JPS62208629A - Reduction stepper - Google Patents

Reduction stepper

Info

Publication number
JPS62208629A
JPS62208629A JP61050149A JP5014986A JPS62208629A JP S62208629 A JPS62208629 A JP S62208629A JP 61050149 A JP61050149 A JP 61050149A JP 5014986 A JP5014986 A JP 5014986A JP S62208629 A JPS62208629 A JP S62208629A
Authority
JP
Japan
Prior art keywords
wafer
lens
height position
light
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61050149A
Other languages
Japanese (ja)
Inventor
Shinsui Saruwatari
新水 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Kyushu Ltd
Original Assignee
NEC Kyushu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Kyushu Ltd filed Critical NEC Kyushu Ltd
Priority to JP61050149A priority Critical patent/JPS62208629A/en
Publication of JPS62208629A publication Critical patent/JPS62208629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable a wafer to be exposed to an optimum position by a method wherein any slips of focussing positions due to the ruggedness on the surface of wafer or the slope of a wafer stage etc. are corrected. CONSTITUTION:A wafer stage 14 is lifted and lowered to level-adjust a measuring point A on a wafer 13 to the focussing level of a lens 11 so that a light 15 from a photoemitter 1 may enter into a photodetector 6 with the maximum incident light intensity while the slip Z1 of a measuring point A on the wafer 13 in the vertical direction from the backside of lens 11 at this time may be measured by a measuring part 20. Likewise, the slips Z2, Z3, Z4, Z5 of respective measuring points B, C, D, E are measured to input total slips Z1-Z5 in a focussing part 21 so that the mean value thereof may be calculated to be set up as the optimum focussing level in case of exposure for shoot-the range of wafer 13. In such a constitution, a level-adjusting mechanism 22 is driven to lift and lower the wafer stage 14 for level-adjusting the wafer 13 so that a pattern P on a reticle may be transfer-exposed to the wafer 13 on the position thereof through the contraction projecting lens 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフォ1〜レジスト塗布後の目合わせ露光工程で
使用される縮小投影型露光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a reduction projection type exposure apparatus used in the alignment exposure process after resist coating.

〔従来の技術〕[Conventional technology]

従来、縮小投影型露光装置における自動焦点合オ)せ機
構としてはエアーマイクロメーターによる圧力検知方式
、容址センサ方式、光センサによる反射像結像方式等が
ある。各方式共−長一短があり一概には論じ得ないが、
精度・信頼性の上から反射結像方式が主流になりつつあ
る。
Conventionally, automatic focusing mechanisms in reduction projection type exposure apparatuses include a pressure detection method using an air micrometer, a volume sensor method, and a reflection imaging method using an optical sensor. Each method has its advantages and disadvantages, and cannot be generalized, but
Reflection imaging methods are becoming mainstream due to their accuracy and reliability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の光センサによる反射像結像方式の場合ウ
ェハー」二の一点に光を当て反射光を位置決めされたス
リット板等を通して検出するという方式をとっている。
In the case of the reflection imaging method using the conventional optical sensor described above, a method is adopted in which light is applied to one point on the wafer and the reflected light is detected through a positioned slit plate or the like.

この様な方式を用いた場合、測定点におけるZ軸方向の
位置決め精度は高いが、ショット内の1点(通常露光軸
中心)で焦点合わせ動作を行う為、ウェハーにソリが生
じていたり、ウェハーステージ自体か傾斜していたりす
ると、測定点では最適焦点(ベス1〜・フォーカス)で
あるが、ショット周辺では大幅な焦点ズレ(デフォーカ
ス)をおこし、解像度が著しく低下してしまうといった
現象が生じていた。
When using this type of method, the positioning accuracy in the Z-axis direction at the measurement point is high, but since the focusing operation is performed at one point within the shot (usually at the center of the exposure axis), the wafer may warp or the wafer may warp. If the stage itself is tilted, the measurement point may be in optimal focus (Best 1~Focus), but there will be a significant shift in focus (defocus) around the shot, resulting in a significant drop in resolution. was.

