JPS60208455A - Member for movable valve of internal-combustion engine - Google Patents

Member for movable valve of internal-combustion engine

Info

Publication number
JPS60208455A
JPS60208455A JP6654384A JP6654384A JPS60208455A JP S60208455 A JPS60208455 A JP S60208455A JP 6654384 A JP6654384 A JP 6654384A JP 6654384 A JP6654384 A JP 6654384A JP S60208455 A JPS60208455 A JP S60208455A
Authority
JP
Japan
Prior art keywords
powder
mixed
combustion engine
internal combustion
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6654384A
Other languages
Japanese (ja)
Inventor
Yukio Kadota
門田 幸男
Shuichi Fujita
藤田 秋一
Tetsuya Suganuma
菅沼 徹哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6654384A priority Critical patent/JPS60208455A/en
Publication of JPS60208455A publication Critical patent/JPS60208455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a member for movable valve of an internal-combustion engine having superior wear and scuffing resistances by adding graphite powder to a mixture of various kinds of metallic oxide powders to reduce the metallic oxide powders, mixing the reduced powders with FeP or FeB powder, and molding and sintering the mixture. CONSTITUTION:Metallic oxide powders are mixed so as to prepare a mixed alloy powder having a composition consisting of, by weight, one or more among 1-4% C, 10-40% Mo, 3-20% Cr, 1-10% Co, 0.005-0.8% P and 0.03-0.3% B, and the balance Fe before molding and sintering. Graphite powder is added to the mixture to reduce the metallic oxide powders, and the reduced powders are mixed with FeP or FeB powder. The resulting mixed alloy powder is molded and sintered to obtain a member for a movable valve of an internal-combustion engine.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関の動弁系部材に関し、詳しくは、自
動車等に使用される内燃機関の動弁機構を構成する動弁
系部材において、カム等との摺動部において優れた耐摩
耗性が要求される、ロッカアーム、バルブリフタ等の内
燃機関の動弁系部材にかかる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a valve train member for an internal combustion engine, and more particularly, to a valve train member constituting a valve train mechanism for an internal combustion engine used in an automobile or the like. This applies to valve train members of internal combustion engines, such as rocker arms and valve lifters, which require excellent wear resistance in sliding parts with cams and the like.

(従来技術〕 内燃機関の動弁機構において、カムの回転運動をバルブ
の上下運動に変換する、ロッカアーム。
(Prior Art) A rocker arm converts the rotational movement of a cam into the vertical movement of a valve in a valve train of an internal combustion engine.

バルブリフタ等の内燃機関の勘弁系部材においては、曲
げ、引張り、圧縮等の複雑に作用する応力に耐えるべく
充分な機械的性質が必要なことはもちろんのこと、他部
品(カム、バルブ等)との摺動部においては、特に、耐
摩耗性、引っ掻き摩耗に耐える特性、いわゆる、耐スカ
ッフィング性に優れ、しかも、IM動する相手材に対す
る損傷性の少ないことが必要とされている。
Valve lifters and other valve lifters for internal combustion engines must not only have sufficient mechanical properties to withstand complex stresses such as bending, tension, and compression, but also must have sufficient mechanical properties to withstand complex stresses such as bending, tension, and compression. In particular, the sliding parts of the bearings are required to have excellent abrasion resistance, scratch wear resistance, so-called scuffing resistance, and to have little damage to the mating material that moves IM.

そこで、従来、ロッカアーム、バルブリフタ等といった
内燃機関の動弁系部材には、一般に、炭素鋼5合金鋼等
の鋼部材でその本体部を製作し、そのカムとの摺動面に
対しては耐摩耗性を向上させるために、浸炭焼入処理、
チル硬化処理、硬質クロムメッキ処理、自溶性合金の溶
射処理等を実施して使用するのが通常であった。
Therefore, conventionally, the main body of internal combustion engine valve train members such as rocker arms and valve lifters is generally made of steel members such as carbon steel 5 alloy steel, and the sliding surface with the cam is resistant. Carburizing and quenching treatment to improve wear resistance,
It was common practice to use chill hardening treatment, hard chrome plating treatment, thermal spraying treatment with self-fluxing alloys, etc.

