JPH01154738A - Multi-layer structure - Google Patents

Multi-layer structure

Info

Publication number
JPH01154738A
JPH01154738A JP31382387A JP31382387A JPH01154738A JP H01154738 A JPH01154738 A JP H01154738A JP 31382387 A JP31382387 A JP 31382387A JP 31382387 A JP31382387 A JP 31382387A JP H01154738 A JPH01154738 A JP H01154738A
Authority
JP
Japan
Prior art keywords
desiccant
porous material
gas barrier
ethylene
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31382387A
Other languages
Japanese (ja)
Inventor
Takeo Tomatsuri
丈夫 戸祭
Takeo Kato
武男 加藤
Hideki Yamamoto
秀樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP31382387A priority Critical patent/JPH01154738A/en
Publication of JPH01154738A publication Critical patent/JPH01154738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve the dispersibility of desiccant, check the lowering of bond strength and at the same time contrive to improve the retorting resistance and long-time keeping quality after the filling of contents by a method wherein the desiccant, which is filled into porous material, is compounded with a multi- layer structure having a gas barrier so as to protect the gas barrier layer. CONSTITUTION:When the kneading of desiccant with polyolefin resin is intended, once the desiccant is kneaded with porous material and, after that, kneaded with aimed polyolefin resin. Concretely, the desiccant and the porous material are kneaded together and pelletized by means of a double-screw co-extruding device. The resultant desiccant-filled porous material is further kneaded with ethylene-propylene random copolymer and formed into pellets. In a multi-layer sheet co-extruding device, ethylene-propylene random copolymer, saponified ethylene-vinyl acetate copolymer and ethylene-propylene random copolymer, to which adhesive resin and the desiccant-filled porous material are added, are made into a sheet. Thus, in a desiccant-filled system multi-layer structure, the dispersibility of the desiccant is improved, the lowering of bond strength due to deliquescence is checked, the generation of blister is suppressed and no drying effect is impaired.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、レトルト殺菌可能で、高い気体遮断性を有す
る合成樹脂積層体に関し、レトルト殺菌処理中、および
処理後も高い気体遮断性を保ち、食品、又は、医薬品を
長期間保存可能とした容器に使用する合成樹脂積層体に
関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a synthetic resin laminate that can be retort sterilized and has high gas barrier properties, and maintains high gas barrier properties during and after retort sterilization treatment. The present invention relates to a synthetic resin laminate used in containers capable of storing foods, foods, or medicines for a long period of time.

〈従来の技術及びその問題点〉 エチレン−酢酸ビニル共重合体ケン化物は優れたガスバ
リヤ−性、保香性、透明性により、多層容器等の包装材
料のガスバリヤ−層として使用することにより包装され
た食品又は医薬品の酸素等による劣化を防ぎ、長期保存
が可能となるため多用されている。
<Prior art and its problems> Saponified ethylene-vinyl acetate copolymer has excellent gas barrier properties, fragrance retention properties, and transparency, and can be used as a gas barrier layer in packaging materials such as multilayer containers. It is widely used because it prevents food or medicine from deteriorating due to oxygen, etc., and enables long-term storage.

しかしながら、エチレン−酢酸ビニル共重合体ケン化物
は低湿度状態では優れた酸素ガスバリヤ−性を示すが、
高湿度状態や含水率が高い場合には酸素ガスバリヤ−性
は大巾に低下する。その為、一般にはポリエチレン、ポ
リプロピレン等の低透湿性の疎水性高分子を両面に積層
し使用される。
However, although saponified ethylene-vinyl acetate copolymer exhibits excellent oxygen gas barrier properties under low humidity conditions,
When the humidity is high or the moisture content is high, the oxygen gas barrier properties are significantly reduced. Therefore, it is generally used by laminating low moisture permeability hydrophobic polymers such as polyethylene and polypropylene on both sides.