本発明の目的はウェハーの表面に存在する凹凸やウェハ
ーステージの傾斜等に起因する焦点位置のずれを補正し
、最適位置での露光を可能ならしめた縮小投影型露光装
置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a reduction projection type exposure apparatus that corrects deviations in focal position caused by unevenness on the surface of a wafer, inclination of a wafer stage, etc., and enables exposure at an optimal position. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は縮小投影レンズを通してレチクルのパターンを
ウェハー上に転写する縮小投影型露光装置において、ウ
ェハー上に設定した複数の測定点の各々に光を独立に照
射する複数個の発光素子及び前記投影レンズの焦点高さ
位置にある前記各al!1定点のウェハー表面より反射
した各発光素子からの光を個別に受光する複数個の受光
素子の対と、ウェハーを搭載したウェハーステージの高
さ調整機構と、前記ウェハー上の各測定点のレンズ焦点
高さ位置に対するずれ量を測定する測定部と、測定部に
1!)られた各dIす定点のレンズ焦点高さ位置に対す
るすれ量の平均値を求めその平均値の高さ位置を露光時
の焦点高さ位置として設定し、設定された焦点高さ位置
にウェハーの位置合わせをするに必要な駆動指令を前記
高さ調整機構に発する焦点合わせ部とを有することを特
徴どする縮小投影型露光装置である。
The present invention relates to a reduction projection type exposure apparatus that transfers a reticle pattern onto a wafer through a reduction projection lens, which includes a plurality of light emitting elements that independently irradiate light to each of a plurality of measurement points set on a wafer, and the projection lens. Each of the above al! A pair of light receiving elements that individually receive light from each light emitting element reflected from the wafer surface at one fixed point, a height adjustment mechanism for a wafer stage on which a wafer is mounted, and a lens at each measurement point on the wafer. A measurement unit that measures the amount of deviation with respect to the focal height position, and 1! ) The average value of the amount of deviation from the lens focal height position of each dI fixed point is determined, and the height position of the average value is set as the focal height position during exposure, and the wafer is placed at the set focal height position. The reduction projection type exposure apparatus is characterized by having a focusing section that issues a drive command necessary for positioning to the height adjustment mechanism.

〔実施例〕〔Example〕

以下、本発明の一実施例を図により説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において、ウェハーステージ14の真上に設置し
た縮小投影レンズ11の露光軸12をはさんで、その一
方に、ウェハー13上に設定した複数の測定点A 、 
B 、 C、D 、 Eの各々に独立して光15〜19
を照射する発光素子1 、2 、3 、4− 、5をウ
ェハー13の斜め一■一方に配設し、90°反転した位
置に、前記投影レンズ11の焦点高さ位置A′〜E′に
ある各測定点A 、 B、 C、D 、 E のウェハ
ー表面より反射した発光素子1〜5からの光を個別に受
光する受光素子6.7,8,9.10をウェハー13の
斜めに方に配設する。ウェハーステージ14は高さ調整
機構22に支持させ、該機構22によりウェハーステー
ジ14す昇降させ、ステージ14の」二面に搭載したウ
ェハー13の高さ方向にずれた各測定点A−Eを受光素
子の各々の入光強度が最大となるレンズ11の焦点高さ
位置A′〜E′に高さ調整する。さらに、高さ調整機構
22により高さ調整されたウェハー13の各測定点A−
Eのレンズ焦点位置A′〜E′に対する高さ方向のずれ
量を測定する測定部20と、測定部20からの出力を受
けてレンズ焦点位置A′〜E′に対する各測定点A−E
の高さ方向のずれ量の平均値を求めその平均値の高さ位
置を露光時の焦点高さ位置として設定し、設定された焦
点高さ位置にウェハーの位置合わせをするに必要な駆動
指令を高さ調整機構22に発する焦点合わせ部21とを
備える。
In FIG. 1, a plurality of measurement points A are set on the wafer 13 on one side of the exposure axis 12 of the reduction projection lens 11 installed directly above the wafer stage 14.
Lights 15 to 19 are applied independently to each of B, C, D, and E.
The light emitting elements 1, 2, 3, 4-, and 5 that emit light are arranged diagonally on one side of the wafer 13, and are placed at the focal height positions A' to E' of the projection lens 11 at a position inverted by 90 degrees. Light receiving elements 6.7, 8, 9.10 that individually receive light from the light emitting elements 1 to 5 reflected from the wafer surface at certain measurement points A, B, C, D, and E are placed diagonally on the wafer 13. to be placed. The wafer stage 14 is supported by a height adjustment mechanism 22, which raises and lowers the wafer stage 14, and receives light at each measurement point A-E shifted in the height direction of the wafer 13 mounted on two sides of the stage 14. The height is adjusted to focal height positions A' to E' of the lens 11 where the incident light intensity of each element is maximum. Furthermore, each measurement point A- of the wafer 13 whose height has been adjusted by the height adjustment mechanism 22
A measurement unit 20 that measures the amount of deviation in the height direction with respect to the lens focal positions A' to E' of E, and each measurement point A to E with respect to the lens focal positions A' to E' in response to the output from the measurement unit 20.
Find the average value of the amount of deviation in the height direction of and a focusing section 21 that emits the image to the height adjustment mechanism 22.

