JPH0115631B2 - - Google Patents

Info

Publication number
JPH0115631B2
JPH0115631B2 JP57211692A JP21169282A JPH0115631B2 JP H0115631 B2 JPH0115631 B2 JP H0115631B2 JP 57211692 A JP57211692 A JP 57211692A JP 21169282 A JP21169282 A JP 21169282A JP H0115631 B2 JPH0115631 B2 JP H0115631B2
Authority
JP
Japan
Prior art keywords
fiber
fastness
finishing
synthetic fiber
dyed synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57211692A
Other languages
Japanese (ja)
Other versions
JPS59106588A (en
Inventor
Susumu Ueno
Hirokazu Nomura
Shinobu Hashizume
Toshisuke Nishide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP57211692A priority Critical patent/JPS59106588A/en
Priority to DE8383112105T priority patent/DE3380268D1/en
Priority to EP83112105A priority patent/EP0110416B1/en
Publication of JPS59106588A publication Critical patent/JPS59106588A/en
Priority to US06/743,506 priority patent/US4619667A/en
Publication of JPH0115631B2 publication Critical patent/JPH0115631B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coloring (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】 本発明は染色合成繊維製品の堅牢度向上方法に
関するものであり、特には仕上加工剤処理を施し
た染色合成繊維製品の摩擦堅牢度、洗濯堅牢度を
顕著に向上させる処理方法の提供を目的とするも
のである。 一般に合成繊維製品(染色製品)については、
風合、物性、機能性、その他の目的にしたがつて
柔軟仕上、硬仕上、撥水・撥油加工、防縮・防し
わ加工、帯電防止加工等種々の仕上加工が施され
るのであるが、これらの場合に大きな問題点とし
て、かかる各種の仕上加工が施されると染色繊維
製品の堅牢度、たとえば摩擦堅牢度、洗濯堅牢度
が著しく低下する(1〜3級低下する)というこ
とである。この堅牢度低下によつて、繊維製品の
商品価値が著しく損われるため、仕上剤の種類、
加工法の選択によつてこの低下を少しでも抑制し
ているのが現状で、これでは仕上加工に制限があ
り、堅牢度低下を防止する新規な加工法の開発が
要望されていた。 そのために、樹脂、薬剤メーカーまたは仕上加
工にたずさわるものは、堅牢度低下の少ない仕上
加工剤または加工方法の開発に取り組んでいる
が、それらの試みはあくまでも染色繊維製品の堅
牢度が仕上加工前に比べて低下が少ないかもしく
はできるだけ同程度に保持することを目的とする
ものであり、染料のもつ本来の堅牢度の領域を脱
するものではなかつた。 一方、また染料自体についても均染性がよいけ
れども堅牢度が劣るためにその使用がちゆうちよ
されるという場合があり、そのような染料の有利
な堅牢度向上方法の開発が望まれている。 本発明者らは、かかる技術的課題にかんがみ、
仕上加工剤処理を施した染色合成繊維製品の堅牢
度を顕著に向上させる方法を開発すべく鋭意検討
の結果、本発明に到達した。すなわち本発明は、
仕上加工剤処理を施した染色合成繊維製品を、ガ
ス圧0.01〜10トルの酸素を10%以上含有する無機
ガスより形成された、放電電圧400ボルト以上、
電極間距離1〜30cmの内部電極型低温プラズマ領
域を通過させながら処理することを特徴とする染
色合成繊維製品の堅牢度向上方法に関するもので
ある。 上記本発明によれば染色合成繊維製品の仕上加
工処理による堅牢度低下を防止することはもちろ
んのこと、むしろその堅牢度が仕上加工前に比べ
てより向上する(1〜4級程度向上する)という
効果がもたらされ、したがつて仕上加工剤の種類
および加工方法の制限が解消され、染色繊維製品
に多彩な仕上加工が可能となり、繊維製品の商品
価値を著しく高める。 つぎに本発明を詳細に説明する。 本発明が対象とする染色合成繊維製品は、ポリ
エステル繊維、ナイロン繊維、アクリル繊維、ポ
リプロピレン繊維、アセテート繊維、ビニロン繊
維、またはこれらを少なくとも50重量%含む混紡
繊維から成る織物状、編物状もしくは不織布ある
いは糸状のものすべてを包含する。染色のために
使用される染料としては特に制限がなく、一般に
市販ないし開発されているものが適宜に選択使用
される。 仕上加工のために使用される加工剤としては、
柔軟仕上剤(シリコーン系、ハイドロカーボン系
等)、硬仕上剤(メラミン系、ウレタン系、酢ビ
系、ポリエステル系等)、撥水・撥油加工剤(シ
リコーン系、フツ素系等)、防縮・防シワ加工剤
(尿素系、グリオキザール系等)などが例示され
る。仕上加工のための処理条件等は従来公知の方
法に準じて行えばよく、その方法自体に制限はな
い。 本発明はこのような仕上加工剤処理が施された
染色合成繊維製品を低温プラズマ処理するのであ
るが、この処理を効率的に進めるために、減圧可
能な装置内にいずれか一方がアースされた対放電
電極を有する内部電極型低温プラズマ発生装置を
使用し、この装置内のアース側電極上に対象とす
る染色合成繊維製品をセツトし、減圧下に無機ガ
スを流通させながら両電極間に400ボルト以上の
放電電圧を与えてグロー放電を行わせることによ
り発生させた低温プラズマで該染色合成繊維製品
の両面を処理するという方法により行われる。 ここに使用される無機ガスとしては、酸素ガ
ス、空気、または少なくとも10容量%の酸素ガス
を含有する、ヘリウム、ネオン、アルゴン、窒
素、亜酸化窒素、一酸化窒素、二酸化窒素、一酸
化炭素、二酸化炭素、シアン化臭素、亜硫酸ガ
ス、硫化水素等で例示される1種または2種以上
の無機ガスとの混合ガスが挙げられる。酸素ガス
は加工剤被膜の表面をエツチングし、部分的に架
橋した酸化被膜を効果的に形成して優れた堅牢度
を付与する。この含有量が10%未満では、この効
果が認められなくなるため、少なくとも10容量%
の酸素ガスを含有することが必要になる。 また、放電電圧が400ボルト未満の状態で形成
されるプラズマでは、表面の酸化架橋層の形成が
不満足なものとなり、優れた堅牢度のものが得ら
れない。 低温プラズマ発生装置内におけるガス雰囲気の
