JPH01157465A - Production of high density silicon carbide sintered body - Google Patents

Production of high density silicon carbide sintered body

Info

Publication number
JPH01157465A
JPH01157465A JP62315756A JP31575687A JPH01157465A JP H01157465 A JPH01157465 A JP H01157465A JP 62315756 A JP62315756 A JP 62315756A JP 31575687 A JP31575687 A JP 31575687A JP H01157465 A JPH01157465 A JP H01157465A
Authority
JP
Japan
Prior art keywords
sintered body
silicon carbide
vacuum
press
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62315756A
Other languages
Japanese (ja)
Other versions
JPH0435435B2 (en
Inventor
Tatsuo Baba
龍夫 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62315756A priority Critical patent/JPH01157465A/en
Publication of JPH01157465A publication Critical patent/JPH01157465A/en
Publication of JPH0435435B2 publication Critical patent/JPH0435435B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high density SiC sintered body while suppressing the formation of a carbon film on the surface of the sintered body by successively subjecting a press-molded body made of or based on SiC to two-step sintering in prescribed temp. ranges in high vacuum, heating and further sintering in an inert gaseous atmosphere. CONSTITUTION:SiC or a mixture of SiC with a sintering assistant, etc., is press- molded and the press-molded body is heated at 5-10 deg.C/min heating rate, sintered in the temp. range from ordinary temp. to 1,800 deg.C in <=1Torr vacuum and sintered in the temp. range from 1,800 deg.C to 2,000 deg.C in <=0.05Torr vacuum. The sintered body is heated and further sintered in the temp. range from 2,000 deg.C to 2,100-2,400 deg.C in an inert gaseous atmosphere.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高密度炭化ケイ素焼結体の製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing a high-density silicon carbide sintered body.

(従来技術) 高密度炭化ケイ素焼結体は耐熱性、耐薬品性、耐摩耗性
等に優れていることから、高温下での構造材料として注
目されその製造法の確立が望まれており、その−製造法
が特公昭61−308号公報に示されている。
(Prior art) High-density silicon carbide sintered bodies have excellent heat resistance, chemical resistance, wear resistance, etc., so they are attracting attention as structural materials under high temperatures, and it is desired to establish a manufacturing method. Its manufacturing method is disclosed in Japanese Patent Publication No. 61-308.

同公報に示された製造法は炭化ケイ素を主体とする加圧
成形体の焼成条件に着目してなされたもので、上記加圧
成形体を常温から1600〜1800℃までの温度では
5トール以下の真空下で焼成し、次いで1600〜18
00℃から2000〜2500℃までの温度では流動し
ない不活性ガス雰囲気中で焼成することを特徴とするも
のである。
The manufacturing method disclosed in the publication was developed by focusing on the firing conditions of a press-molded body mainly composed of silicon carbide, and the press-molded body was heated to a temperature of 5 torr or less from room temperature to 1,600 to 1,800°C. Baked under a vacuum of 1600-18
It is characterized in that it is fired in an inert gas atmosphere that does not flow at temperatures from 00°C to 2000 to 2500°C.

しかして、かかる製造法によれば、全て真空下で焼成す
る場合に比して焼結体表面での炭素被膜の生成が極めて
少なく、かつ上記焼成条件下におけ、ると同様の高密度
の焼結体が得られるものとしている。
According to this manufacturing method, the formation of a carbon film on the surface of the sintered body is extremely small compared to the case where everything is fired under vacuum, and under the above firing conditions, a high density film similar to that of It is assumed that a sintered body can be obtained.

(発明が解決しようとする問題点) ところで、本発明者は上記した加圧成形体の焼成条件に
ついてさらに詳細に検討したところ、焼成中発生した阻
害物質であるCOを速やかに除去する必要があることは
勿論であるが、特に炭化ケイ素の緻密化は1800〜2
000℃で開始されかかる温度域での阻害化物質の除去
が炭化ケイ素の緻密化にとりて極めて有効であるとの知
見を得た。
(Problems to be Solved by the Invention) By the way, the inventor of the present invention has studied in more detail the firing conditions for the above-mentioned press-molded body, and has found that it is necessary to promptly remove CO, which is an inhibitory substance generated during firing. Of course, especially the densification of silicon carbide is 1800~2
It has been found that removal of inhibiting substances starting at 000° C. in this temperature range is extremely effective for densification of silicon carbide.

