JPH01155204A - Method for calibrating thickness measuring device - Google Patents

Method for calibrating thickness measuring device

Info

Publication number
JPH01155204A
JPH01155204A JP31554487A JP31554487A JPH01155204A JP H01155204 A JPH01155204 A JP H01155204A JP 31554487 A JP31554487 A JP 31554487A JP 31554487 A JP31554487 A JP 31554487A JP H01155204 A JPH01155204 A JP H01155204A
Authority
JP
Japan
Prior art keywords
detection head
measurement
gap
head
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31554487A
Other languages
Japanese (ja)
Inventor
Hirotoshi Ishikawa
石川 宏俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP31554487A priority Critical patent/JPH01155204A/en
Publication of JPH01155204A publication Critical patent/JPH01155204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To remove the effect of a gap, by performing zero measurement by upper and lower detection heads at the time of calibration and giving a definite gap to again perform zero measurement to calculate the detection characteristic to the gap and correcting the measured value on the basis of the detection characteristic value at the time of measurement. CONSTITUTION:At first, the interval between an upper detection head 2 and a lower detection head 3 is measured by the gap sensor 5 mounted on the base 301 of the lower detection head 3. Next, zero measurement is performed in a usual state and in such a state that the head interval is widened by definite quantity as compared with the usual state to calculate a characteristic in a Z-direction. The gap Z between the upper and lower detection heads 2, 3 imparts different values like C1, C2 at the time of the first calibration and at the time of this calibration, and an error (d) is generated between an initial gap Z0 and the value by the zero measurement when the lower head 3 is lowed, for example, by DELTAZ as shown a chart. Therefore, a correction signal dm is calculated from the gap measured value Zm between the heads 2, 3 and a newly formed Z-direction characteristic curve C2 at the time of measurement by the gap sensor 5 and the value detected by a sensor coil 304 is corrected using the signal dm.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は紙等のシート状物体の厚さをオンラインで測定
する厚さ測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a thickness measuring device for online measuring the thickness of a sheet-like object such as paper.

〈従来の技術〉 従来、紙、フィルム等のシート状物体の厚さを測定する
装置として、第4図に示すような装置が使用される。即
ち、フレーム1上に上側検出ヘッド2と下側検出ヘッド
3とを対向配置し、これらの間にシート状物体4を矢印
X方向に走行させると共に、上側検出ヘッド2と下側検
出ヘッド3とを対向位置関係を保持してこのシート状物
体の幅方向(矢印Y方向)に往復走行させ、シート状物
体4から一定ギャップ浮上している上側検出ヘッド2と
下側検出ヘッド3との間隔に基づきシート状物体4の厚
さを測定する装置が公知である。
<Prior Art> Conventionally, an apparatus as shown in FIG. 4 has been used as an apparatus for measuring the thickness of a sheet-like object such as paper or film. That is, an upper detection head 2 and a lower detection head 3 are disposed facing each other on a frame 1, and a sheet-like object 4 is run between them in the direction of arrow X, and the upper detection head 2 and lower detection head 3 are are moved back and forth in the width direction (direction of arrow Y) of this sheet-like object while maintaining the facing positional relationship, and the distance between the upper detection head 2 and the lower detection head 3, which are floating with a certain gap from the sheet-like object 4, is Devices are known for measuring the thickness of sheet-like objects 4 based on this method.

第5図はこのような従来装置の検出ヘッドの断面を示す
0図中、上側検出ヘッド2において、ベース201上に
タンク・キャブ202が取り付けられており、ベース2
01に設けられた開口203の周縁にはリテーナリング
204を介し、例えばゴム製のダイアフラム205が固
定されている。
FIG. 5 shows a cross section of the detection head of such a conventional device. In the upper detection head 2, a tank cab 202 is attached to the base 201, and the base 2
A diaphragm 205 made of, for example, rubber is fixed to the periphery of the opening 203 provided in 01 via a retainer ring 204.