圧力は0.01〜10トルの範囲であつて、このような
ガス圧力下で対放電電極間に周波数10KHz〜
100MHzのような高周波で、10W〜100KWのよう
な電力を与えることにより安定なグロー放電を行
わせることができる。なお、放電周波数帯として
は上記高周波のほかに低周波、マイクロ波、直流
などを用いることができる。 電極の形状については特に製限はなく、入力側
電極とアース側電極が同一形状でもあるいは異な
つた形状のいずれでもよく、それらは平板状、リ
ング状、棒状、シリンダー状等種々可能であり、
さらには装置の金庫内壁を一方の電極としてアー
スした形式のものであつてもよい。 この場合の電極間距離としては1〜30cm好まし
くは2〜10cmのものが使用される。これが1cm以
下では陽極に発生する熱の影響により繊維の変
形、変質が生じ、また30cm以上では繊維表面に作
用するプラズマ強度が弱くなり、本発明で目的と
する優れた堅牢度が得られなくなる。なお、電極
材質については銅、鉄、ステンレス、アルミニウ
ム等の金属製のものが使用されるが、入力側電極
については安定な放電を維持するために、ホーロ
ーコート、ガラスコート、セラミツクコート等の
耐電圧をもつた絶縁被覆を施すことが好ましく、
かつ直流印加時の場合での耐電圧として1000ボル
ト/mm以上であることが望ましい。 つぎに具体的実施例をあげるが、本発明はこれ
に限定されるものではない。 以下に挙げる実施例では図面に示した低温プラ
ズマ発生装置を使用した。 図中の処理槽1はステンレス製であり、これは
真空ポンプ2によつて0.01トル以下にまで減圧す
ることができる設計とされている。処理槽1には
ガス導入管3が取り付けてあり、各種の処理ガス
が必要に応じて分流されて槽内に導入される。処
理槽1内には回転式のステンレス製円筒陰極4が
設置されており、この円筒陰極は駆動装置5によ
り回転速度の調整が連続的に可能となつている。
この円筒陰極4は処理槽1を通じて大地に電気的
に接地してある。またこの回転式円筒陰極4は内
部に温水または冷水を通じて温度調整ができる構
造となつている。さらに処理槽1内には槽とは電
気的に絶縁された棒状電極6が設けられており、
円筒陰極4とは20cmで等間隔を保つている。この
ほか処理槽1内の圧力を測定するためのピラニー
真空計7、および電極間に高周波電力を与えるた
めの高周波電源8が備えられている。 実施例 1 ポリエステル100%の加工糸織物(Dianix
Blue BG―FS 4.0%(o.w.f)染色布)を下記の
仕上加工剤および処理条件で仕上加工した。 〔仕上加工剤〕 デートロンV―500:4級カチオンアクリル
系ポリマー(日華化学工業製)、処理濃度
5%水溶液 ナイスポールTF―501:グラフト化セルロー
ス(日華化学工業製)、処理濃度10%水溶
液 ナイスポールPR―333:水溶性ポリエステル
(日華化学工業製)、処理濃度10%水溶液 エバフアノールN:水溶性ウレタン樹脂(日
華化学工業製)、処理濃度5%水溶液 エバフアノールCS(触媒、有機Sn化合物、
日華化学工業製)1%水溶液併用処理 〔仕上加工処理条件) パツテイング、1デイツプ―1ニツプ、ピツク
アツプ68重量%、ドライ110℃×3分、キユア180
℃×30秒 上記いずれかの仕上加工剤で処理したもの、お
よびかかる仕上加工剤処理を全く行わなかつたも
のを、30cm×30cmの大きさにカツトした試験片を
前記した低温プラズマ処理装置の円筒陰極上に貼
付け、処理槽内を減圧にした。内圧が0.03トルに
なつたのち、酸素ガスを2/分で導入し流通さ
せながら内圧を0.18トルに調整保持した。 ついで電極間に110KHz、3KWの電力を投入
し、放電電圧500ボルトで300秒間低温プラズマ処
理した。この試験布の反対面についても上記と同
様の低温プラズマ処理を行つた。 これらについて、摩擦堅牢度および洗濯堅牢度
の評価を行つたところ、結果は第1表に示すとお
りであつた。 イ 摩擦堅牢度の評価 JIS L 0849 学振型摩擦試験機、荷重200g
にて100回往復 〔乾式、湿式〕 ロ 洗濯堅牢度の評価 JIS L 0844 (A―2法)添付白布、綿、ナ
イロン 【表】
[Detailed Description of the Invention] The present invention relates to a method for improving the fastness of dyed synthetic fiber products, and in particular, a method for significantly improving the fastness to rubbing and washing of dyed synthetic fiber products treated with a finishing agent. The purpose is to provide a processing method. Generally, regarding synthetic fiber products (dyed products),
Depending on texture, physical properties, functionality, and other purposes, various finishing treatments are applied, such as flexible finishing, hard finishing, water/oil repellent finishing, anti-shrink/wrinkle finishing, and antistatic finishing. A major problem in these cases is that when such various finishing treatments are applied, the fastness of dyed textile products, such as abrasion fastness and washing fastness, decreases significantly (1 to 3 grade decrease). . This decrease in fastness significantly impairs the commercial value of textile products, so the type of finishing agent,
