JPH0115535B2 - - Google Patents

Info

Publication number
JPH0115535B2
JPH0115535B2 JP997184A JP997184A JPH0115535B2 JP H0115535 B2 JPH0115535 B2 JP H0115535B2 JP 997184 A JP997184 A JP 997184A JP 997184 A JP997184 A JP 997184A JP H0115535 B2 JPH0115535 B2 JP H0115535B2
Authority
JP
Japan
Prior art keywords
polycarbonate resin
parts
weight
rigidity
polycarbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP997184A
Other languages
Japanese (ja)
Other versions
JPS60156748A (en
Inventor
Osamu Oohara
Kazuo Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP997184A priority Critical patent/JPS60156748A/en
Publication of JPS60156748A publication Critical patent/JPS60156748A/en
Publication of JPH0115535B2 publication Critical patent/JPH0115535B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポリカーボネート樹脂組成物に係わ
り、さらに詳しくは耐溶剤性と剛性の改良された
ポリカーボネート樹脂組成物に関する。 [技術的背景とその問題点] ポリカーボネート樹脂は高度の耐衝撃性を具備
し、自己消火性であり、耐熱性が他の樹脂に比し
て高く、しかも電気的特性及び寸法安定性が優れ
ていることから、エンジニアリングプラスチツク
として広く使用されている。 しかし、ポリカーボネート樹脂は耐溶剤性が低
いという欠点があり、このためポリカーボネート
樹脂から成形された大型の或いは複雑な形状の残
留応力の大きい成形品はある種の溶剤の雰囲気に
接すると応力き裂を生ずることがある。それ故、
ポリカーボネート樹脂は高い衝撃強さを有する特
徴があるにも抱らず、塗料、ガソリン等の溶剤に
対する抵抗性の要求される用途、例えば自動車部
品等にあまり使用されなかつた。また、最近の成
形品の肉薄化に伴い剛性向上が望まれており、自
動車部品では80℃以上の高温での剛性向上が要求
されている。 ポリカーボネート樹脂の耐溶剤性の向上のため
に従来よりいくつかの提案がなされている。例え
ば特公昭36−14035号にはポリカーボネートとポ
リエチレンテレフタレートからなる組成物が開示
され、本発明者らも特開昭58−71946号公報にお
いてポリカーボネートと芳香族ポリエステルとブ
チルゴムからなる組成物を提案している。これら
ポリエステルを含有するポリカーボネート組成物
は耐溶剤性が改良される反面、高温での剛性が大
巾に低下する欠点がある。 また、ポリカーボネート樹脂の剛性を向上せし
める方法として、特公昭43−6295号公報にポリカ
ーボネート樹脂にポリスチレン樹脂を10重量%程
度添加する方法が開示されているが、該組成物は
耐溶剤性がほとんど改良されず、また耐衝撃性が
大巾に低下する欠点がある。 [発明の目的] 本発明の目的はポリカーボネート樹脂の特徴で
ある耐衝撃性を実用的な範囲に保持しながら、ハ
イオクタンガソリン等の溶剤に対する抵抗性の優
れた、室温および高温での剛性の向上したポリカ
ーボネート樹脂を提供することにある。 [発明の構成] 本発明はポリカーボネート樹脂(A)100重量部、
アクリロニトリル−スチレン共重合樹脂(B)3〜70
重量部およびブチルゴム(C)0.5〜5重量部からな
り、且つ、(B)の配合量が(C)の配合量の2倍以上で
あることを特徴とするポリカーボネート樹脂組成
物である。 本発明に用いられるポリカーボネート樹脂(A)
は、通常酸受容体および分子量調整剤の存在下で
の2価フエノールとホスゲン等のカーボネート前
駆体との反応、或いは2価フエノールとジフエニ
ルカーボネート等のカーボネート前駆体とのエス
テル交換反応によつて製造される。ここで使用し
うる2価フエノールとしては、ビスフエノールが
好ましく、とくに2,2−ビス(4−ヒドロキシ
フエニル)プロパン(以下ビスフエノールAと称
す)が好ましい。 また、ビスフエノールAの一部または全部を他
の2価フエノールで置換してもよい。ビスフエノ
ールA以外の2価フエノールとしては、例えばハ
イドロキノン、4,4′−ジヒドロキシジフエニ
ル、ビス(4−ヒドロキシフエニル)アルカン、
ビス(4−ヒドロキシフエニル)シクロアルカ
ン、ビス(4−ヒドロキシフエニル)スルフイツ
ド、ビス(4−ヒドロキシフエニル)スルホン、
ビス(4−ヒドロキシフエニル)スルホキシド、
ビス(4−ヒドロキシフエニル)エーテルの如き
化合物またはビス(3,5−ジブロモ−4−ヒド
ロキシフエニル)プロパンの如きハロゲン化ビス
フエノール類をあげることができる。 ポリカーボネート樹脂は、これら2価フエノー
ルのホモポリマーまたは2種以上のコポリマー或
いはこれらのブレンド物であつてもよい。またポ
リカーボネート樹脂はその一部が分岐されていて
もよく、例えば多官能性芳香族化合物を2価フエ
ノールまたはカーボネート前駆体と反応させた熱
可塑性ランダム分岐ポリカーボネートであつても
よい。 本発明に用いられるアクリロニトリル−スチレ
ン共重合樹脂(B)は通常市販されているものでよ
く、その配合量はポリカーボネート樹脂(A)100重
量部当り3〜70重量部であり、好ましくは5〜50
重量部である。配合量が上述の範囲より少ないと
本発明の樹脂組成物のような剛性が得られず、多
いと耐衝撃性が低下する。 本発明に用いられるブチルゴム(C)は通常市販さ
れているものでよく、その配合量はポリカーボネ
ート樹脂(A)100重量部当り0.5〜5重量部であり、
好ましくは1〜3重量部である。配合量が上述の
範囲より少ないと本発明の樹脂組成物のような耐
溶剤性が得られず、多いと層剥離を生じて成形品
の外観を損う。さらに、アクリロニトリル−スチ
レン共重合樹脂(B)の配合量はブチルゴム(C)の配合
量の2倍以上、好ましくは3倍以上である。 本発明のポリカーボネート樹脂組成物の調整は
任意の方法で行うことができる。例えば、ポリカ
ーボネート樹脂(A)にアクリロニトリル−スチレン
共重合樹脂(B)およびブチルゴム(C)を加え、V型ブ
レンダー、スーパーミキサー等を用いて混合した
のち、押出機、コニーダ等にて溶融混合する方
法、(B)と(C)成分をあらかじめ混練ロール、バンバ
リミキサーにて混合し、これをポリカーボネート
樹脂に溶融状態で混合する方法などがある。 また、本発明の組成物にはその用途に応じてガ
ラス繊維の如き強化剤、熱安定剤、酸化防止剤、
発泡剤、光安定剤、難燃剤、可塑剤、離型剤、帯
電防止剤、染料などを添加することができる。 [発明の効果] 本発明のポリカーボネート樹脂組成物がポリカ
ーボネート樹脂特有の高い衝撃強さを実用的な範
囲に保持しながら、耐溶剤性が大巾に改良され、
剛性が室温ないし80℃という高温でも向上してい
るために、塗料、ガソリン等の溶剤に対する抵抗
性の要求される用途、例えば自動車部品等に薄肉
の成形品として使用できる。 [実施例] 以下に、実施例を掲げて本発明をさらに詳細に
説明する。なお、耐溶剤性、剛性、耐衝撃性は下
記の方法で評価した。 1 耐溶剤性評価法: 予め乾燥したペレツトを射出成形機(住友重機
(株)製、住友ネスタールネオマツト150/75A)を
用いて、引張試験片(ASTM D−638タイプI
ダンベル)に成形した。この引張試験片を巾30
mm、厚み10mm、長さ250mmのステンレス鋼材を半
