JPH0144834B2 - - Google Patents

Info

Publication number
JPH0144834B2
JPH0144834B2 JP15637182A JP15637182A JPH0144834B2 JP H0144834 B2 JPH0144834 B2 JP H0144834B2 JP 15637182 A JP15637182 A JP 15637182A JP 15637182 A JP15637182 A JP 15637182A JP H0144834 B2 JPH0144834 B2 JP H0144834B2
Authority
JP
Japan
Prior art keywords
low
temperature plasma
plasma treatment
treatment
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15637182A
Other languages
Japanese (ja)
Other versions
JPS5947473A (en
Inventor
Tokuki Goto
Itsuo Tanaka
Katsunobu Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP15637182A priority Critical patent/JPS5947473A/en
Publication of JPS5947473A publication Critical patent/JPS5947473A/en
Publication of JPH0144834B2 publication Critical patent/JPH0144834B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリエステル系繊維の表面改質法に関
するものであり、ポリエステル系繊維製品を低温
プラズマで処理する場合にその処理効果の耐久性
を向上させる方法を提供することを目的とするも
のである。 ポリエステル系繊維は強力、寸法安定性、ウオ
ツシユアンドウエアー性、速乾性などの性能にお
いて優れているが制電性、吸水性、ソイルリリー
ス性などの性能な他繊維、特に天然繊維に比較し
て劣り用途に限界があつた。このためこれらの欠
点を改良するのに種々の方策が試みられているが
この中で低温プラズマ処理によりポリエステル系
繊維表面を改質する方法が新しい方法として注目
をあびている。この低温プラズマ処理によれば低
温プラズマを発生させる気体の種類をかえること
により処理される高分子物質の表面性能を種々に
変化させ得ることができる。一例をあげれば、酸
素含有の気体、酸素、空気、炭酸ガスなどの気体
を用いた低温プラズマで高分子を処理すれば親水
化することができ、吸水、ソイルリリース性が得
られる。またアルゴン、ヘリウム等の気体を使用
すれば接着性が向上し、沸素系例えばCF4などの
気体を使用すれば撥水性が得られる。ポリエステ
ル系繊維においても同様でありポリエステル系繊
維の欠点である制電性、吸水性、ソイルリリース
性を改良するため各種の低温プラズマ処理方法が
研究されている。ここで、繊維特に衣料用の場合
は着用及び繰返し洗濯によつても改良された表面
性能が低下しないということが重要であり少なく
とも数回から数10回の繰返し洗躍を行つても、そ
の性能が大きく低下しないことが必要である。し
かるにこれまでに研究されてきた低温プラズマ処
理によるポリエステル系繊維の表面改質技術では
繰返し洗濯により性能が大きく低下し、極端な場
合単に放置しておくだけでも性能の低下すること
があり低温プラズマ処理という画期的な表面改質
方法が繊維の加工法として広く一般的に実用化さ
れなかつた原因となつている。 本発明者らは、このような問題点を解決するた
め鋭意検討の結果ポリエステル系繊維を低温プラ
ズマ処理するにあたり低温プラズマ処理した被処
理物をいつたん乾熱又は湿熱処理によりリラツク
スさせた後再び低温プラズマ処理をすることによ
り優れた耐久性をもつ表面改質効果が得られると
いう事実を見出し本発明に到達した。 すなわち、本発明はポリエステル系繊維を低温
プラズマ処理したあと乾熱あるいは湿熱状態でリ
ラツクス処理し、しかる後に該繊維を再び低温プ
ラズマ処理することを特徴とするポリエステル系
繊維の改質方法である。 以下、本発明について詳細に説明する。 本発明でいうポリエステル系繊維とはポリエチ
レンテレフタレートあるいはテレフタル酸とエチ
レングリコールに第三成分を含有する共重合ポリ
エステル繊維を指し、その形態は、綿、糸あるい
は布綿、不織布などのシート状成型物など、いか
なる形態のものでもよい。また低温プラズマと
は、低圧下のAr、N2、C2、CO2、空気、CF4
どの気体中でグロー放電を起すことにより生起さ
れる、気体粒子が電離状態で励起活性化状態にあ
る系をいい、非平衡プラズマと言われるものをさ
す。一般的に低温プラズマを発生させる方法とし
ては試料を入れた真空容器を真空ポンプにより排
気、減圧し、目的とする処理効果に必要な気体例
えばAr、O2等を単独あるいは混合して真空容器
内に導入して一定の真空度(例えば0.1〜
2.0Torr)に調整して電気エネルギーを印加し、
グロー放電を起させる方法による。電気エネルギ
ーとしては真空容器内に設置された電極に直流高
電圧印加、交流電圧印加などの方法があるが10K
Hz〜2450MHzの高周波を0.5〜10KWの出力で印
加するのが一般的である。ポリエステル系繊維の
表面改質を目的とした低温プラズマ処理の例とし
ては下記低温プラズマ処理条件1による処理をあ
げることができる。 低温プラズマ処理条件1 使用気体:空気 気体流量:1000ml/min 真空度:0.5Torr 高周波電力:13.56MHz 1KW 処理時間:1分 この条件で処理されたポリエステル系繊維は吸
水性、ソイルリリース性が大巾に向上する。しか
しながら、処理されたポリエステル系繊維を繰返
し洗濯するとその性能は低下し特にソイルリリー
ス性は10回繰返し洗濯後には、初期に比較すると
大巾に減少する。低温プラズマ処理条件を種々変
化させると耐久性も変化するが実用化に適する程
度の耐久性の改良は得られない。 本発明の方法ではまずポリエステル系繊維を所
望の改質効果に応じた低温プラズマ条件で低温プ
ラズマ処理する。この処理条件は処理後の初期性
能が得られていればよく例えば吸水、ソイルリリ
ース性では上記の例の他CO2、N2、H2O、アル
コール類の気体を用い、撥水撥油性を目的とする
場合にはCF4などを用いて処理すればよい。本発
明方法では上述の低温プラズマ処理につづいて被
処理物を乾熱あるいは湿熱状態でリラツクス処理
する。ここで言うリラツクス処理とは、低温プラ
ズマ処理された繊維を構成する分子鎖が最も安定
した状態になるように処理することを言い、具体
的には乾熱あるいは湿熱で加熱しながらできるだ
け張力のかからない状態で放置することを意味す
る。低温プラズマ処理は、被処理物の表面のみに
しか作用しえずその処理効果は数百Åの範囲であ
る。したがつて、処理により得られた改質効果も
繊維を構成する表面分子にしか化学的変化はなく
改質基を有する表面分子が分子鎖を軸として回転
運動したり、内部側にある分子といれかわつたり
すればその表面改質効果は無くなると言える。こ
れまでに研究されてきた低温プラズマ処理効果が
耐久性に劣つていたのはこのような原因によるも
のと考えられる。従つて本発明では低温プラズマ
処理した被処理物をできるだけリラツクスして安
定化した状態で、すなわち分子の回転あるいは内
部分子とのいれかわりを充分に起させ、この安定
化した状態で、再び被処理物に低温プラズマ処理
を行うことにより性能の耐久性を向上させようと
するものである。リラツクス処理のより具体的な
方法について説明すれば、乾燥状態の場合には
120℃〜180℃で30秒〜2分間できるだけ張力のか
からない状態で処理すればよく、湿熱状態の場合
には120℃の飽和スチーム中にて30秒〜2分間処