従って、本発明の目的は、かかる知見に基づき高密度炭
化ケイ素焼結体を得ようとするものである。
Therefore, an object of the present invention is to obtain a high-density silicon carbide sintered body based on this knowledge.

(問題点を解決するための手段) 本発明は高密度炭化ケイ素焼結体の製造法に関し、炭化
ケイ素またはこれを主体とする加圧成形体を常温から1
800℃までの温度では1トール以下の真空下で焼成し
、次いで1800℃から2000℃までの温度では0.
05トール以下の真空下で焼成し、最後に2000℃か
ら2100〜2400℃までの温度では不活性ガス雰囲
気下で焼成することを特徴とするものである。
(Means for Solving the Problems) The present invention relates to a method for producing a high-density silicon carbide sintered body, and relates to a method for producing a high-density silicon carbide sintered body.
Firing under a vacuum of less than 1 torr for temperatures up to 800°C, then 0.5 torr for temperatures from 1800°C to 2000°C.
It is characterized in that it is fired under a vacuum of 0.05 Torr or less, and finally fired at a temperature from 2000°C to 2100-2400°C under an inert gas atmosphere.

本発明における加圧成形体は、炭化ケイ素またはこれを
主体とするもので、その原料、焼結助剤等の添加物、成
形手段等は公知の適宜の物、方法が使用され、これらに
関しては回答制限されるものではない。
The press-molded article in the present invention is made of silicon carbide or is made mainly of silicon carbide, and its raw materials, additives such as sintering aids, molding means, etc. may be any known appropriate materials or methods. There are no restrictions on answers.

上記加圧成形体の焼成においては、各焼成工程での昇温
速度は適宜の速度でよく例えば5〜b/winの昇温速
度が好適に採用される。また、最後の2000℃から2
100〜2400℃までの温度での焼成はアルゴン、ヘ
リウム等不活性ガス雰囲気下で行うが、不活性ガスを流
動、非流動のいずれの状態でもよく、好ましくは流入か
つ流出しつつ行う。
In firing the above-mentioned press-molded body, the temperature increase rate in each firing step may be any appropriate rate, and for example, a temperature increase rate of 5 to b/win is suitably employed. Also, from the last 2000℃, 2
Firing at a temperature of 100 to 2,400° C. is carried out in an atmosphere of an inert gas such as argon or helium, but the inert gas may be in either a flowing or non-flowing state, preferably while flowing in and out.

(発明の作用・効果) 本発明の製造法によれば、常温から2000℃までの温
度では真空下で焼成しかつ2000℃から2100〜2
400℃までの温度では不活性ガス雰囲気下で焼成して
いるため、焼結体表面での炭素被膜の生成が極めて少な
い高密度焼結体が得られるが、炭化ケイ素の緻密化が開
始される1800〜2000℃の焼成は0゜05トール
以下という高真空下にて行うことから、かかる焼成雰囲
気には炭化ケイ素の緻密化を阻害する物質は全くまたは
ほとんど存在せず、−層高密度の炭化ケイ素焼結体が得
られる。
(Operations and Effects of the Invention) According to the manufacturing method of the present invention, baking is performed under vacuum at a temperature from room temperature to 2000°C, and at a temperature of 2100 to 2000°C from 2000°C.
Since the firing is performed under an inert gas atmosphere at temperatures up to 400°C, a high-density sintered body is obtained with extremely little carbon film formation on the surface of the sintered body, but silicon carbide begins to become denser. Since the firing at 1800 to 2000°C is carried out under a high vacuum of 0°05 Torr or less, there are no or almost no substances that inhibit the densification of silicon carbide in the firing atmosphere, resulting in a high-density carbonization layer. A silicon sintered body is obtained.

