propagates to the back side of the diffraction grating 1, and is reflected on the reflective surface of the wafer 3. The diffracted light D2 (D2') is reflected and then diffracted again by the diffraction grating 1, and the diffracted light D+ travels toward the back side of the diffraction grating 1, is reflected by the reflective surface of the wafer 3, and travels upward.
(D, +') is generated. Diffraction photons D+, Dz, D3
becomes the spatially interfered light DT, and the diffracted light DI', D2
', D3' become spatially interfered light DT', which are each photoelectrically detected. The magnitude of the detected photoelectric signal (intensity signal) changes depending on the amount of gap between the mask 2 and the wafer 3.

そこで強度信号、すなわち光DT(DT’)の振幅強度
Iとギャップ量Zとの関係を求めてみると、第2図に示
すような関係となる。第2図において横軸はギャップ量
Zを表わし、縦軸は強度Iを表わす。第2図中で強度信
号の波形は振幅が細かく変化する干渉波が、一定のギャ
ップ量毎に最大値を示すようなビート波形として得られ
る。具体的には第3図に拡大して示すように、周期λ/
2(λはコヒーレントな平行光Bの波長)のほぼ正弦波
状の干渉波rwの集まりであり、この干渉波IWの包絡
波EWが第2図のように、ギャップ量Z+、Zz、Z3
、Z4・・・の一定量毎に極大値をとる。
Therefore, when the relationship between the amplitude intensity I of the intensity signal, that is, the optical DT (DT'), and the gap amount Z is determined, the relationship is as shown in FIG. 2. In FIG. 2, the horizontal axis represents the gap amount Z, and the vertical axis represents the intensity I. In FIG. 2, the waveform of the intensity signal is obtained as a beat waveform in which an interference wave whose amplitude changes finely shows a maximum value at every fixed gap amount. Specifically, as shown enlarged in Figure 3, the period λ/
It is a collection of approximately sinusoidal interference waves rw of 2 (λ is the wavelength of the coherent parallel light B), and the envelope wave EW of this interference wave IW is the gap amount Z+, Zz, Z3 as shown in FIG.
, Z4... take a local maximum value every certain amount.

包絡波EWが極大となる条件は、ギャップ量Zが、Z=
(P2/λ)×M(ただしPは回折格子1のピッチ、M
は任意の正の整数)を満したときである。
The condition that the envelope wave EW becomes maximum is that the gap amount Z is Z=
(P2/λ)×M (where P is the pitch of diffraction grating 1, M
is any positive integer).

例えばP = 3.6 p m、λ−0.6328μm
とすると、極大値をとるギャップ量は、Z+=20.5
μm、Zz  =41.0μm、Z3 =61.4μm
1 ・=の値をとる。そこでピッチPや波長λを適当に
定め、設定すべきギャップ量、例えばZlで包絡波EW
が極大となるようにする。
For example, P = 3.6 p m, λ - 0.6328 μm
Then, the gap amount that takes the maximum value is Z+=20.5
μm, Zz = 41.0 μm, Z3 = 61.4 μm
Takes the value of 1.=. Therefore, the pitch P and wavelength λ are determined appropriately, and the envelope wave EW is determined by setting the gap amount, for example, Zl.
is maximized.

そこで本実施例では、第1図に示すように例えばギャッ
プ量Z、(61,4μm)以上になるようにマスク2と
ウェハ3の間隔を調整し、ここでまずギャップit Z
 3が得られるように強度信号の包絡波EWの3つ目の
極大値に基づいてギャップ設定する。その後、目的とす
るギャップ量Z、(20,5μm)が得られるまでマス
ク2とウェハ3の間隔をせばめていき、包絡波EWの最
初の極大値が得られるようにギャップ設定する。
Therefore, in this embodiment, as shown in FIG.
The gap is set based on the third maximum value of the envelope wave EW of the intensity signal so that 3 is obtained. Thereafter, the distance between the mask 2 and the wafer 3 is narrowed until the desired gap amount Z (20.5 μm) is obtained, and the gap is set so that the first maximum value of the envelope wave EW is obtained.