理あるいは80℃〜100℃の熱水中で1分〜30分間、
また100℃〜130℃の高温・高圧の熱水中では30秒
〜10分間できるだけ張力のかからない状態で処理
すればよい。この場合機械的振動を加えながら処
理すればリラツクス効果をより一層向上させるこ
とができる。工業的には通常の染色加工工程で用
いられるリラクサーあるいはシヨートループドラ
イヤー、液流型染色機などを用いることができ
る。ここで重要なことは、このリラツクス工程を
工業生産的な処理時間内(例えば30秒〜30分)で
処理しようとすれば、処理繊維の二次転移点以上
の温度で可能な限り張力のかからない状態で処理
することであり使用する装置及び目的とする処理
効果の種類により適宜温度・時間を選択するよう
にする。 このようにリラツクス処理された被処理物は最
初に低温プラズマ処理された処理物の改質性能が
いつたん低下するが、本発明方法ではここで再び
被処理物に低温プラズマ処理を行う。この場合の
低温プラズマ処理条件は最初の処理と同一でもよ
いが処理目的に応じて変更してもよい。一般的に
は最初の処理よりも処理時間を長くとつた方が好
結果が得られる。このようにして得られた改質効
果の耐久性は驚く程良好で、従来の低温プラズマ
処理による改質方法はもちろんその他の一般的な
樹脂加工法に比べても格段の性能の耐久性を示す
ことが分つた。またさらに性能の高度な耐久性が
要求される場合には、上述のリラツクス処理とこ
れに続くプラズマ処理の組合せを2回以上繰り返
して行うようにすればその目的を達成することが
できる。 以下、実施例によつて本発明をさらに詳細に脱
明するが、実施例における試料の性能の測定は次
の方法によつて行つた。 (1) 吸水性:JISL1096バイレツク法により10分
後の吸水長(mm)を測定した。 (2) ソイルリリース性:試料にB重油を0.2ml滴
下し20時間放置後家庭洗濯して汚れの残存状態
を汚染用グレースケールで5級(良)〜1級
(不要)の5段階で等級判定した。 実施例 1 ポリエステル加工糸織物(経糸150d、緯糸
150d2;経糸密度110本/吋、緯糸密度55本/
吋)の精練、染色、乾燥後のものを用意し、これ
を9等分してそれぞれに試料No.1〜9を付した。
試料No.4には下記低温プラズマ処理条件Aにて低
温プラズマ処理を行い、試料No.5〜7の試料には
下記低温プラズマ処理条件Bの低温プラズマ処理
を行つた。また試料No.1、2、3についてはそれ
ぞれ下記低温プラズマ処理条件A、B、Cの処理
のみを行い、これに続く後工程の処理を一際行わ
ずに本発明方法との比較試料とした。 低温プラズマ処理条件A 使用気体:O2 気体流量:100ml/min 真空度:0.7Torr 高周波:13.5MHz 1KW 処理時間:30秒 低温プラズマ処理条件B 使用気体:O2 気体流量:100ml/min 真空度:0.7Torr 高周波:13.56MHz 1KW 処理時間:1分 低温プラズマ処理条件C 使用気体:O2 気体流量:100ml/min 真空度:0.7Torr 高周波:13.56MHz 1KW 処理時間:20分 第1回目の低温プラズマ処理につづいて試料No.
4、5、6、7の試料には次に記載するリラツク
ス処理を行つた。 No.4及びNo.5の試料はリラツクス処理として
100℃の沸水中で撹拌しながら20分間処理し(
処理)、No.6の試料は連続リラクサーで80℃、45
秒処理し(処理)、No.7の試料はシヨーループ
ドライヤーで160℃にて2分間処理(処理)し
た。次いでそれぞれ乾燥後、No.4の試料は前記低
温プラズマ処理条件Aで、またNo.5〜7の試料は
前記低温プラズマ処理条件Bにてそれぞれ低温プ
ラズマ処理した。得られた処理品の性能及び繰返
し洗濯後の性能を測定し、その結果を第1表に示
した。 なお、試料No.9はいかなる処理も一際行わない
比較用の試料である。
The present invention relates to a method for surface modification of polyester fibers, and an object of the present invention is to provide a method for improving the durability of the treatment effect when polyester fiber products are treated with low-temperature plasma. Polyester fibers have excellent properties such as strength, dimensional stability, wash and wear properties, and quick drying properties, but compared to other fibers, especially natural fibers, they do not have properties such as antistatic properties, water absorption properties, and soil release properties. It was inferior and its uses were limited. For this reason, various measures have been attempted to improve these drawbacks, and among these, a method of modifying the surface of polyester fibers by low-temperature plasma treatment is attracting attention as a new method. According to this low-temperature plasma treatment, by changing the type of gas that generates the low-temperature plasma, the surface performance of the polymer material being treated can be varied in various ways. For example, if a polymer is treated with low-temperature plasma using an oxygen-containing gas, oxygen, air, carbon dioxide, etc., it can be made hydrophilic, resulting in water absorption and soil release properties. Furthermore, if a gas such as argon or helium is used, adhesiveness will be improved, and if a fluorine-based gas such as CF 4 is used, water repellency will be obtained. The same goes for polyester fibers, and various low-temperature plasma treatment methods are being studied to improve the antistatic properties, water absorption properties, and soil release properties, which are disadvantages of polyester fibers. In the case of textiles, especially for clothing, it is important that the improved surface performance does not deteriorate even with wear and