(実施例) 平均粒径0.4μmのβ−5iC粉体100重量部、平
均粒径2.0μmのB4C粉体0,7重量部、カーボン
ブラック1.0重量部を水とともに混合し、かつポリと
ニアルコールを用いて造粒し、これを2.0トンの圧力
で加工して外径50mm、厚さ7mmの加圧成形体を多
数成形した。その後、加圧成形体を窒素雰囲気下600
℃で10時間焼成して、バインダーであるポリビニルア
ルコールを加圧成形体から除去した。
(Example) 100 parts by weight of β-5iC powder with an average particle size of 0.4 μm, 0.7 parts by weight of B4C powder with an average particle size of 2.0 μm, and 1.0 parts by weight of carbon black were mixed with water, and The pellets were granulated using poly and alcohol, and processed under a pressure of 2.0 tons to form a large number of press-molded bodies each having an outer diameter of 50 mm and a thickness of 7 mm. After that, the press molded body was heated for 600 minutes under nitrogen atmosphere.
The polyvinyl alcohol binder was removed from the press-molded body by firing at ℃ for 10 hours.

得られた各加圧成形体を気孔率18%で内外に通じる貫
通孔の開孔度(%)が各位のカーボン製サヤに収容し、
焼成炉内で各条件で焼成した。得られた各焼結体の相対
密度(%)を別表に示す。なお、焼成炉の昇温速度は常
温から1800℃までの温度では10℃/min 、 
1800℃以上の温度では5℃/minであり、また2
000℃からはアルゴンを6J2/minで流通し焼成
の最高温度で39m1n維持した。
Each of the obtained press-molded bodies was housed in a carbon sheath with a porosity of 18% and a through-hole opening degree (%) that communicated with the inside and outside.
It was fired under various conditions in a firing furnace. The relative density (%) of each obtained sintered body is shown in the attached table. The heating rate of the firing furnace is 10°C/min from room temperature to 1800°C.
At temperatures above 1800°C, the rate is 5°C/min, and 2
From 000°C onwards, argon was circulated at a rate of 6J2/min to maintain the highest firing temperature of 39m1n.

また、比較例5.6においてはアルゴンの流通開始温度
は1800℃、比較例7においては1900℃、比較例
8においては1700℃であった。なお、別表において
サヤ開孔度、相対密度とは下記事項を意味する。
Furthermore, in Comparative Examples 5 and 6, the argon flow start temperature was 1800°C, in Comparative Example 7 it was 1900°C, and in Comparative Example 8 it was 1700°C. In addition, in the attached table, pod porosity and relative density mean the following.

サヤ開孔度*1:サヤの内外に通じる貫通孔のサヤ全表
面積に対する割合   。
Saya porosity*1: The ratio of through holes that communicate with the inside and outside of the pod to the total surface area of the pod.