しかしながら、浸炭焼入処理品においては耐スカッフィ
ング性に劣り、また、チル硬化処理品においては摺動部
材としての耐久性に劣る。
However, carburized and quenched products have poor scuffing resistance, and chill-hardened products have poor durability as sliding members.

また、硬質クロムメッキ処理品においては内燃機関の作
動時における局部光りに伴い、硬質クロムメッキの剥離
や摩耗剥離を発生することがあり、また、自溶性合金の
溶射処理品においては摺動する相手材に対する1月優性
が増大してカムの摩耗が激しくなる等、従来の内燃機関
の動弁系部材としての上記の材料・処理にはそれぞれに
問題点かあり、より優れた内燃機関の動弁系部材の開発
が強く望まれている。
In addition, on products treated with hard chrome plating, peeling or abrasion of the hard chrome plating may occur due to localized brightness during internal combustion engine operation, and on products treated with thermal spraying of self-fluxing alloys, there is a risk of peeling off the hard chrome plating due to localized light during internal combustion engine operation. Each of the above-mentioned materials and treatments used as valve train components for conventional internal combustion engines has its own problems, such as increasing the dominance of cams over materials, resulting in severe cam wear. The development of system components is strongly desired.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の従来技術の問題点を解決するためにな
されたもので、成形・焼結前の混合合金粉末の組成とな
すべく、各金属元素を含有する微細な金属酸化物粉末を
配合した混合粉末に同時混合した黒鉛粉末により還元し
て生成した合金粉末に、微細なFeP粉末、FeB粉末
のうち少なくとも1種類以上を添加・混合した、混合合
金粉末をそのまま使用して成形・焼結することによって
、耐摩耗性、耐スカッフィング性に優れ、しかも、摺動
する相手材に対する損傷性を少なくすることのできる内
燃機関の動弁系部材を提供することを目的としている。
The present invention has been made in order to solve the problems of the prior art described above, and includes blending fine metal oxide powder containing each metal element to form the composition of the mixed alloy powder before molding and sintering. At least one of fine FeP powder and FeB powder is added to and mixed with the alloy powder produced by reducing the mixed powder with graphite powder mixed at the same time, and the mixed alloy powder is used as it is for molding and sintering. The object of the present invention is to provide a valve train member for an internal combustion engine that has excellent wear resistance and scuffing resistance, and can reduce damage to sliding mating members.

〔発明の構成〕[Structure of the invention]

このような目的は、本発明によれば、成形・焼結前の混
合合金粉末の組成を、重量比率にて、C;1〜4%、M
o;10〜40%、Cr;3〜20%、Co;1〜10
%、および、P、0.05〜0.8%、B;0.03〜
0.3%のうち少なくとも1様類以上を含有し、残部実
質的にFeからなる組成となすべく、各金属元素を含有
する微細な金属酸化物粉末を配合した混合粉末に同時混
合された黒鉛粉末により還元して生成した合金粉末に、
微細なFeP粉末、FeB粉末を添加した、混合合金粉
末をそのまま使用して成形・焼結したことを特徴とする
内燃機関の動弁系部材によって達成される。
According to the present invention, this purpose is achieved by changing the composition of the mixed alloy powder before compaction and sintering to a weight ratio of C; 1 to 4%, M.
o: 10-40%, Cr: 3-20%, Co: 1-10
%, and P, 0.05~0.8%, B; 0.03~
Graphite mixed simultaneously with a mixed powder containing fine metal oxide powder containing each metal element to create a composition containing at least one type of 0.3% and the remainder substantially consisting of Fe. To the alloy powder produced by reduction with powder,
This is achieved by a valve train member for an internal combustion engine characterized by molding and sintering a mixed alloy powder containing fine FeP powder and FeB powder as it is.

〔発明の作用〕[Action of the invention]

以下、本発明の作用について説明する。 Hereinafter, the effects of the present invention will be explained.

まず、本発明の内燃機関の動弁系部材の製造に使用する
合金粉末を構成する、各成分の範囲限定理由について説
明する。
First, the reason for limiting the range of each component constituting the alloy powder used for manufacturing the valve train member of the internal combustion engine of the present invention will be explained.

