JPH01155041A - Cylinder inflow gas quantity compensating method - Google Patents

Cylinder inflow gas quantity compensating method

Info

Publication number
JPH01155041A
JPH01155041A JP31193087A JP31193087A JPH01155041A JP H01155041 A JPH01155041 A JP H01155041A JP 31193087 A JP31193087 A JP 31193087A JP 31193087 A JP31193087 A JP 31193087A JP H01155041 A JPH01155041 A JP H01155041A
Authority
JP
Japan
Prior art keywords
flow rate
throttle valve
cylinder
engine
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31193087A
Other languages
Japanese (ja)
Inventor
Takemi Okazaki
岡崎 剛己
Seiju Funabashi
舩橋 誠寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31193087A priority Critical patent/JPH01155041A/en
Publication of JPH01155041A publication Critical patent/JPH01155041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make a gas flow rate flowing into a cylinder calculable in real time by compensating the detected value of a flow measuring device an and around a throttle valve with throttle valve opening and rotational frequency. CONSTITUTION:A flow measuring device 3, measuring a quantity of flow Qt passing through a throttle valve 2, is installed in and around this throttle valve 2. A detected value Qt of the flow measuring device 3 is inputted into a correction factor generator 8 together with each detected value thetat of a throttle valve opening sensor 6 and a crank angle sensor 7 and N, and an inflow quantity Qz into a cylinder 5 is operated by a correction factor set out of a table on the basis of throttle valve opening and rotational frequency. A fuel flow rate decider 9 operates an injection quantity out of a fuel injector 10 on the basis of the inflow quantity Qz into the cylinder 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発萌は乗用車用エンジンに係り、特にエンジンの筒内
に流入するガス量を正しく把握するに好適な、筒内流入
ガス量補正方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a passenger car engine, and particularly relates to a method for correcting the amount of gas flowing into the cylinder, which is suitable for correctly grasping the amount of gas flowing into the cylinder of the engine. .

〔従来の技術〕[Conventional technology]

一般に乗用車用エンジンの吸気弁の通過ガス量は、弁の
前後の圧力、温度、弁開口面積などの関数として表現さ
れている。しかしこれらは連立微分方程式であり、8ビ
ット前後のマイクロプロセツサによりリアルタイムで積
分してエンジン制御で用いるのは困難である。このため
、吸気管のスコツ1〜ル弁近分で流量測定装置(エアフ
ローメータ)を用いて流量を測定し、これによりエンジ
ン筒内への流入ガス量として近似するなどの方法が用い
られている。
Generally, the amount of gas passing through an intake valve of a passenger car engine is expressed as a function of pressures before and after the valve, temperature, valve opening area, etc. However, these are simultaneous differential equations, and it is difficult to integrate them in real time using an approximately 8-bit microprocessor and use them for engine control. For this reason, methods are used such as measuring the flow rate using a flow meter (air flow meter) near the Scott 1 to 2 valves in the intake pipe and approximating this as the amount of gas flowing into the engine cylinder. .

文献「自動車技術VoQ、39.N[19(7)1−0
03頁の図4Jには、このような方法を用いてエンジン
への燃料供給量を決める燃料噴射制御システムの例が示
されている。この従来例ではエアフローメータで測定し
た空気量をエンジンコン1〜ロールコンピユータへ伝え
、この空気量と供給すべき燃料量の比が例えば理論空燃
比と云われる14.7になるように燃料量を定め噴射す
る。ここで、エンジンの運転場況はダイナミックに変化
するため、多くの場合この比を一定に保つことが難しく
、排気ガス中の酸素量を図中の排気管に設けた02セン
サにより調べ、噴射した燃料量の多少を判断して次の燃
料量の計算にフィー1くバックをかけるなどの対策をと
っている。
Literature “Automotive Technology VoQ, 39.N [19(7)1-0
FIG. 4J on page 03 shows an example of a fuel injection control system that uses such a method to determine the amount of fuel supplied to the engine. In this conventional example, the amount of air measured by an air flow meter is transmitted to the engine controller 1 to the roll computer, and the amount of fuel is adjusted so that the ratio of this amount of air to the amount of fuel to be supplied becomes, for example, 14.7, which is called the stoichiometric air-fuel ratio. Spray as scheduled. Here, since the operating conditions of the engine change dynamically, it is often difficult to keep this ratio constant, so the amount of oxygen in the exhaust gas is checked with the 02 sensor installed in the exhaust pipe in the figure, and the injection Measures are taken such as determining how much fuel is available and applying a fee back to the next fuel amount calculation.