相対密度:*2:理論密度3.21g/cm3に対する
割合 (以下余白) 上記衣を参照すると、本発明の製造法(実施例1〜6)
によれば高密度の焼結体が得られることが明らかであり
、本発明の製造法を外れる場合(比較例1.2.5〜8
)には焼結体の密度が低くなる。特にこれらの比較例1
.2.5を参照すると、 1800〜2000℃の温度
での焼成時の真空度が焼結体の緻密化に大きく影響を及
ぼしていることがわかる。なお、比較例3.4は見掛は
土木発明の製造法に該当するが、サヤの開孔度が皆無ま
たは小さくサヤ内の雰囲気を速やかに所定の真空度にす
ることが困難なため、実際には成形体の焼成条件(特に
真空度)が本発明の条件から外れていることによるもの
と理解される。
Relative density: *2: Ratio to theoretical density 3.21 g/cm3 (hereinafter referred to as margin) Referring to the above batter, the manufacturing method of the present invention (Examples 1 to 6)
According to Comparative Examples 1.2.5 to 8, it is clear that a high-density sintered body can be obtained.
), the density of the sintered body becomes lower. Especially these comparative example 1
.. 2.5, it can be seen that the degree of vacuum during firing at a temperature of 1800 to 2000°C has a large effect on the densification of the sintered body. Although Comparative Example 3.4 apparently corresponds to the manufacturing method of the civil engineering invention, it is difficult to bring the atmosphere inside the pod to the specified degree of vacuum quickly because the degree of pores in the pod is small or non-existent. This is understood to be due to the fact that the firing conditions (particularly the degree of vacuum) of the molded body deviate from the conditions of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 炭化ケイ素またはこれを主体とする加圧成形体を常温か
ら1800℃までの温度では1トール以下の真空下で焼
成し、次いで1800℃から2000℃までの温度では
0.05トール以下の真空下で焼成し、最後に2000
℃から2100〜2400℃までの温度では不活性ガス
雰囲気下で焼成することを特徴とする高密度炭化ケイ素
焼結体の製造法。
Silicon carbide or a press-molded product mainly composed of silicon carbide is fired under a vacuum of 1 torr or less at a temperature from room temperature to 1800°C, and then under a vacuum of 0.05 torr or less at a temperature from 1800°C to 2000°C. Baked and finally 2000
A method for producing a high-density silicon carbide sintered body, comprising firing in an inert gas atmosphere at a temperature of 2100 to 2400°C.
JP62315756A 1987-12-14 1987-12-14 Production of high density silicon carbide sintered body Granted JPH01157465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62315756A JPH01157465A (en) 1987-12-14 1987-12-14 Production of high density silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62315756A JPH01157465A (en) 1987-12-14 1987-12-14 Production of high density silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPH01157465A true JPH01157465A (en) 1989-06-20
JPH0435435B2 JPH0435435B2 (en) 1992-06-11

Family

ID=18069168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62315756A Granted JPH01157465A (en) 1987-12-14 1987-12-14 Production of high density silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPH01157465A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252580A (en) * 1988-04-01 1989-10-09 Toshiba Corp Production of sic part
US8383747B2 (en) 2007-03-16 2013-02-26 Nippon Shokubai Co., Ltd. Water absorbent resin production method, water absorbent resin, and usage thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252580A (en) * 1988-04-01 1989-10-09 Toshiba Corp Production of sic part
US8383747B2 (en) 2007-03-16 2013-02-26 Nippon Shokubai Co., Ltd. Water absorbent resin production method, water absorbent resin, and usage thereof

Also Published As

Publication number Publication date
JPH0435435B2 (en) 1992-06-11

Similar Documents

Publication Publication Date Title
US4179299A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
US4346049A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
US4424179A (en) Method of manufacturing a sintered silicon carbide ceramic part
JPH01157465A (en) Production of high density silicon carbide sintered body
WO2015025951A1 (en) Porous ceramic and method for producing same
JPH0323206A (en) Aluminum nitride powder and its production
JPS5849509B2 (en) Manufacturing method of silicon nitride sintered body
JPH03146470A (en) Silicon carbide-based material
JPH025711B2 (en)
JPS6328873B2 (en)
JPS62292611A (en) Production of glassy carbon film
JPS59184769A (en) Manufacture of high density silicon carbide sintered body
JPH0147427B2 (en)
JPH0316983A (en) Ceramic thermal insulating member and production thereof
JPS60186473A (en) Silicon nitride sintered body and manufacture
JPS5930672B2 (en) Silicon carbide powder composition for sintered bodies
JPH0733547A (en) Production of porous silicon carbide sintered compact
RU2045498C1 (en) Method for production of highly porous cellular materials based on carbide ceramics
JPH02116678A (en) Production of sintered silicon carbide body
JPS6141869B2 (en)
JPH06100366A (en) Production of ceramic-carbon composite material
JPH0455993B2 (en)
JPS6325276A (en) Manufacture of silicon nitride sintered body
JPH0688838B2 (en) Method for manufacturing silicon nitride sintered body
JPS6141870B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 16