206はこのダイアフラムの中心部に取付けられた導体
ターゲットで、内部に室が設けられており、表面には複
数の空気吹出し孔が設けられている。207は空気圧P
、をターゲット206に導くチューブである。
A conductive target 206 is attached to the center of this diaphragm, and has a chamber inside and a plurality of air blowing holes on its surface. 207 is air pressure P
, to the target 206.

208はダイアフラム205に固着されたコイルバネで
、このバネの他端は、タンク・キャップ202内におい
てベース201に設けられ支持部に固定されている。タ
ンク・キャップ202内には空気圧P2が加えられてい
る。
A coil spring 208 is fixed to the diaphragm 205, and the other end of the spring is fixed to a support part provided on the base 201 inside the tank cap 202. Air pressure P2 is applied within tank cap 202.

下側検出ヘッド3において、ベース301にボディ30
2が取り付けられている。ベース301の周縁に取付け
られたダイアフラム303にはセンサ・コイル304を
収容するケース305が取付けられている。尚、306
はケース305の上面に取付けられた基準面を形成する
ガラスである。
In the lower detection head 3, the body 30 is attached to the base 301.
2 is installed. A case 305 housing a sensor coil 304 is attached to a diaphragm 303 attached to the periphery of the base 301 . In addition, 306
is a glass attached to the top surface of the case 305 and forming a reference surface.

P3はセンサ・コイル304部分を上下させるためボデ
ィ302内に導入された空気圧である。
P3 is air pressure introduced into the body 302 to raise and lower the sensor coil 304 portion.

次にこのような構成の厚さ測定装置の動作について説明
する。検出ヘッド2.3がシート状物質4上にあるとき
、タンク・キャップ202及びボディ302の内圧が高
められ、ターゲット206、及びセンサ・コイル304
のケース305がシート状物体4に近付けられる。
Next, the operation of the thickness measuring device having such a configuration will be explained. When the detection head 2.3 is on the sheet material 4, the internal pressure of the tank cap 202 and the body 302 is increased, and the target 206 and the sensor coil 304 are
case 305 is brought close to sheet-like object 4.

このとき、ケース305のガラス306はシート状物体
4の下面に接触し厚さ測定の基準面となる。一方、ター
ゲット206はチューブ207を介し空気圧P1が供給
され、ターゲットの自重、コイルスプリング208の復
元力、空気圧P2によるダイアフラム205の押圧力、
空気吹出しによる浮上刃とがバランスし、シート状物体
4より一定量浮上する。
At this time, the glass 306 of the case 305 comes into contact with the lower surface of the sheet-like object 4 and serves as a reference surface for thickness measurement. On the other hand, the target 206 is supplied with air pressure P1 through the tube 207, and the target's own weight, the restoring force of the coil spring 208, the pressing force of the diaphragm 205 due to the air pressure P2,
The floating blade is balanced by air blowing and floats a certain amount above the sheet-like object 4.

下側検出ヘッド3中のセンサ・コイル304には高周波
電流が流され磁束が生成される。センサ・コイル304
に対向して配置されたターゲット206は良導体であり
、この部分に発生する渦電流によりセンサ・コイル30
4の磁束が減少しコイル・インピーダンスが変化する。
A high frequency current is passed through the sensor coil 304 in the lower detection head 3 to generate magnetic flux. Sensor coil 304
The target 206, which is placed opposite the target 206, is a good conductor, and the eddy current generated in this part
4 magnetic flux decreases and the coil impedance changes.

この変化はセンサ・コイル304とターゲット206と
の間の距離に対応しており、この距離はシート状物体4
の厚さと一定浮上量の和で表される為、前記インピーダ
ンス変化をブリッジ回路等により検出すれば、シート状
物体4の厚さを測定出来る。
This change corresponds to the distance between the sensor coil 304 and the target 206, which is the distance between the sheet-like object 4
The thickness of the sheet-like object 4 can be measured by detecting the impedance change using a bridge circuit or the like.