さて、第4図は実際のギャップ設定を行なうのに好適な
回折格子の配置を示す斜視図である。実際には、マスク
2の薄膜のデバイスパターン領域の周囲3ケ所に回折格
子G、、G2、G3が設けられる。各格子Gl、G2、
G3の格子配列方向は、本実施例の場合はマスク2の中
心に向うように定められている。もらろん2次元的なア
ライメントが達成される限り、どのような方向に配列し
てもよい。各回折格子Gl、G2、G3の上方にはそれ
ぞれギャップ検出系が配置されるが、この検出系は、そ
れぞれレーザ等のコヒーレント光束Bをマスク2に照射
するとともに、干渉した光DT(Dア′)を集光するた
めの集光レンズL1、L 2、L3を備え、集光された
光DT(DT ’ )は夫々受光素子8.9.13で強
度(光量)に応じた光電信号に変換される。  。
Now, FIG. 4 is a perspective view showing the arrangement of diffraction gratings suitable for setting the actual gap. Actually, the diffraction gratings G, , G2, and G3 are provided at three locations around the device pattern region of the thin film of the mask 2. Each grid Gl, G2,
In this embodiment, the lattice arrangement direction of G3 is determined to face the center of the mask 2. Of course, they may be arranged in any direction as long as two-dimensional alignment is achieved. A gap detection system is arranged above each of the diffraction gratings Gl, G2, and G3, and each of these detection systems irradiates the mask 2 with a coherent light beam B from a laser or the like, and also irradiates the mask 2 with the interfering light DT (D ) are equipped with condensing lenses L1, L2, and L3 for condensing light, and the condensed light DT (DT') is converted into a photoelectric signal according to the intensity (light amount) by the respective light receiving elements 8.9.13. be done. .

第5図は第4図の構成に、ギャップ設定用の制御系を加
えた具体的な構成を示し、マスク2は不図示のマスクホ
ルダーに真空吸着により固定され、ウェハ3はレベリン
グ(チルト)ステージ12」二に吸着固定される。本実
施例では、レベリングステージ12ばウェハ3の表面を
傾けたり、Z方向(マスク2とのギャップを変化させる
方向)に上下動させたりするために、ステージ12の下
の等方向な3ケ所に設けられた駆動部5.6.7によっ
て可動とされている。この駆動部5.6.7の夫々は、
ウェハ3の上下方向の移動量を知るためのエンコーダ等
を備えている。
FIG. 5 shows a specific configuration in which a control system for gap setting is added to the configuration shown in FIG. 12" is fixed by suction. In this embodiment, in order to tilt the surface of the wafer 3 and move it up and down in the Z direction (direction to change the gap with the mask 2), the leveling stage 12 is positioned at three equal locations below the stage 12. It is movable by means of a drive 5.6.7 provided. Each of these drive parts 5.6.7
It is equipped with an encoder and the like for determining the amount of movement of the wafer 3 in the vertical direction.

さて、受光素子8で検出された強度信号は、制御回路1
0によって処理され、駆動部5は制御回路10からの指
令に基づいて、レベリングステージ12の当該位置を上
下動させる。同様に受光素子9で検出された強度信号は
制御回路11によって処理され、駆動部6は制御回路1
1からの指令に基づいてレベリングステージ12の当該
位置を上下動させる。尚、受光素子13からの強度信号
に基づいて駆動部7を制御する回路の図示は省略しであ
る。
Now, the intensity signal detected by the light receiving element 8 is transmitted to the control circuit 1.
0, and the drive unit 5 moves the leveling stage 12 up and down at the corresponding position based on the command from the control circuit 10. Similarly, the intensity signal detected by the light receiving element 9 is processed by the control circuit 11, and the drive unit 6 is processed by the control circuit 1.
The position of the leveling stage 12 is moved up and down based on the command from 1. Note that illustration of a circuit that controls the drive section 7 based on the intensity signal from the light receiving element 13 is omitted.

この制御回路10.11ば、基本的には第6図に示すよ
うな処理で強度信号の包絡波EWが極大となる位置を求
める。すなわち、第6図中でギャップ量がHaの位置(
包絡波EWの極大位置よりもギャップが広い位置)から
、レベリングステージ12を徐々にマスク2に近づけて
いき、包絡波EWの単調減少がZ方向ΔI」だけ続くと
、そのときのウェハ3 (レベリングステージ12)の
高さを駆動部5.6.7のエンコーダから読み込み、高
さHsとして記憶する。そしてその位置(高さHs )
からΔHだけレベリングステージ12の高さを戻す(マ
スク2から離れる方向にΔHだげ移動する)ことによっ
て、包絡波EWの極大値に対応した位置Hpにウェハ3
を設定する。
The control circuits 10 and 11 basically use the process shown in FIG. 6 to find the position where the envelope wave EW of the intensity signal is at its maximum. That is, in FIG. 6, the gap amount is at the position Ha (
The leveling stage 12 is gradually brought closer to the mask 2 from a position where the gap is wider than the maximum position of the envelope wave EW, and when the monotonous decrease of the envelope wave EW continues by ΔI'' in the Z direction, the wafer 3 at that time (leveling The height of the stage 12) is read from the encoder of the drive unit 5.6.7 and stored as the height Hs. And its position (height Hs)
By returning the height of the leveling stage 12 by ΔH (moves by ΔH in the direction away from the mask 2), the wafer 3 is moved to the position Hp corresponding to the maximum value of the envelope wave EW.
Set.