なお、以下の説明において、合金元素の含有量は全て重
量比率(%)にて表示する。
In addition, in the following description, all contents of alloying elements are expressed in weight ratio (%).

本発明において、MOはCと反応して炭化物を形成し耐
摩耗性を向上するとともに、一部が基地組織中に固溶し
て基地組織を強化することから有mノであるが、10%
未満では形成される炭化物量が少ないため耐摩耗性が充
分でなく基地組織の強度も不充分であることがら動弁系
部材自身の摩耗が多く、また、40%を越えると組織中
の炭化物量が過多となり靭性を大幅に低下し、摺動する
相手材に対する損傷性を増大することから10〜40%
とした。
In the present invention, MO reacts with C to form carbides and improves wear resistance, and a part of it is solidly dissolved in the base structure to strengthen the base structure.
If it is less than 40%, the amount of carbide formed will be small, resulting in insufficient wear resistance and the strength of the base structure will be insufficient, resulting in a lot of wear on the valve train parts themselves.If it exceeds 40%, the amount of carbide in the structure will be insufficient. 10 to 40%, as excessive amount will significantly reduce toughness and increase damage to the sliding mating material.
And so.

また、CrはMOと同様にCと反応して炭化物を形成し
耐摩耗性を向上させるとともに、一部が基地組織中に固
溶して基地組織の強度を高めるとともに耐食性を向上さ
せるので有効であるが、3%未満では組織中の炭化物形
成量が極めて僅かであるため耐摩耗性、耐食性が充分で
なく、一方、20%を越えると形成される炭化物量が過
多となって摺動する相手材に対する損傷性を増大すると
ともに、靭性を大幅に低下することから3〜20%とし
た。
In addition, like MO, Cr reacts with C to form carbides and improves wear resistance, and a portion of Cr is dissolved in the base structure to increase the strength of the base structure and improve corrosion resistance, so it is effective. However, if it is less than 3%, the amount of carbide formed in the structure is extremely small, resulting in insufficient wear resistance and corrosion resistance.On the other hand, if it exceeds 20%, the amount of carbide formed is too large and the sliding object It is set at 3 to 20% because it increases the damage to the material and significantly reduces the toughness.

また、COは基地組織中に固溶して基地組織を強化する
ので有効であるが、1%未満ではそのり」果が充分でな
く、10%を越えるとかえって強度を低下することから
1〜lO%とした。
In addition, CO is effective because it dissolves in the matrix structure and strengthens it, but if it is less than 1%, the effect is not sufficient, and if it exceeds 10%, the strength will actually decrease. It was taken as lO%.

また、P、Bは、本発明材の焼結時において基地組織中
に固溶して焼結反応を活性化させて、より低温での焼結
を可能とするばかりでなく、低融点のステダイト相を形
成して液相により焼結体を高密度化する効果もあり有効
であるが、Pは0.05%未満、Bは0.03%未満で
は上述の効果が充分でなく、Pが0.8%、Bが0.3
%を越えると靭性が低下することから、Pは0.05〜
0.8%、Bは0.03〜0.3%とした。
Furthermore, during sintering of the material of the present invention, P and B are dissolved in the base structure to activate the sintering reaction, and not only enable sintering at a lower temperature, but also improve the stability of the low melting point steadite. It is effective because it forms a phase and densifies the sintered body with the liquid phase, but if P is less than 0.05% and B is less than 0.03%, the above effect is not sufficient, and P is 0.8%, B is 0.3
%, the toughness decreases, so P is 0.05~
0.8%, and B was 0.03 to 0.3%.

また、Cは基地組織を強化するとともにM o 。In addition, C strengthens the base organization and M o.

Cr、と反応してM6 ClMI Cff+ M、、 
l Cs。
Cr, reacts with M6 ClMI Cff+ M,,
l Cs.

M、C型の炭化物を形成し耐摩耗性を向上させるので有
効であるが、1%未満では析出する炭化物量が少ないこ
とから上述の効果が充分でなく、4%を越えると前記M
o、Cr、の殆どが炭化物を形成し゛ζ基地組織中に固
溶する前記Mo、Cr。
It is effective because it forms M and C type carbides and improves wear resistance, but if it is less than 1%, the amount of precipitated carbides is small, so the above effect is not sufficient, and if it exceeds 4%, the M
Most of Mo and Cr form carbides and are solid-solved in the matrix structure.