径227mmに曲げた治具に取りつけ、イソオクタン
−トルエン1:1混合液に浸漬し、試験片が割れ
るまでの時間を測つた。割れ発生時間が長い程、
耐溶剤性が大きいことを表わす。 2 剛性評価法: 予め乾燥したペレツトを射出成形機(住友重機
(株)製、住友ネスタールネオマツト150/75A)を
用いて、曲げ試験片(127mm×12.7mm×6.35mm)
に成形した。曲げ試験片は温度23℃、湿度50%で
24時間処理したのち、引張試験機(新興(株)製;
TOM50D型)にて23℃と80℃でASTM D−790
に従い曲げ弾性率を測定した。曲げ弾性率が高い
程、剛性が大きいことを表わす。 3 耐衝撃性評価法: 予め乾燥したペレツトを射出成形機(前記に同
じ)を用いて、64mm×12.7mm×3.18mmと64mm×
12.7mm×6.35mmの衝撃試験片に成形した。該試験
片は0.25mmRのノツチを付けたのち、温度23℃、
湿度50%で24時間処理した。その後アイゾツト衝
撃試験機(東洋精機(株)製)にて衝撃強さを測定し
た。衝撃強さが大きいほど、耐衝撃性のよいこと
を表わす。 実施例1〜5及び比較例1〜3 ポリカーボネート樹脂(A)(帝人化成(株):パンラ
イトL−1225)、アクリロニトリル−スチレン共
重合樹脂(B)(旭化成(株):タイリル767)およびブ
チルゴム(日本合成ゴム(株):IIR−065)を第1
に示す量でV型ブレンダーを用いて混合し、次い
で30mmφ押出機(中央機械(株)製:VSK−30)で
押出しペレツト化した。得られたペレツトを用い
て前記評価方法に示した方法で試験片を射出成形
し、その耐溶剤性、剛性、耐衝撃性を評価した。
その結果を第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a polycarbonate resin composition, and more particularly to a polycarbonate resin composition with improved solvent resistance and rigidity. [Technical background and problems] Polycarbonate resin has a high degree of impact resistance, is self-extinguishing, has higher heat resistance than other resins, and has excellent electrical properties and dimensional stability. Because of this, it is widely used as an engineering plastic. However, polycarbonate resin has the disadvantage of low solvent resistance, and for this reason, large or complex-shaped molded products with high residual stress may develop stress cracks when exposed to certain solvent atmospheres. This may occur. Therefore,
Although polycarbonate resins have the characteristic of having high impact strength, they have not been widely used in applications that require resistance to solvents such as paints and gasoline, such as automobile parts. In addition, with the recent thinning of molded products, there is a desire for improved rigidity, and automotive parts are required to have improved rigidity at high temperatures of 80°C or higher. Several proposals have been made to improve the solvent resistance of polycarbonate resins. For example, Japanese Patent Publication No. 36-14035 discloses a composition consisting of polycarbonate and polyethylene terephthalate, and the present inventors also proposed a composition consisting of polycarbonate, aromatic polyester, and butyl rubber in JP-A-58-71946. There is. Although polycarbonate compositions containing these polyesters have improved solvent resistance, they have the disadvantage that their rigidity at high temperatures is significantly reduced. Furthermore, as a method for improving the rigidity of polycarbonate resin, Japanese Patent Publication No. 43-6295 discloses a method in which approximately 10% by weight of polystyrene resin is added to polycarbonate resin, but this composition has little improvement in solvent resistance. However, there is a drawback that the impact resistance is greatly reduced. [Objective of the Invention] The object of the present invention is to maintain the impact resistance, which is a characteristic of polycarbonate resin, within a practical range, while providing excellent resistance to solvents such as high-octane gasoline, and improved rigidity at room and high temperatures. The purpose of the present invention is to provide a polycarbonate resin with a high temperature. [Structure of the invention] The present invention comprises 100 parts by weight of polycarbonate resin (A),
Acrylonitrile-styrene copolymer resin (B) 3-70
This is a polycarbonate resin composition comprising 0.5 to 5 parts by weight of butyl rubber (C), and the amount of (B) blended is at least twice the amount of (C) blended. Polycarbonate resin (A) used in the present invention
