JPH01156453A - Valve gear mechanism member for internal combustion engine - Google Patents

Valve gear mechanism member for internal combustion engine

Info

Publication number
JPH01156453A
JPH01156453A JP31441687A JP31441687A JPH01156453A JP H01156453 A JPH01156453 A JP H01156453A JP 31441687 A JP31441687 A JP 31441687A JP 31441687 A JP31441687 A JP 31441687A JP H01156453 A JPH01156453 A JP H01156453A
Authority
JP
Japan
Prior art keywords
powder
internal combustion
combustion engine
less
gear mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31441687A
Other languages
Japanese (ja)
Inventor
Yukio Kadota
門田 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31441687A priority Critical patent/JPH01156453A/en
Publication of JPH01156453A publication Critical patent/JPH01156453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a valve gear mechanism member for internal combustion engine excellent in wear resistance and scuffing resistance and reduced in damage to mating sliding material by subjecting an alloy powder prepared by blending powders of the oxides of specific metals and a graphite powder and reducing the resulting mixture to compacting and sintering. CONSTITUTION:A graphite powder is blended with respective powders of Fe2O3, MoO3, NiO, Cr2O3, WO3, V2O5, and Nb2O5 of <=5mum grain size, and the resulting powder mixture is heated in an ammonia decomposed gas atmosphere to under go the reduction of the above-mentioned respective metal oxides by means of the graphite powder, by which an alloy powder having a composition consisting of, by weight, 1-4% C, 10-40% Mo, 3-20% Cr, 1-10% Ni, at least one kind among 0.05-1% Nb, 0.3-5% W, and 0.1-3% V, and the balance Fe is formed. By subjecting this powder to compacting and sintering, the valve gear mechanism member for internal combustion engine having a structure in which nearly spherical closed pores of >98% density ratio and <5mum diameter are uniformly dispersed and also spherical hard carbides of <10mum average grain size are uniformly dispersed in 10-40% area ratio and excellent in wear resistance can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、内燃機関の動弁系部材に関し、詳しくは自動
車等に使用される内燃機関の動弁機構を構成する動弁系
部材において、カム等との囲動部において優れた耐摩耗
性が要求されるロッカアーム、バルブリフタ等の内燃機
関の動弁系部材に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a valve train member for an internal combustion engine, and more specifically, to a valve train member constituting a valve train mechanism for an internal combustion engine used in an automobile or the like. The present invention relates to valve train members of internal combustion engines, such as rocker arms and valve lifters, which require excellent wear resistance in the surrounding parts with cams and the like.

[従来の技術] 内燃機関の動弁機構において、カムの回転運動をバルブ
の上下運動に変換するロッカアーム、バルブリフタ等の
内燃機関の動弁系部材においては、曲げ、引張り、圧縮
等の複雑に作用する応力に耐えるべく充分な機械的性質
が必要なことはもちろんのこと、他部品(カム、バルブ
等)とのWIiIJ部においては、特に、耐摩耗性、引
掻き摩耗に耐える特性、いわゆる耐スカッフィング性に
優れ、しかも摺動する相手材に対する損傷性の少ないこ
とが必要とされている。
[Prior Art] In the valve train of an internal combustion engine, the rocker arm, valve lifter, and other valve drive system members that convert the rotational movement of a cam into the vertical movement of a valve are subject to complicated actions such as bending, tension, and compression. Not only is it necessary to have sufficient mechanical properties to withstand the stress caused by the stress, but especially in WIiIJ parts with other parts (cams, valves, etc.) There is a need for a material that has excellent performance and less damage to the mating material on which it slides.

そこで、従来、ロッカアーム、バルブリフタ等といった
内燃機関の動弁系部材には、一般に炭素鋼、合金鋼等の
鋼部材でその本体部位を製作し、そのカムとの摺動面に
対しては耐摩耗性を向上させるために、浸炭焼入処理、
チル硬化処理、硬質クロムメツキ処理、自溶性合金の溶
射処理等を実施して使用するのが通常であった。
Therefore, conventionally, the main body parts of internal combustion engine valve train parts such as rocker arms and valve lifters are generally made of carbon steel, alloy steel, etc., and the sliding surface with the cam is made of abrasion-resistant material. In order to improve the properties, carburizing and quenching treatment,
It was common practice to use chill hardening treatment, hard chrome plating treatment, thermal spraying treatment of self-fluxing alloys, etc.