が不足して、耐摩耗性、耐食性を低下することから1〜
4%とした。
1 to 1 because the lack of
It was set at 4%.

つぎに、本発明において、微細な金属酸化物粉末の混合
粉末を同時混合した、黒鉛粉末を用いて還元するのは以
下の理由によるものである。
Next, in the present invention, the reason why graphite powder mixed with a fine metal oxide powder mixture is used for reduction is as follows.

即ち、従来、合金粉末の製造方法として、■、噴霧法、
■、搗砕法、■、還元法等が採用されているが、本発明
法においては原料である金属酸化物粉末が微細に粉砕さ
れていることから、還元時の還元温度を比較的低温とす
ることができ、還元工程において合金粉末粒子が強固に
焼結したり。
That is, conventional methods for producing alloy powder include (1), spraying method,
■, Grinding method, ■, Reduction method, etc. are used, but in the method of the present invention, since the metal oxide powder that is the raw material is finely pulverized, the reduction temperature during reduction is kept relatively low. The alloy powder particles can be strongly sintered during the reduction process.

粒成長することなく相互に弱く結合した状態となり、粉
砕によって容易に粒径10μ以下の微細な合金粉末とす
ることができるのである。
The particles are weakly bonded to each other without grain growth, and can be easily ground into fine alloy powder with a particle size of 10 μm or less.

また、黒鉛粉末の還元により製造された微細な合金粉末
が優れた活性を有していることから焼結性に優れており
、合金化および炭化物形成反応も容易に進行させること
ができる。
Furthermore, since the fine alloy powder produced by reducing graphite powder has excellent activity, it has excellent sinterability, and alloying and carbide formation reactions can proceed easily.

従って、前記合金粉末は微細粉末であるにもかかわらず
圧縮成形性に優れており、通常の金型成形で容易に圧粉
成形することができる。
Therefore, although the alloy powder is a fine powder, it has excellent compression moldability and can be easily compacted by ordinary die molding.

つぎに、本発明の内燃機関の動弁系部材が98%以上の
密度比であって残留気孔が直径5μ以下の丸い形状をし
た閉気孔を有する残留気孔を均一に分散させている理由
について述べる。
Next, the reason why the valve train member of the internal combustion engine of the present invention has a density ratio of 98% or more and residual pores having round closed pores with a diameter of 5 μm or less is uniformly dispersed. .

密度比が98%未満では残留気孔が多く成りすぎて、耐
ピッチング性、耐摩耗性5および、摺動する相手材に対
する損傷性を増大させることから密度比は98%以上が
望ましい。
If the density ratio is less than 98%, there will be too many residual pores, which will increase the pitting resistance, wear resistance 5, and damage to the mating material on which it slides, so the density ratio is preferably 98% or more.

そして、残留気孔の直径が5μを越えると上述の特性が
劣化するので、5μ以下の小さい残留気孔とするのが望
ましい。
If the diameter of the residual pores exceeds 5μ, the above-mentioned characteristics will deteriorate, so it is desirable that the diameter of the residual pores be as small as 5μ or less.

また、残留気孔の形状が丸い形状に近い程耐ピッチング
性に優れており、閉気孔は潤滑油の保持効果を向上して
耐スカッフィング性を優れたものとする。
Furthermore, the closer the shape of the residual pores is to a round shape, the better the pitting resistance is, and the closed pores improve the lubricating oil retention effect and provide excellent scuffing resistance.

つぎに、本発明の内燃機関の動弁系部材において、平均
粒径10μ以下の球形状の炭化物を、組織中において面
積率にて10〜40%の範囲で均一に分散させることと
しているのは、平均粒径が10μを越えると摺動する相
手材に対する損傷性が増大するからである。
Next, in the valve train member for an internal combustion engine of the present invention, spherical carbides with an average particle size of 10 μm or less are uniformly dispersed in the structure in an area ratio of 10 to 40%. This is because if the average particle size exceeds 10 μm, the damage to the mating material on which it slides increases.

また、炭化物形状を球形状としているのは、摺動する相
手材に対する損傷性を少なくすることができるからであ
る。
Moreover, the reason why the carbide shape is spherical is that damage to the mating material on which it slides can be reduced.