〈発明が解決しようとする問題点〉 このような装置が測定現場に設置されるとき、X、Y方
向のヘッド位置調整が行われ、上側−出ヘッド2と下側
検出ヘッド3との位置合せが行われる。また、上側検出
ヘッド2はシート状物体4から浮上しており、フレーム
1の途中の凹凸によりヘッド2.3間の2方向(第4図
参照)の間隔が変化し、これに応じてターゲット206
のシート状物体4からの浮上量が若干変化し測定誤差を
引起こす、このため、第6図(a)の説明図で示すよう
に、Y方向の測定点St 、S2.33 ・・・におい
てターゲット206の浮上量G、、G2゜G3・・・を
空気層だけの状態で測定し、第6図(b)に示す如く各
点毎に平均値からのZ方向の誤差d+ 、d2.d3・
・・を得てこれを用いて各点毎にゼロ補正するようにし
ている。
<Problems to be Solved by the Invention> When such a device is installed at a measurement site, the head position is adjusted in the X and Y directions, and the upper output head 2 and lower detection head 3 are aligned. will be held. Further, the upper detection head 2 is floating above the sheet-like object 4, and the spacing between the heads 2 and 3 in two directions (see FIG. 4) changes due to irregularities in the middle of the frame 1, and accordingly, the target 206
The flying height from the sheet-like object 4 changes slightly, causing a measurement error. Therefore, as shown in the explanatory diagram of FIG. The flying height G, , G2°, G3 . d3・
... is obtained and used to perform zero correction for each point.

X、Y方向の特性は一旦調整を行えば狂うことは少ない
が、2方向は、本来一定であるべきターゲット206の
浮上量がヘッド2.3間の間隔に応じて変化する特性が
あり、加えてこの間隔自体が校正時と測定時との温度差
(測定時は温度が高くなる)によって変化する。更にZ
方向特性は前記検出ヘッド中で使用されるゴム製ダイア
フラム等の経時変化の影響を受けて変化する。このため
、最初の校正における各測定点でのゼロ校正だけでは正
しい測定は行えなかった。
Once the characteristics in the X and Y directions are adjusted, they are unlikely to go out of order, but in the two directions, the flying height of the target 206, which should be constant, changes depending on the distance between the heads 2.3. The distance between the levers itself changes depending on the temperature difference between the time of calibration and the time of measurement (the temperature is higher during measurement). Further Z
The directional characteristics change under the influence of aging of the rubber diaphragm used in the detection head. For this reason, correct measurements could not be performed only by performing zero calibration at each measurement point during the initial calibration.

本発明の解決しようとする技術的課題は、前記浮上式の
シート状物体の厚さ測定装置において、前記2方向の特
性の変化による影響が測定結果に現れないようにするこ
とにある。
A technical problem to be solved by the present invention is to prevent the measurement results from being influenced by changes in the characteristics in the two directions in the floating thickness measuring device for sheet-like objects.

く問題点を解決するための手段〉 本発明方法は下記a乃至eの工程を行うことを特徴とす
る。
Means for Solving the Problems> The method of the present invention is characterized by performing the following steps a to e.

a1校正時において、上側検出ヘッドと下側検出ヘッド
とを測定時と同じ状態で近接させてゼロ測定を行う工程
と、 b、前記校正時において、前記上側検出ヘッドと下側検
出ヘッドとを前記aの工程におけるより一定ギャップ変
化させゼロ測定を行う工程と、 C0前記a及びbの工程で得た測定結果から、前記上側
検出ヘッドと前記下側積上ヘッドとの間のギャップに対
する検出特性を求める工程と、 d、測定時において、前記上側検出ヘッドと前記下側検
出ヘッドとの間のギャップを測定して、この測定値と前
記検出特性とから補正量を求める工程、及び e、前記測定時において前記dの工程で得た補正量を測
定出力に加えて補正を行う工程。
a1. At the time of calibration, performing zero measurement by bringing the upper detection head and the lower detection head close together in the same state as during measurement, and b. At the time of said calibration, moving said upper detection head and lower detection head to From the step of performing zero measurement by changing the gap more constant in step a, and the measurement results obtained in steps a and b, the detection characteristics for the gap between the upper detection head and the lower stacking head are determined. d. During measurement, a step of measuring the gap between the upper detection head and the lower detection head and determining a correction amount from this measurement value and the detection characteristic; e. A step of performing correction by adding the correction amount obtained in step d above to the measurement output.