[発明が解決しようとする問題点] しかしながら、浸炭焼入処理品においては耐スカッフィ
ング性が劣り、またチル硬化処理品においては摺動部材
としての耐久性に劣る。
[Problems to be Solved by the Invention] However, carburized and quenched products have poor scuffing resistance, and chill-hardened products have poor durability as sliding members.

また、硬質クロムメツキ処理品においては、内燃機関の
作動時における局部当りに伴い硬質クロムメツキの剥離
や摩耗剥離を発生することがあり、また、自溶性合金の
溶射処理品においては摺動する相手材に対する損傷性が
増大してカムの摩耗が激しくなる等、従来の内燃機関の
動弁系部材としての上記の材料・処理にはそれぞれ問題
点があり、より優れた内燃機関の動弁系部材の開発が望
まれている。
In addition, in hard chrome plated products, peeling or abrasion of the hard chrome plating may occur due to local contact during internal combustion engine operation, and in thermal sprayed products made of self-fluxing alloys, there is a risk of damage to sliding mating materials. Each of the above-mentioned materials and treatments used for conventional internal combustion engine valve train components has its own problems, such as increased damage and severe cam wear, and the development of better internal combustion engine valve train components is necessary. is desired.

上記の問題点を解決するために特開昭60−19404
8号公報には、C:1〜4%、1ylo : 1o〜4
0%、Cr:3〜20%、CO:1〜10%、残部実質
的にFeからなる組成の焼結合金の開示がある。この焼
結合金では、まだ耐II粍性や、相手攻撃性の改良が不
十分であり、この点についての向上が望まれていた。
To solve the above problems, Japanese Patent Application Laid-Open No. 60-19404
In Publication No. 8, C: 1 to 4%, 1ylo: 1o to 4
There is a disclosure of a sintered alloy having a composition of 0% Cr, 3 to 20% Cr, 1 to 10% CO, and the remainder substantially Fe. This sintered alloy still has insufficient improvement in corrosion resistance and attack resistance, and improvements in this respect have been desired.

そこで本発明は、上記の従来技術の問題点を解決するた
めになされたもので、特に相手攻撃性の改良を図るため
、予め還元後の特定組成となすべき各金属元素を含有す
る微細な金ffi酸化物を配合した混合粉末に、黒鉛粉
末を加えて還元して生成した合金粉末を、成形・焼結す
ることにより、耐摩耗性、耐スカッフィング性に優れ、
しかも摺動する相手材に対する損傷性特にカム摩耗の少
ない内燃機関の動弁系部材を提供することを目的とする
Therefore, the present invention was made to solve the above-mentioned problems of the prior art.In particular, in order to improve the aggressiveness against opponents, fine gold containing each metal element to have a specific composition after reduction is prepared. By molding and sintering the alloy powder produced by adding graphite powder to a mixed powder containing ffi oxide and reducing it, it has excellent wear resistance and scuffing resistance.
Moreover, it is an object of the present invention to provide a valve train member for an internal combustion engine that is less likely to cause damage to sliding mating members, especially cam wear.

[問題点を解決するための手段] 本発明の内燃機関の動弁系部材は、還元後の組成が重量
比で、C:1〜4%、Mo : 10〜40%、Cr:
3〜20%、N+:1〜10%、およびNb:0.05
〜1%、W:0.3〜5%、■:0.1〜3%の少なく
とも1種を含有し、残部が実質的にFe(鉄)からなり
、前記各金属元素を含有する微細な金属酸化物粉末を配
合した混合粉末に、黒鉛粉末を混合して還元して生成し
た合金粉末を、成形・焼結してなる金属焼結体であるこ
とを特徴とする。
[Means for Solving the Problems] The valve train member of the internal combustion engine of the present invention has a composition after reduction in weight ratio of C: 1 to 4%, Mo: 10 to 40%, and Cr:
3-20%, N+: 1-10%, and Nb: 0.05
-1%, W: 0.3-5%, ■: 0.1-3%, the balance is substantially Fe (iron), and the fine particles containing each of the metal elements mentioned above. It is characterized by being a metal sintered body formed by molding and sintering an alloy powder produced by mixing graphite powder with a mixed powder containing metal oxide powder and reducing the mixture.