さらに、組織中の炭化物の面積率は、40%を越えると
炭化物量が過多となって摺動する相手材に対する損傷性
を増大し、10%未満では組織中の炭化物量が少な過ぎ
て動弁系部材の耐摩耗性を低下させるので10〜40%
とするのが良い。
Furthermore, if the area ratio of carbide in the structure exceeds 40%, the amount of carbide becomes excessive and increases the damage to the sliding mating material, while if it is less than 10%, the amount of carbide in the structure is too small and the valve drive 10 to 40% as it reduces the wear resistance of system parts.
It is better to

〔実施例〕〔Example〕

以下、添付図面に基づいて、本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on the accompanying drawings.

粒径5μ以下のFe 、O,粉末、Mob、粉末。Fe, O, powder, Mob, powder with a particle size of 5μ or less.

Coo粉末、Cr、○、粉末、C粉末を還元後に第1表
に示す各試料組成となるように配合し、ボールミルを用
いて溶媒中にて2時間湿式混合した。
After reduction, Coo powder, Cr, O, powder, and C powder were blended to give each sample composition shown in Table 1, and wet-mixed in a solvent for 2 hours using a ball mill.

ついで、上記のように配合した微細な金属酸化物粉末の
混合粉末を乾燥し100メソシユの篩にかけた後、この
混合粉末を露点、−40℃のアンモニア分解ガス中にて
1000℃×2時間還元して第1表に示すような、各種
組成の海綿状合金を製造した。
Next, the mixed powder of fine metal oxide powder blended as above was dried and passed through a 100-mesh sieve, and the mixed powder was reduced at 1000°C for 2 hours in ammonia decomposition gas with a dew point of -40°C. Spongy alloys with various compositions as shown in Table 1 were manufactured using the following methods.

つぎに、この海綿状合金に粒径5μ以下のFeP粉末、
FeB粉末のうち少なくとも1種類を添加・混合した混
合粉末を粉砕機により粉砕して100メツシユの篩にか
けた後、この粉砕された微細な合金粉末を、そのまま使
用して5 ton / cm ”の圧力で圧粉成形し、
露点;−40℃のアンモニア分解ガス中で1100℃×
1時間の焼結処理を実施した。
Next, FeP powder with a particle size of 5μ or less is added to this spongy alloy.
A mixed powder in which at least one type of FeB powder is added and mixed is pulverized by a pulverizer and passed through a 100-mesh sieve, and the pulverized fine alloy powder is used as it is and subjected to a pressure of 5 ton/cm''. Compacted with
Dew point: 1100°C in -40°C ammonia decomposition gas
A sintering process was performed for 1 hour.

第1表において、本発明材■は、MO;25%。In Table 1, the present invention material (1) has an MO of 25%.

CO;5%、Cr;10%、PiO,3%、C;3%、
残部実質的にFeからなる組成の混合合金粉末するため
、粒径5μ以下のFe 201粉末;85 g 、 M
 o Os粉末;38g、Coo粉末;6g。
CO; 5%, Cr; 10%, PiO, 3%, C; 3%,
Fe 201 powder with a particle size of 5μ or less; 85 g, M
o Os powder; 38 g, Coo powder; 6 g.

Cr、O,粉末;15g、c粉末;24gを配合した1
&P;0.3%に相当するFeP粉末を添加混合して、
上述の工程により製造した。
1 containing Cr, O, powder; 15g, c powder; 24g
&P;Add and mix FeP powder equivalent to 0.3%,
Manufactured by the process described above.

また、本発明材■は、本発明材■のFeP粉末に代えて
Fef3$53末をB ; 0.1%相当量添加し、他
の微細な金属酸化物粉末は本発明材■と同様に配合して
還元後、FeP粉末、FaB粉末を添加・混合して成形
・焼結前の混合合金粉末組成を、本発明材■のP;0.
3%に代えてB i 0.1%としたものである。
In addition, in the present invention material (2), Fe3$53 powder was added in an amount equivalent to 0.1% of B in place of the FeP powder in the present invention material (2), and other fine metal oxide powders were added in the same manner as the present invention material (2). After blending and reduction, FeP powder and FaB powder are added and mixed, and the mixed alloy powder composition before molding and sintering is adjusted to P:0.
B i was set to 0.1% instead of 3%.