このような方法に於ては、燃料を噴射する位置での空気
量が正しく求められることが好ましい。
In such a method, it is preferable that the amount of air at the position where the fuel is injected is accurately determined.

前記文献のように噴射位置とエアフローメータの位置と
が大きく離れていると、スロットル弁の開度によっては
面位置での空気流量の差が大きくなり、実際の空燃比が
所期の値から外れる傾向をもつ。
If the injection position and the air flow meter position are far apart as in the above literature, the difference in air flow rate at the surface position will become large depending on the opening degree of the throttle valve, and the actual air-fuel ratio will deviate from the desired value. have a tendency.

〔発明が解決しようとする問題前〕[Before the problem that the invention seeks to solve]

上記従来技術は、測定位置での空気流量と燃料噴射位置
もしくは吸気弁位置での空気流量との違いについての配
慮がされておらず、噴射燃料量の算出や、シリンダ内へ
流入する混合ガス量の算出に実際との差異を生じ、エン
ジン出力の制御などを十分行なえない問題があった。
The above conventional technology does not take into consideration the difference between the air flow rate at the measurement position and the air flow rate at the fuel injection position or intake valve position, and does not allow calculation of the amount of injected fuel or the amount of mixed gas flowing into the cylinder. This caused a discrepancy in the calculation of the actual value, and there was a problem in that the engine output could not be adequately controlled.

本発明の目的は、流量測定位置によるガス流量に対して
、とくに大きい影響を与えるとみられるスロットル弁開
度とエンジン回転数の影響を考慮した補正を行ない、実
際のエンジンシリンダ内への流入ガス量を見積ることに
ある。
The purpose of the present invention is to perform corrections that take into account the effects of throttle valve opening and engine speed, which are considered to have a particularly large effect on the gas flow rate depending on the flow rate measurement position, and to calculate the actual amount of gas flowing into the engine cylinder. The purpose is to estimate.

C問題点を解決するための手段〕 上記目的は、吸気管のスロットル弁の近傍に設けた流量
測定装置、スロットル弁センサ、クランク角センサ、補
正係数発生器を組合わせ、流量測定装置により流量を補
正することにより達成される。
Means for Solving Problem C] The above purpose is to measure the flow rate by combining a flow rate measuring device installed near the throttle valve of the intake pipe, a throttle valve sensor, a crank angle sensor, and a correction coefficient generator. This is achieved by correction.

〔作用〕[Effect]

スロットル弁の近傍に設けた流量測定装置は。 The flow rate measuring device is installed near the throttle valve.

スロットル弁(およびその近辺にバイパスがあるときは
バイパスを含めて)を通過するガス流量を測定する。ス
ロットル弁センサはスロットル弁開度を、クランク角セ
ンサはエンジンの回転数を検出する。
Measure the gas flow rate passing through the throttle valve (and including the bypass if there is one nearby). The throttle valve sensor detects the throttle valve opening, and the crank angle sensor detects the engine rotation speed.

実験あるいはエンジンモデルの数値シミュレーションに
よれば、スコツ1〜ル弁を通過するガス流量は必らずし
も吸気弁を通過するガス流量と一致しない。とくにスロ
ットル弁開度が小のときこの差異が大である。
According to experiments or numerical simulations of engine models, the gas flow rate passing through the Scots 1-1 valve does not necessarily correspond to the gas flow rate passing through the intake valve. This difference is particularly large when the throttle valve opening is small.

補正係数発生器は、実験などにより得た流量測定装置に
よる流量に乗じて、吸気弁を通過する流量に換算する補
正係数を発生する。これはスロツトル弁開度と回転数と
をパラメータとして補正係数を決定するいくつかの関数
群を内蔵し、その関数群はエンジンの種類が異なる毎に
実験などにより決定する。
The correction coefficient generator generates a correction coefficient to be converted into the flow rate passing through the intake valve by multiplying the flow rate measured by the flow rate measurement device obtained through experiments or the like. This has several built-in functions that determine correction coefficients using the throttle valve opening and rotational speed as parameters, and these functions are determined through experiments for each type of engine.