Currently, this decrease is suppressed by selecting a processing method, but this limits finishing processing, and there has been a demand for the development of a new processing method that prevents the decrease in fastness. To this end, resin and chemical manufacturers, as well as those involved in finishing, are working to develop finishing agents and processing methods that reduce the loss of fastness. The objective was to reduce the decrease or maintain the same level of fastness as much as possible, and it did not go beyond the original fastness of the dye. On the other hand, there are cases in which dyes themselves have good level dyeing properties but poor fastness, which makes their use difficult.Therefore, it is desired to develop an advantageous method for improving the fastness of such dyes. In view of such technical issues, the present inventors have
As a result of intensive studies to develop a method for significantly improving the fastness of dyed synthetic fiber products treated with finishing agents, the present invention was achieved. That is, the present invention
Dyed synthetic fiber products that have been treated with a finishing agent are made from an inorganic gas containing 10% or more oxygen at a gas pressure of 0.01 to 10 torr, with a discharge voltage of 400 volts or more,
The present invention relates to a method for improving the fastness of dyed synthetic fiber products, characterized in that the process is carried out while passing through an internal electrode type low temperature plasma region with an inter-electrode distance of 1 to 30 cm. According to the present invention, it is possible not only to prevent a decrease in fastness of dyed synthetic fiber products due to finishing processing, but also to improve the fastness of dyed synthetic fiber products compared to before finishing processing (improved by about 1 to 4 grades). As a result, restrictions on the types of finishing agents and processing methods are eliminated, making it possible to apply a variety of finishes to dyed textile products, and significantly increasing the commercial value of textile products. Next, the present invention will be explained in detail. The dyed synthetic fiber products to which the present invention is directed include woven, knitted or non-woven fabrics made of polyester fibers, nylon fibers, acrylic fibers, polypropylene fibers, acetate fibers, vinylon fibers, or blended fibers containing at least 50% by weight of these fibers; Includes all thread-like things. The dye used for dyeing is not particularly limited, and generally commercially available or developed dyes are appropriately selected and used. Processing agents used for finishing include:
Softening agents (silicone-based, hydrocarbon-based, etc.), hard finishing agents (melamine-based, urethane-based, vinyl acetate-based, polyester-based, etc.), water/oil repellent finishing agents (silicone-based, fluorine-based, etc.), shrink-proofing agents - Examples include anti-wrinkle finishing agents (urea-based, glyoxal-based, etc.). The processing conditions for finishing may be carried out according to conventionally known methods, and the method itself is not limited. In the present invention, dyed synthetic fiber products that have been treated with such finishing agents are subjected to low-temperature plasma treatment, but in order to proceed with this treatment efficiently, one side of the dyed synthetic fiber product is grounded in a device that can reduce pressure. Using an internal