また、本発明材■は、本発明材■のFeP粉末をP;0
.2%相当量およびFeB粉末をB 、 0.1%添加
し、他の微細な金属酸化物粉末は本発明材のと同様に配
合して成形・焼結前の混合合金粉末組成を、本発明材■
のPio、3%に代えてP;0゜2%、Bio、1%と
したものである。
In addition, the present invention material (2) is made by combining the FeP powder of the present invention material (2) with P;0
.. 2% equivalent of B and 0.1% of FeB powder were added, and other fine metal oxide powders were mixed in the same manner as in the present invention material to make the mixed alloy powder composition before molding and sintering. Material ■
In place of Pio of 3%, P: 0°2% and Bio: 1%.

つぎに、比較材■は、本発明材■においてP。Next, the comparative material (■) is P in the present invention material (■).

Bを無添加とし、Moを10%未満、Crを3%未満と
したものである。
B is not added, Mo is less than 10%, and Cr is less than 3%.

また、比較材■は、′本発明材■においてCoを無添加
とし、Pを0.8%を越えて添加したものである。
Comparative material (2) is the same as the invention material (2) in which Co was not added and P was added in an amount exceeding 0.8%.

また、比較材■は、本発明材■においてBを0゜3%を
越えて添加したものである。
Comparative material (2) is the same as the present invention material (2) to which B is added in an amount exceeding 0.3%.

このようにして成形・焼結した焼結体をロッカアームに
、ロー付した後、ロッカアームバンド形状に加工仕上し
て図に示すように内燃機関に組み付けて台上耐久試験を
行った。
The sintered body formed and sintered in this manner was brazed onto a rocker arm, processed into a rocker arm band shape, and assembled into an internal combustion engine as shown in the figure to perform a bench durability test.

図において、lはスイングアーム式ロッカアームであっ
て、バルブ2およびラッシュアジャスタ3に接する部分
を含むロッカアーム本体部1aは従来のものと同様に調
料もしくは合金等によって製作され°Cおり、一方、カ
ム4に対して摺動する部分、即ら、ロッカアームバッド
部1bは前述のような焼結合金で形成されている。
In the figure, reference numeral 1 denotes a swing arm type rocker arm, and the rocker arm main body 1a, including the part that contacts the valve 2 and the lash adjuster 3, is made of prepared materials or alloys in the same way as conventional ones.On the other hand, the cam 4 The portion that slides against the rocker arm pad portion 1b is formed of a sintered alloy as described above.

この焼結合金からなるロッカアームパッド部lI)をa
ツカアーム本体部1aに固着する手段は任息であり、例
えば、ロー付、tJll械的カシメ、もしくは、鋳ぐる
み法等を用いればよい。
The rocker arm pad part lI) made of this sintered alloy is a
The means for fixing to the arm main body 1a is arbitrary, and for example, brazing, mechanical caulking, casting, or the like may be used.

なお、この実施例においてはロー付法を用いた。Note that in this example, a brazing method was used.

」二連の焼結体の緒特性(硬さくHv)、密度比(%)
、平均残留気孔径(μ)1組織(炭化物粒径、炭化物面
積率)〕の測定結果、および、この台上耐久試験終了後
におけるロッカアームバンド部1bの摩耗量、カム摩耗
量の測定結果を第2表に示す。
” Characteristics of double sintered bodies (hardness Hv), density ratio (%)
, average residual pore diameter (μ) 1 structure (carbide particle size, carbide area ratio)], and the measurement results of the amount of wear on the rocker arm band portion 1b and the amount of cam wear after the end of this bench durability test. It is shown in Table 2.

第1表 第2表 第1表および第2表から明らかなように、比較材■は、
P、 Bを無添加としMO含有量も10%未満、Crを
3%未満としているため、基地組織の強度が低いばかり
でなく組織中の炭化物の面積率も低く炭化物量が少ない
ことから耐摩耗性が劣っており、また、密度比が98%
未満であることから摺動する相手材に対する損傷性が増
大していることが理解される。
Table 1 Table 2 As is clear from Tables 1 and 2, the comparative material ■
Since no P or B is added, the MO content is less than 10%, and the Cr content is less than 3%, not only the strength of the matrix structure is low, but also the area ratio of carbides in the structure is low and the amount of carbides is small, so it has excellent wear resistance. The density ratio is 98%.
It is understood that the damage to the mating material on which it slides is increasing.