repeated washing. It is necessary that the value does not decrease significantly. However, with the surface modification technology of polyester fibers that has been researched to date through low-temperature plasma treatment, the performance significantly decreases with repeated washing, and in extreme cases, simply leaving it as it is can cause a decrease in performance. This is the reason why this revolutionary surface modification method has not been widely put into practical use as a fiber processing method. In order to solve these problems, the inventors of the present invention have conducted intensive studies and found that when polyester fibers are subjected to low-temperature plasma treatment, the object to be treated with low-temperature plasma is first relaxed by dry heat or wet heat treatment, and then subjected to low-temperature treatment again. The present invention was achieved based on the discovery that a surface modification effect with excellent durability can be obtained by plasma treatment. That is, the present invention is a method for modifying polyester fibers, which comprises subjecting polyester fibers to low-temperature plasma treatment, followed by relaxing treatment in dry heat or wet heat conditions, and then subjecting the fibers to low-temperature plasma treatment again. The present invention will be explained in detail below. The polyester fiber as used in the present invention refers to a copolyester fiber containing polyethylene terephthalate or terephthalic acid and ethylene glycol as a third component, and its form may be cotton, thread, fabric, sheet-like molded material such as non-woven fabric, etc. , may be in any form. Low-temperature plasma is generated by glow discharge in a gas such as Ar, N 2 , C 2 , CO 2 , air, or CF 4 under low pressure, in which gas particles are ionized and excited and activated. Refers to a certain system called non-equilibrium plasma. Generally, the method of generating low-temperature plasma is to evacuate and reduce the pressure of a vacuum container containing a sample using a vacuum pump, and then add gases such as Ar, O 2 , etc., alone or in combination, necessary for the desired processing effect to the vacuum container. to a certain degree of vacuum (e.g. 0.1~
2.0Torr) and apply electrical energy.
Depends on the method of causing glow discharge. As for electrical energy, there are methods such as applying high DC voltage and applying AC voltage to electrodes installed in a vacuum container, but 10K
It is common to apply a high frequency of Hz to 2450MHz with an output of 0.5 to 10KW. An example of low temperature plasma treatment for the purpose of surface modification of polyester fibers is treatment under the following low temperature plasma treatment conditions 1. Low-temperature plasma treatment conditions 1 Gas used: Air Gas flow rate: 1000ml/min Vacuum degree: 0.5Torr High frequency power: 13.56MHz 1KW Treatment time: 1 minute Polyester fibers treated under these conditions have excellent water absorption and soil release properties. improve. However, when the treated polyester fiber is washed repeatedly, its performance deteriorates, and in particular, the soil release property decreases significantly after 10 repeated washings compared to the initial state. If the low-temperature plasma treatment conditions are varied, the durability changes, but the durability cannot be improved to a degree suitable for practical use. In the method of the present invention, polyester fibers are first subjected to