すなわち、流量測定装置による流量、スコツ1〜ル弁開
度2回転数を補正係数発生器に入力することにより、補
正係数を発生すると共に、それを流量測定装置の流量に
乗じて吸気弁を通過する流量へ変換する。
In other words, by inputting the flow rate measured by the flow rate measuring device and the number of rotations of the valve opening 1 to 2 into the correction coefficient generator, a correction coefficient is generated, and the flow rate of the flow rate measuring device is multiplied by the correction coefficient to cause the flow rate to pass through the intake valve. Convert to the flow rate.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。吸気
管内1のスロットル弁2の近傍で、例えば前記文献中の
ような公知の流量測定装置3により、スロットル弁2を
通過する流量Qt を測定する。ここを通過したガスは
吸気弁4を通過してエンジンのシリンダ内5へ流入する
。この流入量Q7と01とは一般に等しくない。しかし
Q7はシリンダ内5と吸気管内1の温度や圧力と吸気弁
開口面積などにより定まり、エンジン運転中に直接測定
することは難しい。
An embodiment of the present invention will be described below with reference to FIG. In the vicinity of the throttle valve 2 in the intake pipe 1, the flow rate Qt passing through the throttle valve 2 is measured using a known flow rate measuring device 3 such as that described in the above-mentioned literature. The gas that has passed through this passes through the intake valve 4 and flows into the cylinder 5 of the engine. The inflow amounts Q7 and 01 are generally not equal. However, Q7 is determined by the temperature and pressure inside the cylinder 5 and the intake pipe 1, the intake valve opening area, etc., and is difficult to directly measure during engine operation.

本発明では、スロットル弁2に設けたスコツ1〜ル弁開
度センサ6によりその開き角度O1を知り、クランク角
センサ7によりエンジン回転数Nを知る。この開き角度
0.とエンジン回転数Nとを流量測定装置3による流量
Qt と共に補正係数発生器8へ入力する。補正係数発
生器8は、開き角度0、とエンジン回転数Nとから、そ
の内蔵する関数により補正係数を決定する。この補正係
数を用いて流量Q1を補正し、シリンダ内5への流入量
Q2として出力する。
In the present invention, the opening angle O1 of the throttle valve 2 is determined by the valve opening sensor 6 provided on the throttle valve 2, and the engine rotation speed N is determined by the crank angle sensor 7. This opening angle is 0. and the engine speed N are input to the correction coefficient generator 8 together with the flow rate Qt measured by the flow rate measuring device 3. The correction coefficient generator 8 determines a correction coefficient from the opening angle 0 and the engine rotation speed N using a built-in function. The flow rate Q1 is corrected using this correction coefficient and outputted as the inflow amount Q2 into the cylinder 5.

この流入量Q2を例えば前記文献中の1.003頁の3
.]−節に示されるようにアルゴリズムを含む公知の燃
料量決定器9へ入力し、燃料噴射器10が噴射すべき燃
料量Bを決定するのに用いる。
This inflow amount Q2 is, for example, 3 on page 1.003 in the above-mentioned document.
.. .

この燃料は、シリンダ内5で燃焼し排気行程で排気弁1
]−を通って排気管12中へ排出される。
This fuel burns in the cylinder 5 and exhaust valve 1 during the exhaust stroke.
]- into the exhaust pipe 12.

第2図は補正係数発生器8に内蔵する関数を定めるため
の基礎データの例を示し、スロットル弁の開き角度(J
tによる流入量比Qt/Qzの変化を、回転数N一定の
下で調べた図である。供試エンジンは、圧縮比8.5、
シリンダ内径9/l、、5  ミリメートル、行程96
.4 ミリメートルであるが、このデータは同じエンジ
ンでも吸気管や吸気弁の形状によっても変わる。この第
2図のデータによれば、開き角度Otが60度より大き
いときは、流入量比Q t / Q 2はほぼ]である
が、10度ではこの比が小さくなり流量Q2の方が流量
Qt よりも多くなる。エンジン回転数Nが大きいほど
、この傾向が顕著となる。
Figure 2 shows an example of basic data for determining the function built into the correction coefficient generator 8, and shows an example of the opening angle of the throttle valve (J
FIG. 3 is a diagram showing the change in the inflow ratio Qt/Qz due to t under a constant rotation speed N. FIG. The test engine had a compression ratio of 8.5,
Cylinder inner diameter 9/l, 5 mm, stroke 96
.. 4 mm, but this data varies depending on the shape of the intake pipe and intake valve even for the same engine. According to the data in Fig. 2, when the opening angle Ot is larger than 60 degrees, the inflow ratio Q t /Q 2 is approximately ], but at 10 degrees, this ratio becomes smaller and the flow rate Q2 becomes larger. It becomes more than Qt. This tendency becomes more pronounced as the engine speed N increases.