く作用〉 前記の技術手段は次のように作用する。即ち、校正時に
おいて、通常の状態でゼロ測定を行った後、例えば前記
下側検出ヘッドを通常状態より一定量下げ、へ・ラド間
隔を広げてゼロ測定を行い、これら二つの異なった状態
での測定結果から2方向特性カーブを得る。
Function> The above technical means works as follows. That is, during calibration, after performing zero measurement under normal conditions, for example, lowering the lower detection head by a certain amount from the normal state and widening the head-to-rad interval, performing zero measurement, and then performing zero measurement under these two different conditions. A two-way characteristic curve is obtained from the measurement results.

測定時には、前記上側検出ヘッドと下側検出ヘッドとの
間隔を測定し、この測定値と前記2方向特性カーブとか
ら補正信号を求める。この補正信号は前記測定信号に加
えられ補正が行われる。
At the time of measurement, the distance between the upper detection head and the lower detection head is measured, and a correction signal is obtained from this measurement value and the two-way characteristic curve. This correction signal is added to the measurement signal to perform correction.

〈実施例〉 以下図面に従い本発明方法を説明する。第1図は本発明
方法を示すフローチャート、第2図は本発明方法を実施
するための装置である1図中、第5図における要素と同
じ要素には同一符号を付しこれらについての説明は省略
する。先ず、第2図において、5は下側検出ヘッド3の
ベース301に取付けられたギャップ・センサで、上側
検出ヘッド2との間隔を測定する。このセンサには、例
えば、センサ・コイル304のような磁気式センサが用
いられる。尚、その池の構成は第5図のものと変らない
<Example> The method of the present invention will be explained below with reference to the drawings. FIG. 1 is a flowchart showing the method of the present invention, and FIG. 2 is an apparatus for carrying out the method of the present invention. In FIG. 1, the same elements as those in FIG. Omitted. First, in FIG. 2, 5 is a gap sensor attached to the base 301 of the lower detection head 3, which measures the distance from the upper detection head 2. For example, a magnetic sensor such as sensor coil 304 is used as this sensor. The configuration of the pond is the same as that in Figure 5.

ステップ(1)、(2)において、通常の状態と、通常
の状態より一定量ヘッド間隔を広げた状態でゼロ測定が
行われる。ステップ(3)において、前記二点の測定結
果から2方向特性が求められる。
In steps (1) and (2), zero measurements are performed in a normal state and in a state in which the head spacing is increased by a certain amount from the normal state. In step (3), two-way characteristics are determined from the measurement results at the two points.

この過程について第3図を参照しながら詳しく説明する
。第3図において、C1は最初の校正時に得た2方向特
性カーブを表わす、C2(点線)は今回の校正で得た2
方向特性カーブを表わす。
This process will be explained in detail with reference to FIG. In Figure 3, C1 represents the two-way characteristic curve obtained during the first calibration, and C2 (dotted line) represents the two-way characteristic curve obtained during the current calibration.
Represents a directional characteristic curve.

横軸は上側検出ヘッド2と下側検出ヘッド3との間のギ
ャップZを表わし、縦軸はヘッドの間隔の基準値からの
誤差dを表わす6校正時、空気層のみの状態とし、且つ
ヘッド間の初期ギャップを通常の測定状態と同じ間隔に
設定してゼロ測定を行う、このときのギャップをZoと
する0次いで、同じく空気層のみの状態で、例えば下側
検出ヘッド3を所定量ΔZ下げ、ヘッド間ギャップを2
0+Δ2に設定してゼロ測定を行う。
The horizontal axis represents the gap Z between the upper detection head 2 and the lower detection head 3, and the vertical axis represents the error d from the standard value of the spacing between the heads.6 At the time of calibration, only an air layer was present, and the head Zero measurement is performed by setting the initial gap between the two to the same interval as in the normal measurement state.The gap at this time is set to Zo.Next, in the same state where there is only an air layer, for example, the lower detection head 3 is moved by a predetermined amount ΔZ. Lower the gap between the heads by 2.
Set to 0+Δ2 and perform zero measurement.