また、比較材■は、Coを無添加とし、Pを0゜8%を
越える高含有量としていることから、靭性が低く、基地
組織の強度が充分でなく、炭化物も少ないため耐摩耗性
が劣っており、さらに、残留気孔径が5μを越えている
ことから摺動する相手材に対する損傷性が増大している
ことが理解される。
Comparative material (■) does not contain Co and has a high P content of over 0.8%, so it has low toughness, the base structure does not have sufficient strength, and there are few carbides, so it has poor wear resistance. Furthermore, since the residual pore diameter exceeds 5μ, it is understood that the damage to the sliding mating material is increased.

また、比較材■は、Bを0.3%越える高含有量として
いるため靭性が低く、従って、耐摩耗性が劣っている。
Comparative material (3) has a high content of B exceeding 0.3%, so it has low toughness and therefore poor wear resistance.

以上の比較材■〜■に対し本発明材■〜■は、いずれも
、密度比が98%以上と高く、平均残留気孔径は5μ以
下であり、組織中の炭化物も平均粒径10μ以下である
ばかりでなく、組織中の炭化物の面積率も10〜40%
の範囲にあり、台上耐久試験におけるカム摩耗、ロッカ
アームパッド部摩耗も少なく内燃機関の動弁系部材とし
て優れた特性を示している。
In contrast to the above comparative materials ■ to ■, the present invention materials ■ to ■ all have a high density ratio of 98% or more, an average residual pore size of 5μ or less, and carbides in the structure have an average particle size of 10μ or less. Not only that, but the area ratio of carbides in the structure is 10 to 40%.
, and the cam wear and rocker arm pad wear in bench durability tests were also small, demonstrating excellent properties as a valve train member for internal combustion engines.

〔発明の効果〕〔Effect of the invention〕

以」二により明らかなように、本発明にかかる内燃機関
の動弁系部材によれば、成形・焼結前の混合合金粉末の
組成となずべ(、各金属元素を含有する微細な金属酸化
物粉末を配合した混合粉末に同時混合した黒鉛粉末によ
り還元して生成した合金粉末に、微細なFeP粉末、F
eB粉末のうち少なくとも1種類以上を添加・混合した
、混合合金粉末をそのまま使用して成形・焼結すること
によって、耐摩耗性、耐スカッフィング性に優れ、しか
も、摺動する相手材に対するtl傷性を少なくすること
ができる利点がある。
As is clear from the following, according to the valve train member for an internal combustion engine according to the present invention, the composition of the mixed alloy powder before compacting and sintering, Fine FeP powder, F
By molding and sintering the mixed alloy powder containing at least one type of eB powder as it is, it has excellent wear resistance and scuffing resistance, and is free from TL scratches on sliding mating materials. It has the advantage of being able to reduce the amount of damage.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、内燃機関の動弁機構を示す概略図である。 l−〜−−−−ロッカアーム。 1a−−−一ロッカアーム本体部。 1b・−一一−=ロッカアームパッド部。 2−・−・〜パルプ。 3・−・−・・ラッシュアジャスタ。 4−−−一カム。 出願人 トヨタ自動車林式会社 The figure is a schematic diagram showing a valve train of an internal combustion engine. l------Rocker arm. 1a---1 rocker arm main body. 1b・-11-=Rocker arm pad part. 2-・-・~Pulp. 3・−・−・・Lash adjuster. 4---One cam. Applicant: Toyota Motor Hayashi Shiki Company

Claims (1)