」−記構酸により、本発明はウェハー13」二の高さ方
向にずれた各測定点A−Eのレンズ焦点高さ位置A′〜
E′に高さ調整を行い、各測定点A −Eのレンズ焦点
高さ位置A′〜E′に対する高さ方向のずれ址を求め、
そのずれ量の平均化処理を行ってそのiV均値をもって
露光時の最適焦点位置とし、レンズ11の真下の最適位
置にウェハー13を高さ調整して焦点合わせを行い、露
光を行うものである。
According to the structure described above, the present invention is capable of measuring the lens focal height position A' to each measurement point A-E shifted in the height direction of the wafer 13.
Adjust the height to E' and find the deviation in the height direction of each measurement point A - E with respect to the lens focal height position A' to E'.
The amount of deviation is averaged, and the iV average value is used as the optimum focus position during exposure.The height of the wafer 13 is adjusted to the optimum position directly below the lens 11, focusing is performed, and exposure is performed. .

すなわち、第2図〜第4図に示すようにウェハー13の
表面にうねりや凹凸が存在すると、ウェハー上の各測定
点が高さ方向にずれてしまい、レンズ焦点高さ位置A′
〜E′に重なったウェハー13の測定点の場合には、発
光素子からの光はウェハー13の面一)zで反射するか
ら、その発光素子と対をなす受光素子への入光強度は最
大となる。一方、レンズ焦点高さ位置A′〜E′から高
さ方向にずれたウェハー13の測定点の場合には、発光
素子からの光はウェハー13の表面上で反射した光の受
光素子への入光強度が減少する。この原理に基づいてレ
ンズ焦点高さ位置に対する各測定点の高さ方向へのずれ
量を求める。具体的には、第2図に示すように、ウェハ
ーステージ14を昇降させてウェハー13−にの測定点
Aをレンズ11の焦点高さ位置A′に高さ調整させて、
発光素子1より出た光15が最大入光強度をもって受光
素子6に入射するようにする。
That is, if the surface of the wafer 13 has undulations or irregularities as shown in FIGS. 2 to 4, each measurement point on the wafer will shift in the height direction, causing the lens focal point height position A'
In the case of the measurement point on the wafer 13 that overlaps ~E', the light from the light emitting element is reflected by the same surface (z) of the wafer 13, so the light intensity entering the light receiving element paired with the light emitting element is maximum. becomes. On the other hand, in the case of a measurement point on the wafer 13 that is shifted in the height direction from the lens focal height positions A' to E', the light from the light emitting element is reflected on the surface of the wafer 13 and enters the light receiving element. Light intensity decreases. Based on this principle, the amount of deviation in the height direction of each measurement point with respect to the lens focal height position is determined. Specifically, as shown in FIG. 2, the wafer stage 14 is raised and lowered to adjust the height of the measurement point A on the wafer 13- to the focal height position A' of the lens 11.
Light 15 emitted from the light emitting element 1 is made to enter the light receiving element 6 with maximum incident light intensity.