is usually carried out by the reaction of a dihydric phenol with a carbonate precursor such as phosgene, or by the transesterification reaction of a dihydric phenol with a carbonate precursor such as diphenyl carbonate, in the presence of an acid acceptor and a molecular weight modifier. Manufactured. As the divalent phenol that can be used here, bisphenol is preferable, and 2,2-bis(4-hydroxyphenyl)propane (hereinafter referred to as bisphenol A) is particularly preferable. Further, part or all of bisphenol A may be replaced with another divalent phenol. Examples of divalent phenols other than bisphenol A include hydroquinone, 4,4'-dihydroxydiphenyl, bis(4-hydroxyphenyl)alkane,
Bis(4-hydroxyphenyl)cycloalkane, bis(4-hydroxyphenyl)sulfide, bis(4-hydroxyphenyl)sulfone,
bis(4-hydroxyphenyl) sulfoxide,
Mention may be made of compounds such as bis(4-hydroxyphenyl) ether or halogenated bisphenols such as bis(3,5-dibromo-4-hydroxyphenyl)propane. The polycarbonate resin may be a homopolymer or a copolymer of two or more of these dihydric phenols, or a blend thereof. Further, the polycarbonate resin may be partially branched, and may be, for example, a thermoplastic randomly branched polycarbonate obtained by reacting a polyfunctional aromatic compound with a divalent phenol or a carbonate precursor. The acrylonitrile-styrene copolymer resin (B) used in the present invention may be a commercially available one, and its blending amount is 3 to 70 parts by weight, preferably 5 to 50 parts by weight, per 100 parts by weight of the polycarbonate resin (A).
Parts by weight. If the amount is less than the above range, it will not be possible to obtain the rigidity of the resin composition of the present invention, and if it is more than the above range, the impact resistance will decrease. The butyl rubber (C) used in the present invention may be a commercially available one, and its blending amount is 0.5 to 5 parts by weight per 100 parts by weight of the polycarbonate resin (A).
Preferably it is 1 to 3 parts by weight. If the amount is less than the above-mentioned range, it will not be possible to obtain the solvent resistance of the resin composition of the present invention, and if it is more than the above range, layer peeling will occur and the appearance of the molded product will be impaired. Furthermore, the amount of the acrylonitrile-styrene copolymer resin (B) is at least twice the amount of butyl rubber (C), preferably three times or more. The polycarbonate resin composition of the present invention can be prepared by any method. For example, a method in which acrylonitrile-styrene copolymer resin (B) and butyl rubber (C) are added to polycarbonate resin (A), mixed using a V-type blender, super mixer, etc., and then melt-mixed using an extruder, co-kneader, etc. There is a method of mixing components (B) and (C) in advance using a kneading roll or a Banbury mixer, and then mixing this with the polycarbonate resin in a molten state. The composition of the present invention may also contain reinforcing agents such as glass fiber, heat stabilizers, antioxidants, etc., depending on its use.
Foaming agents, light stabilizers, flame retardants, plasticizers, mold release agents, antistatic agents, dyes, etc. can be added. [Effects of the Invention] The polycarbonate resin composition of the present invention maintains the high impact strength characteristic of polycarbonate resins within a practical range, while greatly improving solvent resistance.