low-temperature plasma treatment under low-temperature plasma conditions depending on the desired modification effect. The treatment conditions are sufficient as long as the initial performance after treatment is obtained. For example, for water absorption and soil release, in addition to the above examples, CO 2 , N 2 , H 2 O, and alcohol gases are used to improve water and oil repellency. If desired, processing may be performed using CF 4 or the like. In the method of the present invention, following the above-described low-temperature plasma treatment, the object to be treated is subjected to a relaxation treatment in a dry or wet heat state. Relaxation processing here refers to processing so that the molecular chains that make up the fibers that have been treated with low-temperature plasma are in the most stable state. Specifically, it is heated with dry heat or moist heat while applying as little tension as possible. It means to leave it as it is. Low-temperature plasma treatment can act only on the surface of the object to be treated, and its treatment effect is in the range of several hundred Å. Therefore, the modification effect obtained by the treatment is only a chemical change in the surface molecules that make up the fiber, and the surface molecules with modification groups rotate around the molecular chain and interact with the internal molecules. It can be said that if it is replaced, the surface modification effect will be lost. This is considered to be the reason why the low-temperature plasma treatment effects that have been studied so far have been poor in durability. Therefore, in the present invention, the object to be treated with low-temperature plasma is kept as relaxed and stable as possible, that is, the molecules are sufficiently rotated or replaced with internal molecules, and in this stabilized state, the object to be treated is treated again. It attempts to improve the durability of performance by subjecting objects to low-temperature plasma treatment. To explain the more specific method of relaxing treatment, in case of dry condition,
It is sufficient to process at 120°C to 180°C for 30 seconds to 2 minutes with as little tension as possible; in the case of moist heat, process in saturated steam at 120°C for 30 seconds to 2 minutes or heat at 80°C to 100°C. Under water for 1 minute to 30 minutes.
In addition, it is sufficient to process in hot water at a high temperature and pressure of 100°C to 130°C for 30 seconds to 10 minutes with as little tension as possible. In this case, if the treatment is performed while applying mechanical vibration, the relaxing effect can be further improved. Industrially, relaxers, shot loop dryers, liquid jet dyeing machines, etc. used in ordinary dyeing processes can be used. What is important here is that if this relaxation process is to be carried out within an industrially productive processing time (e.g. 30 seconds to 30 minutes), tension should be applied as little as possible at a temperature above the secondary transition point of the treated fiber. The temperature and time should be selected appropriately depending on the equipment used and the type of desired processing effect. Although the material to be treated that has been subjected to the relaxation treatment as described above is initially subjected to the low-temperature plasma treatment, the reforming performance of the material deteriorates over time, but in the method of the present invention, the material to be treated is then subjected to the low-temperature