electrode type low-temperature plasma generator with a counter-discharge electrode, the target dyed synthetic fiber product is set on the earth-side electrode in this device, and while inorganic gas is flowing under reduced pressure, 40 This is carried out by a method in which both sides of the dyed synthetic fiber product are treated with low-temperature plasma generated by applying a discharge voltage of volts or more to cause glow discharge. Inorganic gases used here include oxygen gas, air, or helium, neon, argon, nitrogen, nitrous oxide, nitric oxide, nitrogen dioxide, carbon monoxide, containing at least 10% by volume of oxygen gas. Examples include mixed gases with one or more inorganic gases such as carbon dioxide, bromine cyanide, sulfur dioxide gas, and hydrogen sulfide. The oxygen gas etches the surface of the coating, effectively forming a partially cross-linked oxide layer that imparts superior fastness. If this content is less than 10%, this effect will not be observed, so at least 10% by volume
of oxygen gas. In addition, plasma generated at a discharge voltage of less than 400 volts results in unsatisfactory formation of an oxidized crosslinked layer on the surface, making it impossible to obtain excellent fastness. The pressure of the gas atmosphere in the low-temperature plasma generator is in the range of 0.01 to 10 Torr, and under such gas pressure, the frequency between the counter discharge electrodes is 10 KHz to
Stable glow discharge can be achieved by applying power of 10W to 100KW at a high frequency of 100MHz. Note that as the discharge frequency band, in addition to the above-mentioned high frequency, low frequency, microwave, direct current, etc. can be used. There is no particular limit to the shape of the electrodes, and the input side electrode and the ground side electrode may have the same shape or different shapes, and they can be in various shapes such as a flat plate, a ring shape, a rod shape, a cylinder shape, etc.
Furthermore, it may be of a type in which the inner wall of the safe of the device is grounded as one electrode. In this case, the distance between the electrodes is 1 to 30 cm, preferably 2 to 10 cm. If it is less than 1 cm, the fibers will be deformed or deteriorated due to the heat generated at the anode, and if it is more than 30 cm, the plasma intensity acting on the fiber surface will be weakened, making it impossible to obtain the excellent fastness that is the objective of the present invention. In addition, metals such as copper, iron, stainless steel, and aluminum are used for the electrode materials, but for the input side electrodes, in order to maintain stable discharge, durable materials such as enamel coat, glass coat, and ceramic coat are used for the input side electrode. It is preferable to apply an insulating coating with voltage.