本発明の金属焼結体を構成する合金粉末の組成について
説明する。
The composition of the alloy powder constituting the metal sintered body of the present invention will be explained.

MOはCと反応して炭化物を形成し耐摩耗性を向上する
とともに、一部が基地組織中に固溶して基地組織を強化
することから有用であるが、含有量が10%未満では形
成される炭化物の邑が少ないため耐摩耗性の向上が充分
でなく基地組織の強度も不充分であることから動弁系部
材自身の摩耗が多くなり、また40%を越えると組織中
の炭化物量が過多となり靭性が大幅に低下して、摺動す
る相手材に対する損傷性を増大させることから10〜4
0%用いる。
MO is useful because it reacts with C to form carbides and improve wear resistance, and a portion of it is solidly dissolved in the base structure to strengthen the base structure, but if the content is less than 10%, it will not form. Since the amount of carbide formed is small, the wear resistance is not sufficiently improved, and the strength of the base structure is also insufficient, which increases the wear of the valve train parts themselves.If the amount exceeds 40%, the amount of carbide in the structure increases. 10 to 4 because if there is an excessive amount of
Use 0%.

また、OrはMOと同様にCと反応して炭化物を形成し
耐摩耗性を向上させるとともに、一部が基地組織中に固
溶して基地組織の強度を高めるとともに耐蝕性を向上さ
せるのに有効であるが、3%未満では組織中の炭化物形
成量が極めて僅かであるため耐摩耗性、耐蝕性が充分で
なく、一方、20%を越えると形成される炭化物量が過
多となって摺動する相手材に対する損傷性を増大すると
ともに、靭性を大幅に低下することから3〜20%最用
いる。
In addition, like MO, Or reacts with C to form carbides to improve wear resistance, and a portion of Or is solidly dissolved in the base structure to increase the strength of the base structure and improve corrosion resistance. Although it is effective, if it is less than 3%, the amount of carbide formed in the structure is extremely small and the wear resistance and corrosion resistance are insufficient.On the other hand, if it exceeds 20%, the amount of carbide formed is excessive and it is difficult to wear. It increases the damage to moving mating materials and significantly reduces toughness, so it is used at a maximum of 3 to 20%.

また、Cは基地組織を強化するとともに1ylo。In addition, C strengthens the base organization and 1ylo.

Cr ’=と反応してM@C,M7C3、M23G@、
M2C型の炭化物を形成し耐摩耗性を向上させるのに有
効であるが、1%未満では析出する炭化物量が少ないこ
とから上述の効果が充分でなく、4%を越えると前記M
O1Crのほとんどが炭化物を形成して基地組織中に固
溶する前記MO,Crが不足して、耐摩耗性、耐蝕性を
低下させることから1〜4%墳用いる。
Reacts with Cr'= to form M@C, M7C3, M23G@,
It is effective in forming M2C type carbides and improving wear resistance, but if it is less than 1%, the amount of precipitated carbide is small, so the above effect is not sufficient, and if it exceeds 4%, the M2C type carbide is effective in improving wear resistance.
Since most of O1Cr forms carbides and the MO and Cr dissolved in solid solution in the base structure become insufficient, the abrasion resistance and corrosion resistance are lowered, so 1 to 4% of O1Cr is used.

またNiは基地組織中に固溶して基地組織を強化するの
で有効であるが、1%未満ではその効果が充分でなく、
10%を越えるとかえって強度を低下させることから1
〜10%階用いる。
In addition, Ni is effective because it dissolves in the base structure and strengthens the base structure, but if it is less than 1%, the effect is not sufficient.
If it exceeds 10%, the strength will actually decrease, so 1.
~10% floor is used.