この動作は、マスク2の回折格子G+、Gz、G3の夫
々に対して同様に実行され、マスク2とウェハ3ば所定
のギャップ量で互いに平行に設定される。
This operation is similarly performed for each of the diffraction gratings G+, Gz, and G3 of the mask 2, and the mask 2 and the wafer 3 are set parallel to each other with a predetermined gap amount.

次に本実施例の全体的な動作を説明する。Next, the overall operation of this embodiment will be explained.

まずマスク2とウェハ3の高さと傾きを他の手段(精度
の低い静電容量式ギャップセンサー等)を用いて測定し
、3ケ所の回折格子G+ 、G2、G3の高さ(ギャッ
プ)がともに第2図中の位置Z3と74の中間付近に位
置決めされるようにレベリングステージ12を」1方(
マスク2の方向)へ移動させる。このときのZ方向の位
置ばI−I bとしてエンコーダから読め込まれ記憶さ
れる。
First, the height and inclination of the mask 2 and wafer 3 are measured using other means (such as a capacitive gap sensor with low precision), and the heights (gaps) of the diffraction gratings G+, G2, and G3 at three locations are all measured. The leveling stage 12 is positioned on one side (
direction of mask 2). The position in the Z direction at this time is read from the encoder and stored as I-Ib.

次に制御回路10.11は、ウェハ3を位置Hbと、こ
れより上方(マスク側)の位置Htとの間で一往復させ
る。位置Htと位置Hbとの間隔はほぼP2/λに定め
られ、包絡波EWの丁度1周期分に対応している。
Next, the control circuit 10.11 moves the wafer 3 back and forth once between the position Hb and a position Ht above this (on the mask side). The interval between the position Ht and the position Hb is set to approximately P2/λ, and corresponds to exactly one cycle of the envelope wave EW.

位置Hbからレベリングステージ12を上方へ移動して
いく間で、包絡波EWの第6図のような単調減少がZ方
向にΔHだけ続いたとき、制御回路10.11はそのと
きの高さ位置をHsuとして記憶する。さらに位置Ht
からレベリングステージ12を下方へ移動していく間で
包絡波EWの単調減少がZ方向にΔHだけ続いたとき、
制御回路10.11はそのときの高さ位置°をHsdと
して記憶する。そしてレベリングステージ12の一往復
走査が終った時点で、制御回路10.11は包絡波EW
の強度Iが極大(最大)となるウェハ3の高さHp’を
、Hp’−(Hsu+Hsd)/2によって求める。こ
れによりマスク2とウェハ3の粗いギャップ検出動作が
完了し、次に精密なギャップ設定動作に移る。
When the envelope wave EW monotonically decreases by ΔH in the Z direction as shown in FIG. 6 while moving the leveling stage 12 upward from the position Hb, the control circuit 10.11 adjusts the height position at that time. is stored as Hsu. Further position Ht
When the monotonous decrease of the envelope wave EW continues for ΔH in the Z direction while moving the leveling stage 12 downward from
The control circuit 10.11 stores the height position at that time as Hsd. When one reciprocating scan of the leveling stage 12 is completed, the control circuits 10 and 11 generate the envelope wave EW.
The height Hp' of the wafer 3 at which the intensity I is maximum is determined by Hp'-(Hsu+Hsd)/2. This completes the rough gap detection operation between the mask 2 and the wafer 3, and then moves on to the precise gap setting operation.

制御回路10.11は、ウェハ3の高さが3ケ所の回折
格子GいG2、G3の全ての点においてHll)+2P
2/λよりやや低めの位置Haになるように、駆動部5
.6.7のエンコーダの出力のみに基づいてレベリング
ステージ12をオープン制御(強度信号によらない駆動
)で駆動する。
The control circuit 10.11 controls the height of the wafer 3 at all points of the diffraction gratings G2 and G3 at three locations (Hll)+2P.
The drive unit 5 is moved so that the position Ha is slightly lower than 2/λ.
.. The leveling stage 12 is driven by open control (driving not based on an intensity signal) based only on the output of the encoder 6.7.