エチレン−酢酸ビニル共重合体ケン化物の酸素ガスバリ
ヤ−性が優れている理由として分子間あるいは分子内水
素結合が他の高分子に比べ強力な点が挙げられる他に、
分子鎖の対称性、極性などが相乗して寄与していること
が挙げられる。これに対し、エチレン−酢酸ビニル共重
合体ケン化物の含水率が高くなると、吸着された水分子
はまず親水性のOH基に結合し、含水率の増加に伴って
吸着水は分子間の水素結合を破壊し、酸素分子拡散の為
に必要な分子運動を可能ならしめ、酸素透過係数の増加
をもたらすものと考えられている。この状態からさらに
含水率が増大すれば、吸着水の他に自由水が存在するよ
うになって、更に分子間力は弱まり分子運動に対する可
塑化効果により、酸素透過係数は益々大きくなると考え
られている。
The reason why the saponified ethylene-vinyl acetate copolymer has excellent oxygen gas barrier properties is that the intermolecular and intramolecular hydrogen bonds are stronger than those of other polymers.
One example is the synergistic contribution of molecular chain symmetry, polarity, etc. On the other hand, when the water content of the saponified ethylene-vinyl acetate copolymer increases, the adsorbed water molecules first bond to hydrophilic OH groups, and as the water content increases, the adsorbed water becomes intermolecular hydrogen. It is thought that it breaks bonds and enables the molecular movement necessary for oxygen molecule diffusion, leading to an increase in the oxygen permeability coefficient. It is thought that if the water content increases further from this state, free water will exist in addition to adsorbed water, and the intermolecular force will further weaken, and the oxygen permeability coefficient will further increase due to the plasticizing effect on molecular motion. There is.

このようなエチレン−酢酸ビニル共重合体ケン化物をレ
トルト殺菌用多層容器として使用する場合、レトルト殺
菌における120°C程度の熱水又は蒸気に対する耐熱
性の点から、エチレン−酢酸ビニル共重合体ケン化物の
両側にポリプロピレン層を積層するのが一般的である。
When using such saponified ethylene-vinyl acetate copolymer as a multilayer container for retort sterilization, saponified ethylene-vinyl acetate copolymer is recommended because of its heat resistance to hot water or steam of about 120°C during retort sterilization. It is common to laminate polypropylene layers on both sides of the compound.

しかしながら、レトルト殺菌時の加熱加圧状態ではポリ
プロピレン層の透湿度は常温時に比べ15〜20倍増大
する為、エチレン−酢酸ビニル共重合体ケン化物層の含
水率は急激に増加し、それとともに酸素ガスバリヤ−性
は大巾に低下する。このようなレトルト殺菌により酸素
ガスバリヤ−性が大巾に低下した多層容器は、レトルト
殺菌後の保存により、除々にエチレン−酢酸ビニル共重
合体ケン化物層の水分が外部に放出されることにより酸
素バリヤー性は回復するものの、長期間を要し、その用
途は比較的劣化に対する許容酸素量の大きい内容物や、
保存期間の短いものに限定されていた。
However, in the heated and pressurized state during retort sterilization, the moisture permeability of the polypropylene layer increases by 15 to 20 times compared to that at room temperature, so the water content of the saponified ethylene-vinyl acetate copolymer layer increases rapidly, and at the same time oxygen Gas barrier properties are greatly reduced. When stored after retort sterilization, the moisture in the saponified ethylene-vinyl acetate copolymer layer is gradually released to the outside of multi-layered containers, whose oxygen gas barrier properties have been greatly reduced due to retort sterilization. Although the barrier properties can be restored, it takes a long time, and the application is limited to contents that have a relatively high oxygen tolerance against deterioration,
It was limited to items with a short shelf life.

これらの問題点を改良するために面に3つの方法が検討
されており、その1はエチレ、ンー酢酸ビニル共重合体
ケン化物自体に耐熱水性を付与する方法であり、その2
はエチレン−酢酸ビニル共重合体が吸収した水の放出速
度を早め、酸素ガスバリヤ−性の回復を早める方法であ
り、その3は、水の浸入を防ぐ混合樹脂層をエチレン−
酢酸ビニル共重合体層の両側に設は酸素ガスバリヤ−性
の低下を抑える方法である。
Three methods are currently being considered to improve these problems; the first is to impart hot water resistance to the saponified ethylene-vinyl acetate copolymer itself;
Method 3 is a method that accelerates the release rate of water absorbed by the ethylene-vinyl acetate copolymer and accelerates the recovery of oxygen gas barrier properties.
Providing the vinyl acetate copolymer layer on both sides is a method of suppressing a decrease in oxygen gas barrier properties.