さらにW、V、Nbは、いずれもCと反応して硬質の微
細化した炭化物を形成して耐摩耗性を改善するのに有効
であるが、Wは0.3%未満、■は0.1%未満、Nb
は0.05%未満では析出する炭化物量が少ないためそ
の効果が充分でなく、Wは5%、■は3%、Nbは1%
を越えると析出炭化物倒が過多となって摺動する相手材
に対する損傷性を増大することがらWは0.3〜5%、
■は0.1〜3%、Nbは0.05〜1%ffi用イル
Furthermore, W, V, and Nb all react with C to form hard fine carbides and are effective in improving wear resistance, but W is less than 0.3%, and ■ is 0.3%. Less than 1%, Nb
If it is less than 0.05%, the effect is not sufficient because the amount of precipitated carbide is small, W is 5%, ■ is 3%, and Nb is 1%.
W is 0.3 to 5%;
(2) is 0.1 to 3%, and Nb is 0.05 to 1% for ffi.

前記NiおよびW1■、Nbの少なくとも一種を用いる
ことにより、この焼結合金より得た部材は耐摩耗性の向
上とともに、相手材の損傷性を向上させることができた
By using at least one of the above-mentioned Ni, W1, and Nb, the member obtained from this sintered alloy was able to improve the wear resistance and damage resistance of the mating material.

前記各金属元素の微細な金属酸化物粉末を黒鉛粉末を用
いて還元するのは以下の理由による。
The reason why the fine metal oxide powder of each metal element is reduced using graphite powder is as follows.

即ち従来の合金粉末の製造方法は、噴霧法、粉砕法、還
元法等が用いられているが、本発明においては、原料で
ある金属酸化物粉末が微細に粉砕されていることがら(
平均粒径が3μm以下)、還元時の還元温度を比較的低
温(900〜1000℃)とすることができ、還元工程
において合金粉末粒子が強固に焼結したり、粒成長する
ことな(相互に弱く結合した状態になり、粉砕によって
容易に粒径10um以下の微細な合金粉末とすることが
できる。
That is, conventional methods for producing alloy powders use a spraying method, a pulverization method, a reduction method, etc., but in the present invention, since the metal oxide powder that is the raw material is finely pulverized (
The average particle size is 3 μm or less), and the reduction temperature during reduction can be set to a relatively low temperature (900 to 1000°C), and the alloy powder particles will not be strongly sintered or grain grown (mutual) during the reduction process. It becomes a weakly bonded state, and can be easily made into a fine alloy powder with a particle size of 10 um or less by pulverization.

また、黒鉛粉末の還元により製造された微細な合金粉末
が優れた活性を有していることから焼結性に優れており
、合金化および炭化物形成反応も容易に進行させること
ができる。
Furthermore, since the fine alloy powder produced by reducing graphite powder has excellent activity, it has excellent sinterability, and alloying and carbide formation reactions can proceed easily.

従って、前記合金粉末は微細粉末であるにもかかわらず
圧縮成形性に優れており、通常の金型成形法で容易に圧
粉成形することができる。成形体はつづいて通常の条件
により焼結を行なう。すなわち不活性ガス下で1100
〜1200℃の範囲で行なうことが好ましい。
Therefore, although the alloy powder is a fine powder, it has excellent compression moldability and can be easily compacted using a normal molding method. The compact is then sintered under normal conditions. i.e. 1100 under inert gas
It is preferable to conduct the reaction at a temperature of 1200°C to 1200°C.

得られた金属焼結体の密度比が98%未満では残留気孔
が多く成りすぎて、耐ピツチング性、耐摩耗性および摺
動する相手材に対する損傷性を増大させることから密度
比は98%以上が望ましい。
If the density ratio of the obtained metal sintered body is less than 98%, there will be too many residual pores, which will increase pitting resistance, abrasion resistance, and damage to the sliding mating material. Therefore, the density ratio should be 98% or more. is desirable.

また、残留気孔の直径が5μを越えると上述の特性が劣
化するので5μ以下の小さい残留気孔とするのが望まし
い。
Furthermore, if the diameter of the residual pores exceeds 5 μm, the above-mentioned characteristics deteriorate, so it is desirable that the residual pores be as small as 5 μm or less.

さらに、残留気孔の形状は球状に近い程耐ピッチング性
に優れ、残留気孔が閉気孔であることが潤滑油の保持効
果を向上して耐スカッフィング性を優れたものにする。
Furthermore, the closer the shape of the residual pores is to a spherical shape, the better the pitting resistance is, and the fact that the residual pores are closed pores improves the lubricating oil retention effect and makes the scuffing resistance excellent.