補正係数発生8は、第2図に示すデータ曲線をエンジン
回転数N毎にスロットル弁の開き角度Otで区切って折
れ線や曲線で近似し、その近似式に基づいて、センサか
ら得られたエンジン回転数Nとスロットル弁の開き角度
O1とから流入量比Qt/Qzを決定し、流量測定装置
3から求まる流量Q、にそれを作用させ流量Q7を得る
ことを可能とする。
The correction coefficient generation 8 is performed by approximating the data curve shown in FIG. 2 by dividing it by the opening angle Ot of the throttle valve for each engine speed N and using a polygonal line or curve, and based on the approximation formula, calculates the engine speed obtained from the sensor. The inflow ratio Qt/Qz is determined from the number N and the opening angle O1 of the throttle valve, and it is applied to the flow rate Q determined from the flow rate measuring device 3 to obtain the flow rate Q7.

第3図はこの近似式の表現法を示し、 適用範囲のための エンジン回転数の上限 Nu エンジン回転数の下限 N。Figure 3 shows how to express this approximation formula, for scope of application Upper limit of engine speed Nu Lower limit of engine rotation speed N.

スコツ1−ル弁の開き角度の」二限Otuスロットル弁
の開き角度の下限 Ot。
Scot 1 - Lower limit of the opening angle of the throttle valve Ot.

流量比Q、/Q、の計算近似式のための方程式の種別コ
ード E (1ニ一次式 2:二次式 等) 方程式の種類に応じた係数群CJ (j = 1〜m)
(−次式:  m、=3) から成る値の組 (Nu+ ND+ Otυ、 (lto、 E、 C1
,C2,Cs・・・)の集まったデータ群から構成され
る。
Equation type code E for calculation approximation formula for flow rate ratio Q, /Q (1: linear equation, 2: quadratic equation, etc.) Coefficient group CJ according to the type of equation (j = 1 to m)
(-formula: m, = 3) A set of values (Nu+ ND+ Otυ, (lto, E, C1
, C2, Cs...).

このデータ群はプログラム技法上、第4図のように、次
の値の組から成立する2種類のテーブルから成立つ。
In terms of programming technique, this data group consists of two types of tables formed from the following value sets, as shown in FIG.

テーブル1は (N () + N g r T ) がエンジン回転数について昇順となるように並んでいる
。Tは、第2の複数からなるテーブルの中の選択を示す
テーブル名である。
Table 1 is arranged such that (N()+NgrT) is in ascending order with respect to engine speed. T is a table name indicating a selection among the second plurality of tables.

テーブル2は (Otn+  01υ、E、C工、C2,・・・)がス
コツ1−ル弁の開き角度について昇順となるように並ん
でいる。ただし、これは同様の形式の複数のテーブルか
ら成立ち、それぞれにテーブル名が与えられる。
The table 2 is arranged such that (Otn+01υ, E, C, C2, . . . ) are arranged in ascending order with respect to the opening angle of the Scott 1 valve. However, it consists of multiple tables of similar format, each given a table name.

第5図は、補正係数発生器8が、センサからのエンジン
回転数N、スロットル弁の開き角度θ、。
FIG. 5 shows that the correction coefficient generator 8 calculates the engine rotational speed N and the opening angle θ of the throttle valve from the sensor.

流量測定装置3からの流量Qt及び第4図に示すテーブ
ルデータから、流量Q2を定める手順を示す。即ち、 (1)テーブル1を探索し、 ND≦N < N u  となるテーブル名Tを求める
The procedure for determining the flow rate Q2 from the flow rate Qt from the flow rate measuring device 3 and the table data shown in FIG. 4 will be described. That is, (1) Search table 1 and find a table name T that satisfies ND≦N<N u .