ギャップ2がどのように設定されても、ターゲット20
6は基準面であるガラス306より一定量浮上した位置
に移動し、本来、誤差dは発生しない筈である。しかし
、第3図から分るように、誤差dは、ギャップZの増大
と共に増加する特性を有し、しかもこの特性は経時変化
によって01から02に変化する0本発明では、例えば
一定時間毎に行われる校正毎に二点校正を行い2方向特
性カーブを作り直すようにしている。
No matter how gap 2 is set, target 20
6 moves to a position that is a certain amount floating above the glass 306, which is the reference surface, and the error d should not originally occur. However, as can be seen from FIG. 3, the error d has a characteristic that increases as the gap Z increases, and this characteristic changes from 01 to 02 with time. A two-point calibration is performed every time the calibration is performed to recreate the two-direction characteristic curve.

測定時、ステップ(4)で、ギャップ・センサ5により
ヘッド間キャップを測定し、この測定値2亀と新たに作
り直しな2方向特性カーブC2とから補正信号d亀を求
める。ステップ(5)で、補正信号d亀を用いてセンサ
・コイル304で検出された測定信号に対して補正が行
われる。
During measurement, in step (4), the inter-head cap is measured by the gap sensor 5, and a correction signal d is obtained from this measured value 2 and a newly created two-way characteristic curve C2. In step (5), a correction is made to the measurement signal detected by the sensor coil 304 using the correction signal d.

〈発明の効果〉 本発明によれば、前記厚さ測定装置において、前記2方
向の特性の変化による影響が測定結果に現れない。
<Effects of the Invention> According to the present invention, in the thickness measuring device, the measurement results are not affected by changes in the characteristics in the two directions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を示すフローチャート、第2図は本
発明方法を実施するための装置、第3図は本発明方法を
説明するための説明図、第4図はシート状物体の厚さ測
定装置の全体構成を示す斜視図、第5図は従来装置で使
用される検出ヘッドの断面図、第6図は従来装置におけ
る校正方法を説明するための説明図である。 2・・・上側検出ヘッド、205・・・ダイアフラム、
206・・・ターゲット、3・・・下側検出ヘッド、3
04・・・センサ・コイル、306・・・ガラス、4・
・・シート状物体 第1図 wc2図 13図 第5図 第6図
Figure 1 is a flowchart showing the method of the present invention, Figure 2 is an apparatus for carrying out the method of the present invention, Figure 3 is an explanatory diagram for explaining the method of the present invention, and Figure 4 is the thickness of the sheet-like object. FIG. 5 is a perspective view showing the overall configuration of the measuring device, FIG. 5 is a sectional view of a detection head used in the conventional device, and FIG. 6 is an explanatory diagram for explaining a calibration method in the conventional device. 2... Upper detection head, 205... Diaphragm,
206...Target, 3...Lower detection head, 3
04...Sensor coil, 306...Glass, 4.
...Sheet-like object Figure 1 wc2 Figure 13 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 一方向に送給されるシート状物体から一定量浮上したタ
ーゲットを有する上側検出ヘッドと、前記シート状物体
を挾んで前記上側検出ヘッドと対向配置された下側検出
ヘッドとを有し、これらヘッドを前記シート状物体の幅
方向に往復走行させ、前記シート状物体の厚さを測定す
る装置の校正方法であって、下記a乃至eの工程を行う
ことを特徴とする厚さ測定装置の校正方法。 a、校正時において、前記上側検出ヘッドと下側検出ヘ
ッドとを測定時と同じ状態で近接させてゼロ測定を行う
工程と、 b、前記校正時において、前記上側検出ヘッドと下側検
出ヘッドとを前記aの工程におけるより一定ギャップ変
化させゼロ測定を行う工程と、 c、前記a及びbの工程で得た測定結果から、前記上側
検出ヘッドと前記下側検出ヘッドとの間のギャップに対
する検出特性を求める工程と、 d、測定時において、前記上側検出ヘッドと前記下側検
出ヘッドとの間のギャップを測定して、この測定値と前
記検出特性とから補正量を求める工程、及び e、前記測定時において前記dの工程で得た補正量を測
定出力に加えて補正を行う工程。
[Scope of Claims] An upper detection head having a target floating a certain amount from a sheet-like object that is fed in one direction, and a lower detection head that is disposed opposite to the upper detection head with the sheet-like object sandwiched between the objects. A method for calibrating an apparatus that measures the thickness of the sheet-like object by reciprocating these heads in the width direction of the sheet-like object, characterized by performing the following steps a to e. How to calibrate a thickness measuring device. a. At the time of calibration, a step of performing zero measurement by bringing the upper detection head and the lower detection head close together in the same state as during measurement; b. At the time of calibration, the step of bringing the upper detection head and the lower detection head c. From the measurement results obtained in steps a and b, detecting the gap between the upper detection head and the lower detection head. determining a characteristic; d. during measurement, measuring a gap between the upper detection head and the lower detection head, and determining a correction amount from this measurement value and the detection characteristic; e. A step of performing correction by adding the correction amount obtained in step d to the measurement output during the measurement.
JP31554487A 1987-12-14 1987-12-14 Method for calibrating thickness measuring device Pending JPH01155204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31554487A JPH01155204A (en) 1987-12-14 1987-12-14 Method for calibrating thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31554487A JPH01155204A (en) 1987-12-14 1987-12-14 Method for calibrating thickness measuring device