In addition, it is desirable that the withstand voltage is 1000 volts/mm or more when direct current is applied. Next, specific examples will be given, but the present invention is not limited thereto. In the examples listed below, the low-temperature plasma generator shown in the drawings was used. A processing tank 1 in the figure is made of stainless steel, and is designed to be able to reduce the pressure to 0.01 torr or less using a vacuum pump 2. A gas introduction pipe 3 is attached to the processing tank 1, and various processing gases are divided as necessary and introduced into the tank. A rotary stainless steel cylindrical cathode 4 is installed in the processing tank 1, and the rotation speed of this cylindrical cathode can be continuously adjusted by a drive device 5.
This cylindrical cathode 4 is electrically grounded to the earth through the processing tank 1. Further, this rotary cylindrical cathode 4 has a structure in which the temperature can be adjusted by passing hot or cold water inside. Furthermore, a rod-shaped electrode 6 is provided in the processing tank 1 and is electrically insulated from the tank.
It maintains an equal distance of 20 cm from the cylindrical cathode 4. In addition, a Pirani vacuum gauge 7 for measuring the pressure inside the processing tank 1 and a high frequency power source 8 for applying high frequency power between the electrodes are provided. Example 1 100% polyester textured yarn fabric (Dianix
Blue BG-FS 4.0% (OWF) dyed fabric) was finished using the following finishing agent and processing conditions. [Finishing agent] Daytron V-500: Quaternary cationic acrylic polymer (manufactured by NICCA Chemical Industries), treatment concentration 5% aqueous solution Nicepol TF-501: Grafted cellulose (manufactured by NICCA CHEMICAL INDUSTRY), treatment concentration 10% Aqueous solution Nicepol PR-333: Water-soluble polyester (manufactured by NICCA CHEMICAL INDUSTRIES), treatment concentration 10% aqueous solution Evafanol N: Water-soluble urethane resin (manufactured by NICCA CHEMICAL INDUSTRIES), treatment concentration 5% aqueous solution Evafanol CS (catalyst, organic Sn Compound,
(manufactured by NICCA CHEMICAL INDUSTRIAL CO., LTD.) 1% aqueous solution combined treatment (finishing processing conditions) Patting, 1 dip - 1 nip, pick up 68% by weight, dry 110℃ x 3 minutes, cure 180
°C x 30 seconds Test pieces cut into 30cm x 30cm pieces treated with any of the above finishing agents and those not treated with any finishing agent were placed in the cylinder of the low-temperature plasma processing equipment described above. It was pasted on the cathode, and the inside of the treatment tank was reduced in pressure. After the internal pressure reached 0.03 Torr, the internal pressure was adjusted and maintained at 0.18 Torr while oxygen gas was introduced at a rate of 2/min and circulated. Next, a power of 110 KHz and 3 KW was applied between the electrodes, and low-temperature plasma treatment was performed for 300 seconds at a discharge voltage of 500 volts. The same low-temperature plasma treatment as above was performed on the opposite side of this test cloth. These were evaluated for fastness to rubbing and fastness to washing, and the results were as shown in Table 1. B Evaluation of fastness to friction JIS L 0849 Gakushin type friction tester, load 200g
100 times back and forth [dry method, wet method] B Evaluation of washing fastness JIS L 0844 (A-2 method) Attached white cloth, cotton, nylon [Table]