このときのレンズ11の下面からの垂直方向におけるウ
ェハー13−1−の1lll+定点AのすれM z 1
を測定部20により測定する。
At this time, 1lll of the wafer 13-1- in the vertical direction from the bottom surface of the lens 11 + the deviation of the fixed point A M z 1
is measured by the measuring section 20.

また、第3図に示すようにウェハー113をト昇させて
ウェハー13」二の測定点Bをレンズ11の焦点高さ位
置B′に高さ調整し、レンズ11の下面からの垂直方向
におけるウェハー13−F、の測定点Bのずれlz2を
nlす走部20により測定する。
In addition, as shown in FIG. 13-F, the deviation lz2 of measurement point B is measured by the running part 20 of nl.

さらに、第4図に示すように、ウェハー13を」二層さ
せてウェハー13上の測定点Cをレンズの焦点高さ位置
C′に高さ調整し、レンズ11の下面からの垂直方向に
おけるウェハー】3」二の測定点Cのずれ皿Z、を測定
部20により測定する。
Further, as shown in FIG. 4, the wafer 13 is layered in two layers, and the measurement point C on the wafer 13 is adjusted in height to the focal height position C' of the lens, and the wafer 13 is ]3'' The displacement plate Z at the second measurement point C is measured by the measuring section 20.

以下同様にウェハーステージにより測定点I〕。Measurement point I] using the wafer stage in the same manner.

Eについて高さ調整を行い、レンズ11のf面からの垂
直方向における各測定点り、EのずれiZ4+Z5を測
定部20により測定する。
The height of E is adjusted, and the measurement unit 20 measures the deviation iZ4+Z5 of E at each measurement point in the vertical direction from the f-plane of the lens 11.

上述したようにして求めた全ての測定点A−Eのずれ量
71〜Z5を焦点合わせ部21に入力し、その平均値に
求めてその平均値の高さ位置をウェハー内のショットに
対する露光時の最適焦点高さ位置Zとして設定し、焦点
合オ〕せ部21の指令により高さ調整機構22を駆動し
ウェハーステージ14を昇降させて、測定点のずれ量の
平均値をもって露光時の最適焦点高さ位置Zにウェハー
13を高さ調整し、レンズ11に対するウェハー13の
焦点合わせ動作を行い、その位置で縮小投影レンズ11
を通してレチクル上のパターンPをウェハー13−1−
に転写露光を行う。
The deviation amounts 71 to Z5 of all the measurement points A-E obtained as described above are input to the focusing section 21, and the average value is calculated, and the height position of the average value is determined at the time of exposure for the shot in the wafer. The optimum focus height position Z is set as the optimum focus height position Z, and the height adjustment mechanism 22 is driven by a command from the focus adjustment unit 21 to raise and lower the wafer stage 14. The height of the wafer 13 is adjusted to the focal height position Z, the wafer 13 is focused on the lens 11, and the reduction projection lens 11 is adjusted at that position.
pattern P on the reticle through the wafer 13-1-
Perform transfer exposure.

尚、前実施例ではウェハー上に測定点を5箇所設定した
が、その数は任意で良い。
In the previous embodiment, five measurement points were set on the wafer, but the number may be arbitrary.