(2)テーブル2の中から(1)で定まるテーブル名工
の中で、 OtD≦(l t < Otuとなるデータ群を探索し
、それが直線の方程式を示す種別コードと次のような係
数群から成立っていたとする。
(2) Search for a data group that satisfies OtD≦(l t < Otu among the table craftsmen determined by (1) from Table 2, and find the type code that indicates the equation of a straight line and the following coefficient group. Suppose that it was established from

(CI T 62+ Cs ) (3)流入量比を次のように計算する。(CI T 62 + Cs) (3) Calculate the inflow ratio as follows.

Qt     C工              C8
Q z     C2C2 (4)シリンダ内への流量Q2は、流入量比を用いて 本実施例によれば、次のような効果がある。
Qt C engineering C8
Q z C2C2 (4) According to this embodiment, the flow rate Q2 into the cylinder is determined by using the inflow ratio, and the following effects are obtained.

第1−図に示すように、燃料噴射器10が流量計から離
れてエンジン側にあるとする。このとき空気燃料比を1
4.7 とするように燃料を噴射しようとすれば、流量
としては流量はQtではなく流量Q、をとるべきである
As shown in FIG. 1, it is assumed that the fuel injector 10 is located on the engine side away from the flow meter. At this time, the air-fuel ratio is set to 1
4.7, the flow rate should be Q, not Qt.

仮りにQtにより14.7 となるように燃料Bを定め
ると、第2図からスコツ1〜ル弁の開き角度が10度で
エンジン回転数が毎分800のときは、次のようにQZ
に対しては空気燃料比が22.6となり、稀薄混合気の
ため不安定な燃焼をひきおこす。
If fuel B is determined to be 14.7 according to Qt, then from Figure 2, when the opening angle of the Scots 1 to 1 valve is 10 degrees and the engine speed is 800 per minute, QZ will be as follows.
The air-fuel ratio is 22.6, which causes unstable combustion due to the lean mixture.

Q。Q.

□二〇、65 −=  1 4. 、7 B すなわち、 一=22.6 従って、本発明の補正係数発生器8を設けることにより
、このような不安定な燃焼を避けることができる。
□20, 65 -= 1 4. , 7 B That is, -=22.6 Therefore, by providing the correction coefficient generator 8 of the present invention, such unstable combustion can be avoided.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、吸気管のスロツI〜ル弁の近傍での流
量測定装置によるガス流量から、エンジンのシリンダ内
へ流入するガス流量を微分方程式などを解くことなく、
リアルタイムに求めることが出来るので、シリンダ内へ
の燃料噴射量の決定やエンジン出力推定などのエンジン
制御に必要なパラメータを実際値に合うよう決定できる
効果がある。
According to the present invention, the gas flow rate flowing into the cylinders of the engine can be determined from the gas flow rate measured by the flow rate measuring device near the throttle valve of the intake pipe without solving a differential equation or the like.
Since it can be determined in real time, parameters necessary for engine control, such as determining the amount of fuel injected into the cylinder and estimating engine output, can be determined to match actual values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すエンジン系の模式図、
第2図はスロツ1−ル弁通過流量対エンジンシリンダ内
流入流量の比とスコツ1〜ル弁の開き角度の相関曲線図
、第3図は第2図に基づき補正係数発生器用に表現した
近似関数の容量の関係を示す説明図、第4図は第3図の
関係を示したテーブル置換図、第5図は補正係数発生器
内の手順を示す処理フロー図である。 1・・・吸気管内、2・・スコツ1〜ル弁、3・・・流
量2111+定装置、4・・・吸気弁、5・・・シリン
ダ内、6・・・スコツ1ヘル弁開度センサ、7・クラン
ク角センサ、8・・・補正係数発生器、9・・燃料量決
定器、10・・燃料5図 θt、1〜′に方ヤIJう1rし・ 吾、6°徘′°″・パ 乞針算Tろ ○−= Qf、/4,1
FIG. 1 is a schematic diagram of an engine system showing an embodiment of the present invention;
Figure 2 is a correlation curve between the ratio of the flow rate passing through the throttle valve to the flow rate flowing into the engine cylinder and the opening angle of the throttle valve, and Figure 3 is an approximation expressed for the correction coefficient generator based on Figure 2. FIG. 4 is a table replacement diagram showing the relationship in FIG. 3, and FIG. 5 is a processing flow diagram showing the procedure within the correction coefficient generator. DESCRIPTION OF SYMBOLS 1...Intake pipe, 2...Scot 1~le valve, 3...Flow rate 2111 + constant device, 4...Intake valve, 5...In cylinder, 6...Scot 1 Hell valve opening sensor , 7. Crank angle sensor, 8.. Correction coefficient generator, 9.. Fuel quantity determiner, 10.. Fuel 5. ″・Page calculation T ○−= Qf, /4,1