plasma treatment again. The low-temperature plasma treatment conditions in this case may be the same as those for the first treatment, but may be changed depending on the purpose of the treatment. Generally, better results can be obtained if the processing time is longer than the initial processing time. The durability of the modification effect obtained in this way is surprisingly good, and it shows remarkable performance and durability compared to the conventional modification method using low-temperature plasma treatment as well as other general resin processing methods. I found out. If a higher level of durability is required, the objective can be achieved by repeating the above-described combination of relaxation treatment and subsequent plasma treatment two or more times. Hereinafter, the present invention will be explained in more detail with reference to Examples, and the performance of the samples in the Examples was measured by the following method. (1) Water absorption: The water absorption length (mm) was measured after 10 minutes using the JISL1096 Byreck method. (2) Soil release properties: Drop 0.2ml of heavy oil B onto the sample, leave it for 20 hours, wash it at home, and grade the remaining dirt on a gray scale for contamination in 5 levels from grade 5 (good) to grade 1 (unnecessary). I judged it. Example 1 Polyester processed yarn fabric (warp 150d, weft
150d2; warp density 110/inch, weft density 55/
After scouring, dyeing, and drying, the sample was prepared, divided into 9 equal parts, and labeled with Sample Nos. 1 to 9, respectively.
Sample No. 4 was subjected to low temperature plasma treatment under the following low temperature plasma treatment conditions A, and samples Nos. 5 to 7 were subjected to low temperature plasma treatment under the following low temperature plasma treatment conditions B. In addition, samples Nos. 1, 2, and 3 were treated only under the following low-temperature plasma treatment conditions A, B, and C, respectively, and were used as comparative samples with the method of the present invention without any subsequent post-process treatment. . Low-temperature plasma processing conditions A Used gas: O 2 gas flow rate: 100ml/min Vacuum degree: 0.7 Torr High frequency: 13.5MHz 1KW Processing time: 30 seconds Low-temperature plasma processing conditions B Used gas: O 2 gas flow rate: 100ml/min Vacuum degree: 0.7Torr High frequency: 13.56MHz 1KW Processing time: 1 minute Low temperature plasma treatment condition C Used gas: O 2 Gas flow rate: 100ml/min Vacuum degree: 0.7Torr High frequency: 13.56MHz 1KW Processing time: 20 minutes 1st low temperature plasma treatment Followed by sample no.
Samples Nos. 4, 5, 6, and 7 were subjected to the relaxation treatment described below. Samples No. 4 and No. 5 were treated as relaxing treatments.
Treat in boiling water at 100℃ for 20 minutes with stirring (
Sample No. 6 was heated at 80°C and 45°C in a continuous relaxer.
Sample No. 7 was treated (treated) for 2 minutes at 160°C in a shallow loop dryer. After drying, sample No. 4 was subjected to low-temperature plasma treatment under the low-temperature plasma treatment condition A, and samples No. 5 to 7 were subjected to low-temperature plasma treatment under the low-temperature plasma treatment condition B. The performance of the obtained treated product and the performance after repeated washing were measured, and the results are shown in Table 1. Note that sample No. 9 is a comparative sample that was not subjected to any treatment.