ウェハ3の3ケ所の高さが位置Haに設定されると、制
御回路10.11は第6図と全く同様に、包絡波EWの
最初の極大値が得られる位置Z1を特定するための位置
Hsを求める。そして位iH3からΔHだけ降下させた
位置Hpにウェハ3を戻し、マスク2とウェハ3を露光
に必要なギャップ量Z1に設定する。これによって3ケ
所の回折格子G、、G2、G3の各点でギャップ量が2
1に設定され、マスク2とウェハ3は平行に保たれる。
When the three heights of the wafer 3 are set to the position Ha, the control circuit 10.11 determines the position Z1 where the first maximum value of the envelope wave EW is obtained, just as in FIG. Find Hs. Then, the wafer 3 is returned to the position Hp lowered by ΔH from the position iH3, and the gap amount Z1 between the mask 2 and the wafer 3 is set to be necessary for exposure. As a result, the gap amount is 2 at each point of the three diffraction gratings G, , G2, and G3.
1, mask 2 and wafer 3 are kept parallel.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、予め比較的大きなギャッ
プで第1物体と第2物体とを対向させ、その値を測定し
てから、それより小さな最終ギャップの設定を行なうの
で、第1物体と第2物体を接触させて両者を傷付けてし
まったり、両者のギャップが正しく設定できないといっ
た不都合がなくなる。
As described above, according to the present invention, the first object and the second object are made to face each other with a relatively large gap in advance, and after measuring the value, a smaller final gap is set. This eliminates the inconvenience of causing damage to the object and the second object by causing them to come into contact with each other, or being unable to set the gap between the two objects correctly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に於ける方法を実施する際の原
理を説明する図、第2図は本実施例に於ける強度信号の
波形を示す図、第3図は第2図の強度信号波形の部分拡
大図、第4図はギャップ検出用の回折格子及び検出光学
系の一配置例を示す図、第5図はギャップ制御系の構成
を示す図、第6図は第5図中の制御回路10.11の動
作を説明する図で′ある。 〔主要部分の符号の説明〕 ■・・・−次元の回折格子、 2・・・マスク(第1物体)、 3・・・ウェハ(第2物体)、 5.6.7・・・駆動部(駆動機構)、8.9.13・
・・受光素子、 10.11・・・制御卸回路、 B・・・コヒーレントな平行光、 D+(D+’) 、D2(D2’) 、D3(D!’)
、DT(D7′)・・・回折光、 G、、G2、G3・・・−次元の回折格子、EW・・・
包絡波、 出 願 人 : 日本電信電話株式会社日本光学工業株
式会社
Fig. 1 is a diagram explaining the principle of implementing the method in the embodiment of the present invention, Fig. 2 is a diagram showing the waveform of the intensity signal in this embodiment, and Fig. 3 is a diagram showing the waveform of the intensity signal in the embodiment. A partially enlarged view of the intensity signal waveform, FIG. 4 is a diagram showing an example of the arrangement of the diffraction grating for gap detection and the detection optical system, FIG. 5 is a diagram showing the configuration of the gap control system, and FIG. FIG. [Explanation of symbols of main parts] ■... -dimensional diffraction grating, 2... Mask (first object), 3... Wafer (second object), 5.6.7... Drive section (Drive mechanism), 8.9.13・
... Light receiving element, 10.11... Control wholesale circuit, B... Coherent parallel light, D+ (D+'), D2 (D2'), D3 (D!')
, DT (D7')...diffraction light, G, , G2, G3...-dimensional diffraction grating, EW...
Envelope wave, Applicant: Nippon Telegraph and Telephone Corporation Nippon Kogaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】  第1の物体に回折格子を設け、該第1物体と対向する
第2の物体に反射面を設け、前記回折格子にコヒーレン
ト光もしくは準単色光を照射し、前記回折格子と前記反
射面の夫々で回折、反射された回折光の強度に対応した
信号を検出し、前記第1物体と第2物体との間のギャッ
プ量に応じて変化する前記強度信号に基づいて前記第1
物体と第2物体のギャップ量を所定値に制御する方法に
おいて、 前記第1物体と第2物体とを、本来設定されるべき設定
ギャップ量よりも大きなギャップ量となるように位置決
めし、該ギャップ量の近傍範囲で前記第1物体と第2物
体との相対間隔を変化させて、前記強度信号の包絡波形
が極大となるギャップ位置を求め、該求めたギャップ位
置を基準として、前記設定ギャップ量に対応した前記強
度信号の包絡波形上の極大値が得られるように前記第1
物体と第2物体との間隔を設定することを特徴とする回
折格子によるギャップ制御方法。
[Scope of Claims] A first object is provided with a diffraction grating, a second object facing the first object is provided with a reflective surface, the diffraction grating is irradiated with coherent light or quasi-monochromatic light, and the diffraction grating is detecting a signal corresponding to the intensity of the diffracted light diffracted and reflected by each of the reflecting surfaces, and detecting a signal corresponding to the intensity of the diffracted light that is diffracted and reflected by each of the reflecting surfaces, and detecting the 1st
In a method of controlling a gap amount between an object and a second object to a predetermined value, the first object and the second object are positioned so that the gap amount is larger than a set gap amount that should be originally set, and the gap is adjusted to a predetermined value. The gap position at which the envelope waveform of the intensity signal becomes maximum is determined by changing the relative distance between the first object and the second object in a range near the amount, and the set gap amount is determined based on the determined gap position. The first
A gap control method using a diffraction grating, characterized by setting a distance between an object and a second object.
JP62315272A 1987-12-15 1987-12-15 Control of gap by means of diffraction grating Pending JPH01157524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62315272A JPH01157524A (en) 1987-12-15 1987-12-15 Control of gap by means of diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62315272A JPH01157524A (en) 1987-12-15 1987-12-15 Control of gap by means of diffraction grating