Publications (1)

Publication Number Publication Date
JPH01155204A true JPH01155204A (en) 1989-06-19

Family

ID=18066621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31554487A Pending JPH01155204A (en) 1987-12-14 1987-12-14 Method for calibrating thickness measuring device

Country Status (1)

Country Link
JP (1) JPH01155204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309935A (en) * 2006-05-15 2007-11-29 Immobilien Ges Helmut Fischer Gmbh & Co Kg Method and system for measuring thickness of thin layer by measuring probe
US8117891B2 (en) 2006-03-10 2012-02-21 Metso Automation Oy Method for calibration of measuring equipment and measuring equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8117891B2 (en) 2006-03-10 2012-02-21 Metso Automation Oy Method for calibration of measuring equipment and measuring equipment
JP2007309935A (en) * 2006-05-15 2007-11-29 Immobilien Ges Helmut Fischer Gmbh & Co Kg Method and system for measuring thickness of thin layer by measuring probe

Similar Documents

Publication Publication Date Title
US4866984A (en) Sensor and system for continuous determination of paper strength
FI98564C (en) A method for detecting properties of a sheet material moving in the transverse direction
CN103383330B (en) The method for making of material cured Tachistoscope system, method of testing and welding resisting layer
US5010766A (en) Error compensation for measuring gauges
JP2012530926A (en) Improved film thickness measurement method
US3538765A (en) Device for the determination of tensile forces occurring in thin cold rolled strip
JPH01155204A (en) Method for calibrating thickness measuring device
JPH08210960A (en) Method for measuring concentration of non-polar gas such as carbon dioxide by sensor based on polymer and structure of concentration sensor
US4236701A (en) Device for fixing a planar work piece
JP2589420B2 (en) Method and apparatus for inspecting conductive film
US5048319A (en) Method for calibrating an acceleration sensor
JPH01156615A (en) Calibrating method for thickness measuring instrument
GB2087082A (en) Electrically testing for straightness and evenness
JP3500924B2 (en) Manufacturing method of semiconductor sensor
CN108073051B (en) Method for improving coordinate precision of photoetching machine
JPS6041416B2 (en) Processing method of data for deflection yoke magnetic field distribution inspection
JP2776339B2 (en) Thickness gauge
JPH0526704A (en) Apparatus and method for measuring differential pressure
JPH0668441B2 (en) Sheet thickness measuring device
JPH0634360A (en) Steel plate shape measuring method
JPH01136332A (en) Electron beam lithography method
SU1439395A1 (en) Device for checking nonsquareness of channel axis to end face
JP3509336B2 (en) Integrated sensor
SU896571A1 (en) Method of testing pneumatic meters of paper smootheness
KR20010018548A (en) Scale thickness measurement system and method of steel surface for portable