【表】 第1表から明かな如く従来の加工工程である試
料No.1、2、3では処理後の性能は優れている
が、耐久性は不良で30洗後には性能がほとんど無
処理(試料No.9)に近くなつていることがわか
る。低温プラズマ処理時間を長くしてもNo.3の試
料(処理時間20分)の性能耐久性よりわかるよう
に耐久性向上効果はほとんどない。これに対して
本発明による方法であるNo.4〜No.7の試料の場合
には処理後の性能がより良好であるばかりでなく
従来から問題であつた耐久性が極めて改善され非
常に優れた、これまでに得られなかつた性能を有
していることがわかる。 従つて本発明方法によれば従来衣料用途として
不充分な性能のために用途的に限界のあつたポリ
エステル系繊維の吸水、ソイルリリース性がその
耐久性においても改良され大巾な用途拡大が期待
できる。また衣料用途以外についても改良された
性能を生かして各種の用途に展開できることにな
る。 なお、比較用として前記低温プラズマ処理条件
Bにて処理後リラツクス処理せずに単に室温で放
置(24時間)し、再度同一条件で低温プラズマ処
理した試料の性能をNo.8として示してある。第2
表よりわかるようにこの場合は一回だけの低温プ
ラズマ処理に比較して耐久性はわずかに向上する
が本発明の方法に比較すれば性能の耐久性ははる
かに劣るものであつた。
[Table] As is clear from Table 1, the performance of samples No. 1, 2, and 3 using the conventional processing process after treatment is excellent, but the durability is poor, and after 30 washes, the performance is almost untreated ( It can be seen that it is close to sample No. 9). As can be seen from the performance and durability of sample No. 3 (treatment time 20 minutes), even if the low-temperature plasma treatment time is increased, there is almost no effect on improving durability. On the other hand, in the case of samples No. 4 to No. 7 processed by the method of the present invention, not only the performance after treatment was better, but also the durability, which had been a problem in the past, was extremely improved and was extremely excellent. In addition, it can be seen that it has performance that has not been achieved before. Therefore, according to the method of the present invention, the water absorption and soil release properties of polyester fibers, which have hitherto been limited in terms of usage due to insufficient performance for clothing applications, are improved, as well as their durability, and a wide range of applications is expected. can. Furthermore, the improved performance can be utilized for a variety of applications other than clothing. For comparison, the performance of a sample that was simply left at room temperature (24 hours) without undergoing a relaxation treatment under the low-temperature plasma treatment condition B and then subjected to low-temperature plasma treatment again under the same conditions is shown as No. 8. Second
As can be seen from the table, in this case, the durability was slightly improved compared to the one-time low-temperature plasma treatment, but the durability of performance was far inferior compared to the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエステル系繊維を低温プラズマ処理した
あと乾熱あるいは湿熱状態でリラツクス処理し、
しかる後に該繊維を再び低温プラズマ処理するこ
とを特徴とするポリエステル系繊維の改質方法。
1 Polyester fibers are treated with low-temperature plasma and then relaxed with dry heat or moist heat.
A method for modifying polyester fibers, which comprises subsequently subjecting the fibers to low-temperature plasma treatment again.
JP15637182A 1982-09-06 1982-09-06 Modification of polyester fiber Granted JPS5947473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15637182A JPS5947473A (en) 1982-09-06 1982-09-06 Modification of polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15637182A JPS5947473A (en) 1982-09-06 1982-09-06 Modification of polyester fiber