この金属焼結体において、平均粒径10μm以下の球形
状の炭化物を組織中における面積率にして10〜40%
の範囲で均一に分散させることにしているのは、平均粒
径が10μを越えると摺動する相手材に対する損傷性が
増大するからである。
In this metal sintered body, the area ratio of spherical carbides with an average grain size of 10 μm or less in the structure is 10 to 40%.
The reason why the particles are uniformly dispersed within this range is that if the average particle size exceeds 10 μm, the damage to the sliding mating material increases.

また、炭化物形状を球状としているのは摺動する相手材
に対する損傷性を少なくすることができるからである。
Moreover, the reason why the carbide shape is spherical is that damage to the mating material on which it slides can be reduced.

さらに組織中の炭化物の面積率は、40%を越えると炭
化物量が過多となって摺動する相手材に対する損傷性を
増大し、10%未満では炭化物量が少なすぎて耐摩耗性
を低下させるので10〜40%とするのが好ましい。
Furthermore, if the area ratio of carbides in the structure exceeds 40%, the amount of carbides becomes excessive and increases damage to the sliding mating material, while if it is less than 10%, the amount of carbides is too small and reduces wear resistance. Therefore, it is preferably 10 to 40%.

[実施例] 以下、実施例により本発明を説明する。[Example] The present invention will be explained below with reference to Examples.

粒径5μm以下のl”e2Q3粉末、M003粉末、N
iO粉末、Cr t O3粉末、WO3粉末、VtOs
粉末、NbzOs粉末、C粉末をi元後に第1表に示す
各試料組成となるように配合し、ボールミルを用いて溶
媒ヘキサン中にて10時時間式混合した。
l”e2Q3 powder, M003 powder, N with a particle size of 5 μm or less
iO powder, Cr t O3 powder, WO3 powder, VtOs
The powder, NbzOs powder, and C powder were mixed so that each sample composition shown in Table 1 was obtained after i addition, and mixed for 10 hours in hexane as a solvent using a ball mill.

ついで、上記のように配合した微細な金属酸化物粉末の
混合粉末を乾燥し100メツシユの篩にかけた模、この
混合粉末を露点ニー40’Cのアンモニア分解ガス中に
て1000℃で2時間遅元して第1表に示すような、各
種組成の海綿状合金を製造した。
Next, the mixed powder of fine metal oxide powder blended as described above was dried and passed through a 100-mesh sieve, and the mixed powder was incubated at 1000°C for 2 hours in an ammonia decomposition gas with a dew point of 40'C. Based on this, various compositions of spongy alloys as shown in Table 1 were manufactured.

ついで、この海綿状合金を粉砕機により粉砕して100
メツシユの篩にかけた後、この扮砕された微細な合金粉
末を、そのまま使用して5ton/cn2の圧力で圧粉
成形し、露点ニー40℃のアンモニア分解ガス中で11
20℃で1時間の焼結を行なった。
Next, this spongy alloy was crushed using a crusher to give 100%
After passing through a mesh sieve, the finely crushed alloy powder was used as it was and compacted at a pressure of 5 tons/cn2, and then heated for 11 hours in ammonia decomposition gas with a dew point of 40°C.
Sintering was performed at 20° C. for 1 hour.

第1表において、実施例No、1のMo:20%、Ni
:5%、Cr:8%、W:2%、C:1゜8%、残部実
質的にFeからなる組成の合金粉末を製造するには、粒
径5μm以下のFezo3粉末::90g、MOO3粉
末:309、NiO粉末=10g、Cr103粉末=1
2g、C粉末(黒鉛”):19.4Gを配合して、前記
の工程により製造した。
In Table 1, Example No. 1 Mo: 20%, Ni
: 5%, Cr: 8%, W: 2%, C: 1° 8%, and the remainder substantially consists of Fe, Fezo3 powder with a particle size of 5 μm or less:: 90g, MOO3 Powder: 309, NiO powder = 10g, Cr103 powder = 1
2g of C powder (graphite) and 19.4G of C powder (graphite) were blended and manufactured according to the above process.