Claims (1)

【特許請求の範囲】[Claims] 1、スロットル弁の近傍に流量測定装置を設けたエンジ
ンに、スロットル開度センサとクランク角センサとを設
け、流量測定装置による流量をスロットル弁開度と回転
数とにより補正してエンジン筒内への流量とすることを
特徴とする筒内流入ガス量補正方法。
1. A throttle opening sensor and a crank angle sensor are installed in an engine equipped with a flow rate measurement device near the throttle valve, and the flow rate measured by the flow rate measurement device is corrected based on the throttle valve opening degree and rotational speed before entering the engine cylinder. A method for correcting the amount of gas flowing into a cylinder, characterized in that the flow rate is set to a flow rate of .
JP31193087A 1987-12-11 1987-12-11 Cylinder inflow gas quantity compensating method Pending JPH01155041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31193087A JPH01155041A (en) 1987-12-11 1987-12-11 Cylinder inflow gas quantity compensating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31193087A JPH01155041A (en) 1987-12-11 1987-12-11 Cylinder inflow gas quantity compensating method

Publications (1)

Publication Number Publication Date
JPH01155041A true JPH01155041A (en) 1989-06-16

Family

ID=18023142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31193087A Pending JPH01155041A (en) 1987-12-11 1987-12-11 Cylinder inflow gas quantity compensating method

Country Status (1)

Country Link
JP (1) JPH01155041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8428181B2 (en) 2002-12-02 2013-04-23 Research In Motion Limited Method and apparatus for optimizing transmitter power efficiency

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8428181B2 (en) 2002-12-02 2013-04-23 Research In Motion Limited Method and apparatus for optimizing transmitter power efficiency

Similar Documents

Publication Publication Date Title
CN100408836C (en) Calculation of air charge amount in internal combustion engine
US7720591B2 (en) Intake air control of an internal combustion engine
JPS6293644A (en) Method for judging characteristic of exhaust gas concentration detector
US5450837A (en) Apparatus and method for controlling the air-fuel ratio of an internal combustion engine
US7477980B2 (en) Process control system
JPH01100336A (en) Electronic control device for internal combustion engine
US7284545B2 (en) Device for controlling an internal combustion engine
JP6545290B2 (en) Control device
US20080053092A1 (en) Method for Determining the Exhaust Pressure of a Turbocharged Internal Combustion Engine
JPS6114443A (en) Air-fuel ratio controller for internal-combustion engine
US4462375A (en) Method and apparatus for controlling fuel supply of an internal combustion engine
CN102192813B (en) The method and apparatus of the analogue value of pressure is determined in the engine system with internal combustion engine
US6782738B2 (en) Method and computer for determining a setting for correct operation of an internal combustion engine
JPH01155041A (en) Cylinder inflow gas quantity compensating method
CZ9801955A3 (en) Method for determining cyclic variations of combustion within a combustion machine
US20210148296A1 (en) Engine controller and engine control method
JPS62240446A (en) Air-fuel ratio control device for lean burn engine
JPS6325335A (en) Fuel injection control device for internal combustion engine
JPS63134845A (en) Exhaust gas recirculation control device
JP2595148B2 (en) Internal combustion engine control device
SU1254202A1 (en) Method of determining the degree of fouling of compressor passage part
JPS631732A (en) Fuel control device for electronic fuel injection type engine
JPS62119450A (en) Decision on characteristic of exhaust density detector
KR20020075910A (en) Method and device for mass flow determination via a control valve and for determining a modeled induction pipe pressure
JPS635128A (en) Fuel injection amount control device for internal combustion engine