【特許請求の範囲】 1、成形・焼結前の混合合金粉末の組成を、重!a比率
にて、C;1〜4%、Mo;10〜40%。 Cr;3〜20%、CoHl 〜io%、および、P 
; 0.05〜0.8%、Bio、03〜0.3%のう
ち少なくともlit類以上を含有し、残部実質的にFe
からなる組成となすべく、各金属元素を含有する微細な
金rIsr!!化物粉末を配合した混合粉末に同時混合
された、黒鉛粉末により還元して生成した合金粉末に微
細なFeP粉末、FeB粉末を添加・混合した混合合金
粉末を、そのまま使用して成形・焼結したことを特徴と
する内燃機関の動弁系部材。 2.98%以上の密度比であって、直径5μ以下の丸い
形状をした閉気孔を有する残留気孔を均一に分散させた
特許請求の範囲第1項記載の内燃機関の動弁系部材。 3、平均粒径lOμ以下であって球形状をした炭化物を
、組織中の面積率にして10〜40%の範囲で均一に分
散させた特許請求の範囲第1項記載の内燃機関の動弁系
部材。
[Claims] 1. The composition of the mixed alloy powder before molding and sintering is changed to In a ratio, C: 1 to 4%, Mo: 10 to 40%. Cr; 3-20%, CoHl ~io%, and P
; 0.05 to 0.8%, Bio, 03 to 0.3%, contains at least lits, and the remainder is substantially Fe.
In order to have a composition consisting of fine gold rIsr! containing each metal element! ! A mixed alloy powder obtained by adding and mixing fine FeP powder and FeB powder to an alloy powder produced by reduction with graphite powder, which was simultaneously mixed with a mixed powder containing compound powder, was used as it was for molding and sintering. A valve train member for an internal combustion engine, characterized by: The valve train member for an internal combustion engine according to claim 1, wherein residual pores having a density ratio of 2.98% or more and having round closed pores with a diameter of 5 μm or less are uniformly dispersed. 3. A valve train for an internal combustion engine according to claim 1, in which spherical carbides having an average particle diameter of 1Oμ or less are uniformly dispersed in an area ratio of 10 to 40% in the structure. System parts.
JP6654384A 1984-04-02 1984-04-02 Member for movable valve of internal-combustion engine Pending JPS60208455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6654384A JPS60208455A (en) 1984-04-02 1984-04-02 Member for movable valve of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6654384A JPS60208455A (en) 1984-04-02 1984-04-02 Member for movable valve of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60208455A true JPS60208455A (en) 1985-10-21

Family

ID=13318919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6654384A Pending JPS60208455A (en) 1984-04-02 1984-04-02 Member for movable valve of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60208455A (en)

Similar Documents

Publication Publication Date Title
JP2000160307A (en) Valve seat insert subjected to powder metallurgy
US20020084004A1 (en) Iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
JP2001081501A (en) Powder mixture for powder metallurgy, ferrous sintered compact, and manufacturing method therefor
KR920007937B1 (en) Fe-sintered alloy for valve seat
US5895517A (en) Sintered Fe alloy for valve seat
US6712871B2 (en) Sintered alloy for valve seat having excellent wear resistance and method for producing the same
EP0098536A2 (en) Wear-resistant sintered ferrous alloy and method of producing same
US4332616A (en) Hard-particle dispersion type sintered-alloy for valve seat use
JPH05202451A (en) Sintered alloy for valve seat
JPS60208455A (en) Member for movable valve of internal-combustion engine
JPH01159350A (en) Valve gear mechanism member for internal combustion engine
JPS60194048A (en) Valve system member for internal-combustion engine
JP2716575B2 (en) Manufacturing method of wear resistant iron-based sintered alloy
JPS60208456A (en) Member for movable valve of internal-combustion engine
JPS6389643A (en) Wear-resistant ferrous sintered alloy
JPS60197851A (en) Member for valve mechanism system of internal- combustion chamber
JPH0555591B2 (en)
JPS60258449A (en) Sintered iron alloy for valve seat
JPS6115946A (en) Valve operating system member in internal-combustion engine
JPH01156453A (en) Valve gear mechanism member for internal combustion engine
KR102185874B1 (en) Iron based sintered alloy for dispersion with strengthening materials with shortened sintering process and manufacturing method of the same
JP2003147405A (en) Alloy steel powder for iron sintering heat treatment material
EP4082692A1 (en) Sintered valve seat insert and method of manufacture thereof
JP2683444B2 (en) Sintered alloy for valve mechanism of internal combustion engine
JPH0561346B2 (en)