Publications (1)

Publication Number Publication Date
JPH01157524A true JPH01157524A (en) 1989-06-20

Family

ID=18063417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62315272A Pending JPH01157524A (en) 1987-12-15 1987-12-15 Control of gap by means of diffraction grating

Country Status (1)

Country Link
JP (1) JPH01157524A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243124A (en) * 1992-03-02 1993-09-21 Matsushita Electric Ind Co Ltd Detecting method for inclination of plane
JP2006287033A (en) * 2005-04-01 2006-10-19 Yaskawa Electric Corp Stage device and its exposure device
JP2008086070A (en) * 2006-09-26 2008-04-10 Yazaki Corp Electrical connection box
CN107817654A (en) * 2017-12-12 2018-03-20 中国科学院光电技术研究所 vacuum surface plasma photoetching device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243124A (en) * 1992-03-02 1993-09-21 Matsushita Electric Ind Co Ltd Detecting method for inclination of plane
JP2006287033A (en) * 2005-04-01 2006-10-19 Yaskawa Electric Corp Stage device and its exposure device
JP4699071B2 (en) * 2005-04-01 2011-06-08 株式会社安川電機 Stage apparatus and exposure apparatus therefor
JP2008086070A (en) * 2006-09-26 2008-04-10 Yazaki Corp Electrical connection box
CN107817654A (en) * 2017-12-12 2018-03-20 中国科学院光电技术研究所 vacuum surface plasma photoetching device
CN107817654B (en) * 2017-12-12 2020-03-20 中国科学院光电技术研究所 Vacuum surface plasma photoetching device

Similar Documents

Publication Publication Date Title
US4848911A (en) Method for aligning first and second objects, relative to each other, and apparatus for practicing this method
US4656347A (en) Diffraction grating position adjuster using a grating and a reflector
US4332473A (en) Apparatus for detecting a mutual positional relationship of two sample members
US4636626A (en) Apparatus for aligning mask and wafer used in semiconductor circuit element fabrication
JPH0151801B2 (en)
US6292254B1 (en) Projection exposure method and apparatus
EP0361933B1 (en) Alignment system
US5459577A (en) Method of and apparatus for measuring pattern positions
JPS63153456A (en) Optical disk testing system
US4880308A (en) Aligning apparatus
US4838693A (en) Method and apparatus for setting a gap between first and second objects to a predetermined distance
US5121449A (en) Information detecting system of scanning type
JPH0257333B2 (en)
EP0488798A2 (en) Position detecting method
US20030048444A1 (en) Position measuring apparatus and exposure apparatus
KR100490685B1 (en) Surface height measuring device and exposure device using it
JPH0743245B2 (en) Alignment device
JPH01157524A (en) Control of gap by means of diffraction grating
US4570059A (en) Automatic lens focus with respect to the surface of a workpiece
JPH09152309A (en) Method and device for position detection
JPH0319689B2 (en)
JPS62208629A (en) Reduction stepper
KR100254253B1 (en) Control device of stage focus and level of water and the method thereof
KR100194598B1 (en) Wafer auto focusing device by probe beam scanning method
JP2869143B2 (en) Substrate tilt detector