【図面の簡単な説明】[Brief explanation of drawings]

図面は内部電極型低温プラズマ発生装置の一例
を示す概略構成図である。 1…ステンレス製処理槽、2…真空ポンプ、3
…ガス導入管、4…円筒陰極、5…駆動装置、6
…棒状電極、7…ピラニー真空計、8…高周波電
源。
The drawing is a schematic configuration diagram showing an example of an internal electrode type low temperature plasma generation device. 1... Stainless steel processing tank, 2... Vacuum pump, 3
...Gas introduction pipe, 4...Cylindrical cathode, 5...Drive device, 6
...Rod-shaped electrode, 7...Pirani vacuum gauge, 8...High frequency power supply.

Claims (1)

【特許請求の範囲】 1 仕上げ加工剤処理を施した染色合成繊維製品
を、ガス圧0.01〜10トルの酸素を10%以上含有す
る無機ガスより形成された、放電電圧400ボルト
以上、電極間距離1〜30cmの内部電極型低温プラ
ズマ領域を通過させながら処理することを特徴と
する染色合成繊維製品の堅牢度向上方法。 2 前記染色合成繊維製品が、ポリエステル繊
維、ナイロン繊維、アクリル繊維、ポリプロピレ
ン繊維、アセテート繊維、またはこれを少なくと
も50重量%含む混紡繊維製のものである特許請求
の範囲第1項記載の染色合成繊維製品の堅牢度向
上方法。
[Claims] 1. A dyed synthetic fiber product treated with a finishing agent is made of an inorganic gas containing 10% or more oxygen at a gas pressure of 0.01 to 10 torr, a discharge voltage of 400 volts or more, and a distance between electrodes. A method for improving the fastness of dyed synthetic fiber products, which comprises processing while passing through an internal electrode-type low-temperature plasma region of 1 to 30 cm. 2. The dyed synthetic fiber according to claim 1, wherein the dyed synthetic fiber product is made of polyester fiber, nylon fiber, acrylic fiber, polypropylene fiber, acetate fiber, or a blended fiber containing at least 50% by weight of these fibers. How to improve product robustness.
JP57211692A 1982-02-12 1982-12-02 Enhancement in fastness of dyed synthetic fiber product Granted JPS59106588A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57211692A JPS59106588A (en) 1982-12-02 1982-12-02 Enhancement in fastness of dyed synthetic fiber product
DE8383112105T DE3380268D1 (en) 1982-12-02 1983-12-01 A method for increasing color density and improving color fastness of dyed fabrics
EP83112105A EP0110416B1 (en) 1982-12-02 1983-12-01 A method for increasing color density and improving color fastness of dyed fabrics
US06/743,506 US4619667A (en) 1982-02-12 1985-06-11 Method for increasing color density and improving color fastness of dyed fabrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57211692A JPS59106588A (en) 1982-12-02 1982-12-02 Enhancement in fastness of dyed synthetic fiber product

Publications (2)

Publication Number Publication Date
JPS59106588A JPS59106588A (en) 1984-06-20
JPH0115631B2 true JPH0115631B2 (en) 1989-03-17

Family

ID=16610001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57211692A Granted JPS59106588A (en) 1982-02-12 1982-12-02 Enhancement in fastness of dyed synthetic fiber product

Country Status (1)