実施例No、2は、実施例No、1のWO3粉末に代え
てNbzOs粉末を添加し、他の微細な金属酸化物粉末
は第1表に示す組成で配合しNo。
In Example No. 2, NbzOs powder was added in place of the WO3 powder in Example No. 1, and other fine metal oxide powders were blended in the composition shown in Table 1.

1と同様に還元して形成したものである。このものはN
bが0.7%含有されている。
It was formed by reduction in the same manner as 1. This thing is N
Contains 0.7% of b.

実施例No、34.t、実施例N0.1(7)WO2粉
末に代えてVtOs粉末を添加し、他の微細な金属酸化
物粉末は第1表に示す組成で配合しNo。
Example No. 34. t, Example No. 0.1 (7) VtOs powder was added in place of WO2 powder, and other fine metal oxide powders were blended in the composition shown in Table 1.

1と同様に還元し成形・焼結したものである。このもの
はVが1%含有されている。
It was reduced, molded, and sintered in the same manner as 1. This material contains 1% V.

実施例N014は、実施例No、1のWO2粉末に代え
てNbtO5粉末とVtOs粉末とを添加し、他の微細
な金属酸化物粉末は第1表に示す組成で配合しNo、1
と同様に還元し成形・焼結したものである。このものは
Nbが0.2%、■が1.5%含有されている。
In Example No. 1, NbtO5 powder and VtOs powder were added in place of the WO2 powder in Example No. 1, and other fine metal oxide powders were blended in the composition shown in Table 1.
It is reduced, molded and sintered in the same manner as . This material contains 0.2% Nb and 1.5% ■.

実施例N065は、実施例No、1のWO2粉末の他に
Nb2O5粉末を添加し、他の微細な金属酸化物粉末は
第1表に示す組成で配合し、No。
In Example No. 065, Nb2O5 powder was added in addition to the WO2 powder of Example No. 1, and other fine metal oxide powders were blended in the composition shown in Table 1.

1と同様に還元し成形・焼結したものである。このもの
はWが4%、Nbが0.1%含有されている。
It was reduced, molded, and sintered in the same manner as 1. This material contains 4% W and 0.1% Nb.

比較例N001は、Niを添加せず、MOの最を10%
未満の5%、Crを3%未満の2%としNbを0.2%
添加したものであり1qられた焼結体中の炭化物の面積
率が10%未満の場合である。
Comparative example No. 001 did not add Ni and the MO content was 10%.
Less than 5%, Cr less than 3% and 2% Nb 0.2%
This is a case where the area ratio of carbide in the sintered body added to 1q is less than 10%.

比較例N002は、Cを4%以上、Orを20%以上、
■を3%以上添加したもので1ワられた焼結体の炭化物
の平均粒径が10μm以上でありまた面積率は40%以
上を有したものである。
Comparative example N002 contains 4% or more of C, 20% or more of Or,
The average grain size of the carbide in the sintered body containing 3% or more of (2) is 10 μm or more, and the area ratio is 40% or more.

比較例No、3は、密度比が98%未満で平均残留気孔
径が5μ以上を有しWの岳が5%以上のものである。
Comparative Example No. 3 has a density ratio of less than 98%, an average residual pore diameter of 5 μ or more, and a W peak of 5% or more.

比較例N094は、従来技術のC,Cr、MC。Comparative example No. 094 is C, Cr, and MC of the prior art.

Co(コバルト)残りFeからなる焼結合金である。It is a sintered alloy consisting of Co (cobalt) and the remainder Fe.

上記の焼結体をロッカアームにロー付した後、ロッカア
ームパッド形状に加工仕上して第1図に示すように内燃
機関に組み付けて台上耐久試験を行なった。
After the above sintered body was brazed onto a rocker arm, it was processed and finished into the shape of a rocker arm pad, and as shown in FIG. 1, it was assembled into an internal combustion engine and subjected to a bench durability test.

第1図において1はスウィングアーム式ロッカアームで
あって、バルブ2およびラッシュアジャスタ3に接する
部分を含むロッカアーム本体部1aは従来のものと同様
に鋼材もしくは合金によって製作されており、一方、カ
ム4に対して1lIlvJする部分、即ち、ロッカアー
ムパッド部1bは前記のような焼結合金で形成されてい
る。
In FIG. 1, reference numeral 1 denotes a swing arm type rocker arm, and the rocker arm main body 1a, including the part that contacts the valve 2 and the lash adjuster 3, is made of steel or alloy like the conventional rocker arm. On the other hand, the portion 1lIlvJ, that is, the rocker arm pad portion 1b, is formed of the sintered alloy as described above.