Publications (2)

Publication Number Publication Date
JPS5947473A JPS5947473A (en) 1984-03-17
JPH0144834B2 true JPH0144834B2 (en) 1989-09-29

Family

ID=15626287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15637182A Granted JPS5947473A (en) 1982-09-06 1982-09-06 Modification of polyester fiber

Country Status (1)

Country Link
JP (1) JPS5947473A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2099407T3 (en) * 1992-03-03 1997-05-16 Ciba Geigy Ag PROCEDURE FOR OBTAINING EFFECTS OF VARIOUS COLORS OR LIGHT-DARK.
ITMI20050813A1 (en) * 2005-05-04 2006-11-05 Saatiprint S P A Ora Saati S P A PROCEDURE FOR PROCESSING POLYMERIC YARNS AND FABRICS TO MODIFY UPPERFICIAL RESISTIVITY

Also Published As

Publication number Publication date
JPS5947473A (en) 1984-03-17

Similar Documents

Publication Publication Date Title
McCord et al. Modifying nylon and polypropylene fabrics with atmospheric pressure plasmas
Wakida et al. Surface characteristics of wool and poly (ethylene terephthalate) fabrics and film treated with low-temperature plasma under atmospheric pressure
Teli et al. Low-temperature dyeing of silk fabric using atmospheric pressure helium/nitrogen plasma
Benerito et al. Modifications of cotton cellulose surfaces by use of radiofrequency cold plasmas and characterization of surface changes by ESCA
US3846155A (en) Flame retardant process for cellulosics
KR900000237B1 (en) Sheet like structure and process for producing the same
Zhan et al. Effect of low temperature microwave drying on properties of dyed cashmere fibers
Chen Free radicals of fibers treated with low temerature plasma
Chen Study on free radicals of cotton and wool fibers treated with low‐temperature plasma
Wong et al. Effect of plasma and subsequent enzymatic treatments on linen fabrics
JPH0144834B2 (en)
CN102644194A (en) Atmospheric-pressure plasma cooperative alkali-reducing treatment method for polyester fibers or textiles
JPH04108164A (en) Modification of polyester fiber
Ristić et al. One-bath one-dye class dyeing of PES/cotton blends after corona and chitosan treatment
JPH041774B2 (en)
JPH06166952A (en) Scouring of woven fabric containing glass fiber
JPH0453979B2 (en)
JPH04174763A (en) Modification of silk fiber fabric
JPS622074B2 (en)
JPS5860060A (en) Scouring of fabric containing cotton
JPS58115187A (en) Enhancing of dye fastness of polyester fiber product
JPH05295657A (en) Production of fiber structure
JPS59173372A (en) Feeling improvement of polyester fiber fabric
JP2906656B2 (en) Processing method of fiber structure
JPH04241168A (en) Processing of cellulosic fiber cloth to impart particular feeling