尚本発明の一実施例においては図に示した様な構造の焦
点合わせ機構を用いたが、本発明の特徴であるウェハー
上に転写されたパターン内の複数点で各々高さ調整動作
を行い、そのずれ量の平均化処理によって最適焦点位置
を見つける方式を用いている限り、焦点合わせ機構の構
造は問わない。
In one embodiment of the present invention, a focusing mechanism having the structure shown in the figure was used, but the present invention is characterized by performing height adjustment operations at multiple points within the pattern transferred onto the wafer. The structure of the focusing mechanism does not matter as long as the method of finding the optimal focus position by averaging the amount of deviation is used.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明は2つ以」二の発光素子とそれ
に対応する受光素子をもち、ウェハー」―の測定点での
高さ調整動作を行い、各測定点の焦点位置に対するずれ
量の平均化処理によってショットの最適焦点位置を定め
て、その位置にウェハーを高さfJII整して露光動作
を行うようにしたため、ウェハーの表面にうねり等によ
る凹凸やウェハーステージの傾斜等が存在してもこれを
補正し、最適な状態で露光でき、解像度の低下を最小限
に押さえることができる効果を有するものである。
As explained above, the present invention has two or more light-emitting elements and corresponding light-receiving elements, performs a height adjustment operation at a measurement point on a wafer, and calculates the amount of deviation from the focal point of each measurement point. Because the optimum focus position of the shot is determined by averaging processing and the exposure operation is performed with the wafer adjusted to the height fJII at that position, there are no irregularities on the wafer surface due to undulations or a tilt of the wafer stage. This also has the effect of correcting this, allowing exposure under optimal conditions, and minimizing the decrease in resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す斜視図、第2図、第3
図、第4図は本発明の詳細な説明するための第1図のo
−o’断面図である。 1〜5 ・発光素子     6〜10・・・受光素子
11・・縮小投影レンズ   12・・・露光軸13・
・・ウェハー      14・・・ウェハーステージ
15〜19・光       20・・測定部21・・
焦点合わせ部
FIG. 1 is a perspective view showing one embodiment of the present invention, FIG.
Figures 4 and 4 are o of Figure 1 for detailed explanation of the present invention.
-o' sectional view. 1 to 5 - Light emitting element 6 to 10... Light receiving element 11... Reduction projection lens 12... Exposure axis 13.
...Wafer 14...Wafer stage 15-19, light 20...Measurement section 21...
Focusing section

Claims (1)

【特許請求の範囲】[Claims] (1)縮小投影レンズを通してレチクルのパターンをウ
ェハー上に転写する縮小投影型露光装置において、ウェ
ハー上に設定した複数の測定点の各々に光を独立に照射
する複数個の発光素子及び前記投影レンズの焦点高さ位
置にある前記各測定点のウェハー表面より反射した各発
光素子からの光を個別に受光する複数個の受光素子の対
と、ウェハーを搭載したウェハーステージの高さ調整機
構と、前記ウェハー上の各測定点のレンズ焦点高さ位置
に対するずれ量を測定する測定部と、測定部に得られた
各測定点のレンズ焦点高さ位置に対するずれ量の平均値
を求めその平均値の高さ位置を露光時の焦点高さ位置と
して設定し、設定された焦点高さ位置にウェハーの位置
合わせをするに必要な駆動指令を前記高さ調整機構に発
する焦点合わせ部とを有することを特徴とする縮小投影
型露光装置。
(1) In a reduction projection exposure apparatus that transfers a reticle pattern onto a wafer through a reduction projection lens, a plurality of light emitting elements and the projection lens independently irradiate light to each of a plurality of measurement points set on the wafer. a plurality of pairs of light receiving elements that individually receive light from each light emitting element reflected from the wafer surface at each measurement point located at a focal height position of , and a height adjustment mechanism for a wafer stage on which the wafer is mounted; A measurement unit that measures the amount of deviation of each measurement point on the wafer from the lens focal height position; and a focusing unit that sets the height position as a focal height position during exposure and issues a driving command necessary for aligning the wafer to the set focal height position to the height adjustment mechanism. Features: Reduction projection type exposure equipment.
JP61050149A 1986-03-07 1986-03-07 Reduction stepper Pending JPS62208629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61050149A JPS62208629A (en) 1986-03-07 1986-03-07 Reduction stepper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61050149A JPS62208629A (en) 1986-03-07 1986-03-07 Reduction stepper