Since its rigidity is improved even at room temperature to high temperatures of 80°C, it can be used as thin-walled molded products in applications that require resistance to solvents such as paint and gasoline, such as automobile parts. [Example] The present invention will be described in more detail below with reference to Examples. In addition, solvent resistance, rigidity, and impact resistance were evaluated by the following methods. 1 Solvent resistance evaluation method: Pre-dried pellets were molded using an injection molding machine (Sumitomo Heavy Industries, Ltd.)
A tensile test piece (ASTM D-638 Type I
molded into a dumbbell). This tensile test piece has a width of 30
A stainless steel material with a thickness of 10 mm and a length of 250 mm was attached to a jig bent to a radius of 227 mm, immersed in a 1:1 mixture of isooctane and toluene, and the time until the test piece cracked was measured. The longer the cracking time, the
Indicates high solvent resistance. 2 Rigidity evaluation method: Pre-dried pellets were molded using an injection molding machine (Sumitomo Heavy Industries, Ltd.)
A bending test piece (127 mm x 12.7 mm x 6.35 mm) was prepared using Sumitomo Nestal Neomat 150/75A (manufactured by
It was molded into. Bending test specimens were tested at a temperature of 23°C and a humidity of 50%.
After processing for 24 hours, use a tensile tester (manufactured by Shinko Co., Ltd.;
TOM50D type) ASTM D-790 at 23℃ and 80℃
The flexural modulus was measured according to the following. The higher the bending modulus, the higher the rigidity. 3 Impact resistance evaluation method: Using an injection molding machine (same as above), pre-dried pellets were molded into 64mm x 12.7mm x 3.18mm and 64mm x
It was molded into a 12.7 mm x 6.35 mm impact test piece. After making a notch of 0.25 mmR, the test piece was heated at a temperature of 23℃.
Processed at 50% humidity for 24 hours. Thereafter, the impact strength was measured using an Izotsu impact tester (manufactured by Toyo Seiki Co., Ltd.). The higher the impact strength, the better the impact resistance. Examples 1 to 5 and Comparative Examples 1 to 3 Polycarbonate resin (A) (Teijin Kasei Ltd.: Panlite L-1225), acrylonitrile-styrene copolymer resin (B) (Asahi Kasei Ltd.: Tyril 767), and butyl rubber (Japan Synthetic Rubber Co., Ltd.: IIR-065) as the first
The amounts shown were mixed using a V-type blender, and then extruded into pellets using a 30 mmφ extruder (VSK-30, manufactured by Chuo Kikai Co., Ltd.). Using the obtained pellets, test pieces were injection molded by the method shown in the evaluation method above, and their solvent resistance, rigidity, and impact resistance were evaluated.
The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ポリカーボネート樹脂(A)100重量部、アクリ
ロニトリル−スチレン共重合樹脂(B)3〜70重量部
およびブチルゴム(C)0.5〜5重量部からなり、且
つ、(B)の配合量が(C)の配合量の2倍以上であるこ
とを特徴とするポリカーボネート樹脂組成物。
1 Consists of 100 parts by weight of polycarbonate resin (A), 3 to 70 parts by weight of acrylonitrile-styrene copolymer resin (B), and 0.5 to 5 parts by weight of butyl rubber (C), and the amount of (B) is equal to that of (C). A polycarbonate resin composition characterized in that the amount is at least twice the blended amount.
JP997184A 1984-01-25 1984-01-25 Polycarbonate resin composition Granted JPS60156748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP997184A JPS60156748A (en) 1984-01-25 1984-01-25 Polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP997184A JPS60156748A (en) 1984-01-25 1984-01-25 Polycarbonate resin composition