Country Link
JP (1) JPS59106588A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197467A (en) * 1984-10-09 1986-05-15 株式会社クラレ Fiber structure excellent in additive transfer preventing effect and its production
JPS61186578A (en) * 1985-02-05 1986-08-20 株式会社クラレ Sheet like structure and its production
JPS6228484A (en) * 1985-07-30 1987-02-06 小松精練株式会社 Fastness enhancing method
JP2935156B2 (en) * 1993-10-14 1999-08-16 株式会社 ブレスト工業研究所 Cable rack construction method and mounting bracket

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959104A (en) * 1974-09-30 1976-05-25 Surface Activation Corporation Electrode structure for generating electrical discharge plasma
JPS5299400A (en) * 1976-02-17 1977-08-20 Kuraray Co Production of synthetic fiber with fine concavee convex shape
JPS5322108A (en) * 1976-08-13 1978-03-01 Nippon Steel Corp Walking beam type electric heat treating furnace
JPS5480373A (en) * 1977-12-08 1979-06-27 Toray Ind Inc Method of treating high-polymer resin with electrical discharge
JPS58115187A (en) * 1981-12-28 1983-07-08 ユニチカ株式会社 Enhancing of dye fastness of polyester fiber product
JPS5976983A (en) * 1982-10-26 1984-05-02 東レ株式会社 Production of highly color developable fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959104A (en) * 1974-09-30 1976-05-25 Surface Activation Corporation Electrode structure for generating electrical discharge plasma
JPS5299400A (en) * 1976-02-17 1977-08-20 Kuraray Co Production of synthetic fiber with fine concavee convex shape
JPS5322108A (en) * 1976-08-13 1978-03-01 Nippon Steel Corp Walking beam type electric heat treating furnace
JPS5480373A (en) * 1977-12-08 1979-06-27 Toray Ind Inc Method of treating high-polymer resin with electrical discharge
JPS58115187A (en) * 1981-12-28 1983-07-08 ユニチカ株式会社 Enhancing of dye fastness of polyester fiber product
JPS5976983A (en) * 1982-10-26 1984-05-02 東レ株式会社 Production of highly color developable fiber

Also Published As

Publication number Publication date
JPS59106588A (en) 1984-06-20

Similar Documents

Publication Publication Date Title
US3808115A (en) Surface fluorinated hydrogen containing material and process for making
Radetić et al. The Effect of Low-Temperature Plasma Pretreatment on Wool Printing.
Thorsen et al. A corona discharge method of producing shrink-resistant wool and mohair
US3154374A (en) Process for modifying the properties of shaped structures from highly polymeric polyesters
Mendhe et al. Low‐temperature plasma processing for the enhancement of surface properties and dyeability of wool fabric
US20090211894A1 (en) Continuous and Semi-Continuous Treatment of Textile Materials Integrating Corona Discharge
JPH0115631B2 (en)
US4601911A (en) Method for increasing hydrophilicity of a fabric material of synthetic fibers
EP0110416B1 (en) A method for increasing color density and improving color fastness of dyed fabrics
EP0111795B1 (en) A method for increasing hydrophilicity of a fabric material of synthetic fibers
JPH0144835B2 (en)
CN211280037U (en) Improved anti-static cotton cloth
CN104264346B (en) The preparation method of loom and conductive fabric
JPS6197490A (en) Darkening of dyed fiber product
JPS59106567A (en) Enhancement in water absorbability of fiber product
JPS59106587A (en) Densifying and concentrating of color of dyed fiber product
KR890003550B1 (en) Method for improving surface of plastic
JPH03241065A (en) Method for pleating knit or woven silk fabric
JPH0585668B2 (en)
JPS6361438B2 (en)
JPH0144834B2 (en)
JP2906656B2 (en) Processing method of fiber structure
JPH01239179A (en) Bathochromic treatment of fiber structure
JPH05287672A (en) Production of water-repelling deep-color fiber structure
JPH04343761A (en) Removal of water repellency function of fabric