Publications (1)

Publication Number Publication Date
JPS62208629A true JPS62208629A (en) 1987-09-12

Family

ID=12851125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61050149A Pending JPS62208629A (en) 1986-03-07 1986-03-07 Reduction stepper

Country Status (1)

Country Link
JP (1) JPS62208629A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149424A (en) * 1987-12-04 1989-06-12 Fujitsu Ltd Correction of focusing in projection exposure
JPH01169900A (en) * 1987-12-25 1989-07-05 Japan Atom Energy Res Inst Arcing detecting circuit
JPH01170022A (en) * 1987-12-25 1989-07-05 Nikon Corp Substrate position controlling device
JPH02102518A (en) * 1988-10-11 1990-04-16 Canon Inc Detection of surface position
USRE37391E1 (en) 1991-03-06 2001-09-25 Nikon Corporation Exposure method and projection exposure apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149424A (en) * 1987-12-04 1989-06-12 Fujitsu Ltd Correction of focusing in projection exposure
JP2569640B2 (en) * 1987-12-04 1997-01-08 富士通株式会社 Focusing correction method for projection exposure
JPH01169900A (en) * 1987-12-25 1989-07-05 Japan Atom Energy Res Inst Arcing detecting circuit
JPH01170022A (en) * 1987-12-25 1989-07-05 Nikon Corp Substrate position controlling device
JPH02102518A (en) * 1988-10-11 1990-04-16 Canon Inc Detection of surface position
JPH0652707B2 (en) * 1988-10-11 1994-07-06 キヤノン株式会社 Surface position detection method
USRE37391E1 (en) 1991-03-06 2001-09-25 Nikon Corporation Exposure method and projection exposure apparatus
USRE37913E1 (en) 1991-03-06 2002-11-26 Nikon Corporation Exposure method and projection exposure apparatus
USRE37946E1 (en) 1991-03-06 2002-12-31 Nikon Corporation Exposure method and projection exposure apparatus
USRE38038E1 (en) 1991-03-06 2003-03-18 Nikon Corporation Exposure method and projection exposure apparatus
USRE38085E1 (en) 1991-03-06 2003-04-22 Nikon Corporation Exposure method and projection exposure apparatus

Similar Documents

Publication Publication Date Title
KR940006341B1 (en) Method and device for detectiong image plane
US6433872B1 (en) Exposure method and apparatus
US4629313A (en) Exposure apparatus
JP3374413B2 (en) Projection exposure apparatus, projection exposure method, and integrated circuit manufacturing method
US7141813B2 (en) Surface position detection apparatus and method, and exposure apparatus and device manufacturing method using the exposure apparatus
US6287734B2 (en) Exposure method
JP2785146B2 (en) Automatic focus adjustment controller
JP2890943B2 (en) Position detecting method and position detecting device using the same
JPS62208629A (en) Reduction stepper
JPS6336526A (en) Wafer exposure equipment
JP3381313B2 (en) Exposure apparatus, exposure method, and element manufacturing method
JP2580651B2 (en) Projection exposure apparatus and exposure method
JP3428974B2 (en) Projection exposure method and projection exposure apparatus having the same
JP3304535B2 (en) Surface position detection method and projection exposure apparatus using the same
JPH07201713A (en) Aligner and aligning method
JP2671338B2 (en) Exposure method and substrate attitude control method
JP3428973B2 (en) Surface position detection method and projection exposure apparatus using the same
JPH1116822A (en) Method and apparatus for exposure
JPH0541344A (en) Projection aligner
JPS6347774A (en) Contractive projection type transfer device
JPH065486A (en) Gap sensor of proximity aligner
JPS6323320A (en) Reducing projection type exposure apparatus
JP3206464B2 (en) Substrate attitude control method, apparatus, exposure method, exposure apparatus
JP2877835B2 (en) Reduction projection exposure equipment
JPH02199815A (en) Projection aligner