Publications (2)

Publication Number Publication Date
JPS60156748A JPS60156748A (en) 1985-08-16
JPH0115535B2 true JPH0115535B2 (en) 1989-03-17

Family

ID=11734800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP997184A Granted JPS60156748A (en) 1984-01-25 1984-01-25 Polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JPS60156748A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717021A (en) * 1996-11-18 1998-02-10 General Electric Company Polycarbonate/ABS blends

Also Published As

Publication number Publication date
JPS60156748A (en) 1985-08-16

Similar Documents

Publication Publication Date Title
EP0111810A2 (en) High strength, reduced heat distortion temperature thermoplastic composition
US5367016A (en) Reinforced resin composition
EP0528462A1 (en) Solvent-resistant polycarbonate-polyester blends with improved impact properties
US4970256A (en) Resin composition
JPH0434573B2 (en)
KR102001484B1 (en) Thermoplastic resin composition and molded article using the same
JPS6212936B2 (en)
JPH0245659B2 (en)
JPS5930185B2 (en) Polycarbonate resin composition
JPH0115535B2 (en)
JPS6212939B2 (en)
JPH05255583A (en) Polycarbonate resin composition
JPH0485360A (en) Reinforced resin composition
JP3176651B2 (en) Flame retardant polyester resin composition
JPH0117502B2 (en)
JPS6212816B2 (en)
JPH07242808A (en) Resin composition
JPS6332101B2 (en)
JPH02272057A (en) Polycarbonate resin composition
JPS636050A (en) Thermoplastic resin composition
JPH07242809A (en) Resin composition
CA1313916C (en) Resin composition
JPH0114938B2 (en)
JPS59174646A (en) Resin composition
KR20230053076A (en) Polycarbonate resin composition, method for preparing the thermoplastic resin composition and molding products thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term