この焼結合金からなるロッカアームパッド部1bをロッ
カアーム本体部1aに固着する手段は任意であり、例え
ば、ロー付、機械的カシメ、もしくは鋳ぐるみ法等を用
いればよい。
The rocker arm pad portion 1b made of a sintered alloy may be fixed to the rocker arm main body portion 1a by any means, such as brazing, mechanical caulking, casting, or the like.

なお、この実施例においてはロー付法を用いた。Note that in this example, a brazing method was used.

前記の焼結体の開時性[硬さ(HV)、密度比(%)、
平均残留気孔径(μ)、組織(炭化物粒径、炭化物面積
率)]の測定結果、およびこの台上耐久試験終了侵にお
けるロッカアームパッド部1bの摩耗量、カム摩耗量の
測定結果を第1表に示す。
The opening properties of the sintered body [hardness (HV), density ratio (%),
Table 1 shows the measurement results of the average residual pore diameter (μ), structure (carbide particle size, carbide area ratio)], and the measurement results of the amount of wear on the rocker arm pad portion 1b and the amount of cam wear at the end of this bench durability test. Shown below.

実施例においてはいずれもカム摩耗■(相手部材の摩耗
量)が比較例に比べて少ない値を示している。パッド摩
耗量(本発明の部材の摩耗ff1)は比較例No、2の
VとCrとを多く添加した場合とほぼ同程度で全体のレ
ベルとして向上している。
In all of the Examples, the cam wear ■ (amount of wear on the mating member) is smaller than that of the Comparative Examples. The amount of pad wear (wear ff1 of the member of the present invention) is almost the same as that of Comparative Examples No. 2 and 2, in which large amounts of V and Cr are added, and the overall level is improved.

また比較例N014の代りにOrを用いたちの相手部材
の損傷性(カム摩耗量)が本実施例より劣ることを示し
ている。
Furthermore, it is shown that when Or is used instead of Comparative Example No. 014, the damage to the mating member (cam wear amount) is inferior to that of this example.

[発明の効果] 本発明にかかる内燃機関の動弁系部材の金属焼結間は、
還元後の組成となすべく各金属元素を含有する微細な金
属酸化物を配合した混合物を黒鉛粉末により還元して生
成した合金粉末を成形焼結することにより耐摩耗性、耐
スカッフィング性に浸れ、しかも摺動する相手材〈カム
部材)に対す材、例えばバルブリフタにも適用でき動弁
系部材の種類や形式によってはカムとの当り而のみなら
ず他の部品へも適用可能な部材である。
[Effect of the invention] During the metal sintering of the valve train member of the internal combustion engine according to the present invention,
A mixture of fine metal oxides containing each metal element is reduced with graphite powder to achieve the reduced composition, and the resulting alloy powder is shaped and sintered to provide excellent wear resistance and scuffing resistance. Moreover, it can be applied to a sliding mating member (cam member), for example, a valve lifter, and depending on the type and type of valve train member, it can be applied not only to the part that contacts the cam but also to other parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は内燃機関の動弁機構を示す模式図である。 1・・・ロッカアーム 1a・・・ロッカアーム本体部 1b・・・ロッカアームパッド部 2・・・バルブ 3・・・ラッシュアジャスタ 4・・・カム FIG. 1 is a schematic diagram showing a valve mechanism of an internal combustion engine. 1...Rocker arm 1a...Rocker arm main body 1b...Rocker arm pad part 2...Valve 3...Lash adjuster 4...cam

Claims (3)

【特許請求の範囲】[Claims] (1)還元後の組成が重量比で、C(炭素):1〜4%
、Mo(モリブデン):10〜40%、Cr(クロム)
:3〜20%、Ni(ニッケル):1〜10%、および
Nb(ニオブ):0.05〜1%、W(タングステン)
:0.3〜5%、V(バナジウム):0.1〜3%の少
なくとも1種を含有し、残部が実質的にFe(鉄)から
なり、前記各金属元素を含有する微細な金属酸化物粉末
を配合した混合粉末に、黒鉛粉末を混合して還元して生
成した合金粉末を、成形・焼結してなる金属焼結体であ
ることを特徴とする内燃機関の動弁系部材。
(1) Composition after reduction: C (carbon): 1 to 4% by weight
, Mo (molybdenum): 10-40%, Cr (chromium)
: 3 to 20%, Ni (nickel): 1 to 10%, and Nb (niobium): 0.05 to 1%, W (tungsten)
: 0.3 to 5%, V (vanadium): 0.1 to 3%, the balance is substantially Fe (iron), and the fine metal oxide contains each of the above metal elements. 1. A valve train member for an internal combustion engine, characterized in that it is a metal sintered body formed by molding and sintering an alloy powder produced by mixing and reducing graphite powder into a mixed powder containing a compound powder.
(2)前記金属焼結体は、密度比が98%以上で直径5
μm以下のほぼ球状の閉気孔が均一に分散している特許
請求の範囲第1項記載の内燃機関の動弁系部材。
(2) The metal sintered body has a density ratio of 98% or more and a diameter of 5
A valve train member for an internal combustion engine according to claim 1, wherein substantially spherical closed pores of μm or less are uniformly distributed.
(3)前記金属焼結体は、平均粒径が10μm以下で球
状の炭化物が組織中の面積率にして10〜40%の範囲
に均一に分散させた特許請求の範囲第1項記載の内燃機
関の動弁系部材。
(3) The internal combustion according to claim 1, wherein the metal sintered body has spherical carbides having an average particle size of 10 μm or less and uniformly dispersed in an area ratio of 10 to 40% in the structure. Engine valve train components.
JP31441687A 1987-12-11 1987-12-11 Valve gear mechanism member for internal combustion engine Pending JPH01156453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31441687A JPH01156453A (en) 1987-12-11 1987-12-11 Valve gear mechanism member for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31441687A JPH01156453A (en) 1987-12-11 1987-12-11 Valve gear mechanism member for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH01156453A true JPH01156453A (en) 1989-06-20

Family

ID=18053082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31441687A Pending JPH01156453A (en) 1987-12-11 1987-12-11 Valve gear mechanism member for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH01156453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096051A1 (en) 2008-02-29 2009-09-02 vR Systems AG Transport device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096051A1 (en) 2008-02-29 2009-09-02 vR Systems AG Transport device

Similar Documents

Publication Publication Date Title
JP4183346B2 (en) Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same
US6139598A (en) Powdered metal valve seat insert
JPS5918463B2 (en) Wear-resistant sintered alloy and its manufacturing method
JPH1171651A (en) Ferrous sintered alloy for valve seat
JP2003119553A (en) Sinterd alloy material for valve seat and manufacturing method therefor
JP3186816B2 (en) Sintered alloy for valve seat
JPH01156453A (en) Valve gear mechanism member for internal combustion engine
JP4051167B2 (en) Wear-resistant iron-based sintered alloy
JP3434527B2 (en) Sintered alloy for valve seat
JPH01159350A (en) Valve gear mechanism member for internal combustion engine
JPS6389643A (en) Wear-resistant ferrous sintered alloy
JPS60208456A (en) Member for movable valve of internal-combustion engine
JPS60194048A (en) Valve system member for internal-combustion engine
JPS60197851A (en) Member for valve mechanism system of internal- combustion chamber
JP2661045B2 (en) Fe-based sintered alloy with excellent sliding properties
JPS60208455A (en) Member for movable valve of internal-combustion engine
JPH0561346B2 (en)
EP4082692A1 (en) Sintered valve seat insert and method of manufacture thereof
JPH0456747A (en) Manufacture of wear resistant ferrous sintered alloy
KR970001323B1 (en) Sintering alloy of valve seat
JPS62146242A (en) Valve gear mechanism member for internal combustion engine
JPH0459362B2 (en)
JPH01100243A (en) Driving valve member for internal combustion engine
JPS6115946A (en) Valve operating system member in internal-combustion engine
JPH0372052A (en) Manufacture of wear-resistant sintered alloy