第1の方法については、エチレン−酢酸ビニル共重合体
ケン化物におけるエチレン含有率を増大させることによ
り、耐水性、耐熱水性が向上するが、それに伴って本来
の酸素ガスバリヤ−性が大巾に低下するため実用的では
ない。また、第2の方法としては、外層のポリプロピレ
ン層の厚さを内層のポリプロピレン層の厚さの比べ薄く
することにより、レトルト殺菌後の保持時におけるエチ
レン−酢酸ビニル共重合体ケン化物が吸収した水の外気
への放出速度を早め、酸素ガスバリヤ−性の回復を早め
るものである。しかしこの方法は外層ポリプロピレンが
薄いためレトルト殺菌時のエチレン−酢酸ビニル共重合
体ケン化物層の吸水量が多い、その為、酸素ガスバリヤ
−性の低下度合が大きく、その回復速度が速いとしても
長期的に見て累積透過酸素量が若干低減出来る程度で諷
り、さらに、レトルト殺菌後初期においては逆に容器内
の酸素濃度が高くなるため内容物によって劣化を助長す
る恐れがある。
Regarding the first method, by increasing the ethylene content in the saponified ethylene-vinyl acetate copolymer, water resistance and hot water resistance are improved, but the original oxygen gas barrier properties are significantly reduced. Therefore, it is not practical. In addition, as a second method, by making the thickness of the outer polypropylene layer thinner than the thickness of the inner polypropylene layer, the saponified ethylene-vinyl acetate copolymer is absorbed during storage after retort sterilization. This speeds up the release of water into the outside air and speeds up the recovery of oxygen gas barrier properties. However, in this method, since the outer layer polypropylene is thin, the amount of water absorbed by the saponified ethylene-vinyl acetate copolymer layer during retort sterilization is large, so the oxygen gas barrier properties are greatly reduced, and even if the recovery speed is fast, it will take a long time. In general, the cumulative amount of permeated oxygen can be slightly reduced, and furthermore, in the early stage after retort sterilization, the oxygen concentration inside the container increases, so there is a risk that the contents may accelerate deterioration.

これら第1、第2の方法をさらに改良する方法として乾
燥剤を利用する方法が提案されている。
A method using a desiccant has been proposed as a method for further improving the first and second methods.

すなわち特開昭57−170748号公報に記載され、
この記載内容によれば、エチレン−酢酸ビニル共重合体
ケン化物層の両側を乾燥剤を含む層で保護することによ
り、レトルト殺菌時に浸入する水を捕促し、エチレン−
酢酸ビニル共重合体ケン化物層の含水率増加を低減化し
、酸素ガスバリヤ−性の低下を押さえようという方法で
ある。この方法では、レトルト殺菌による酸素ガスバリ
ヤ−性の低下は抑えられるとしても、塩化カルシウム、
塩化ナトリウム、第2燐酸ナトリウム、塩化アンモニウ
ム、炭酸カリウム、カリウムミョウバン、硫酸マグネシ
ウム、塩化マグネシウム、硝酸ナトリウム、硫酸アンモ
ニウム、第一燐酸アンモニウム、臭化カリウムなどの乾
燥剤を10〜20重量%接着樹脂層へ混合させることに
より効果を得ようとするものである。
That is, it is described in Japanese Patent Application Laid-Open No. 57-170748,
According to this description, by protecting both sides of the saponified ethylene-vinyl acetate copolymer layer with a layer containing a desiccant, water that enters during retort sterilization is captured, and the ethylene-vinyl acetate
This method aims to reduce the increase in water content of the saponified vinyl acetate copolymer layer and suppress the decrease in oxygen gas barrier properties. Although this method can suppress the deterioration of oxygen gas barrier properties due to retort sterilization, calcium chloride,
Add 10 to 20% by weight of a drying agent such as sodium chloride, dibasic sodium phosphate, ammonium chloride, potassium carbonate, potassium alum, magnesium sulfate, magnesium chloride, sodium nitrate, ammonium sulfate, primary ammonium phosphate, or potassium bromide to the adhesive resin layer. The idea is to obtain the effect by mixing them.

周知のように、これらの乾燥剤は通常の状態に於て、積
極的に水分を吸収しようという性質があるため、接着性
樹脂と混合した時点から、常に空気中の水分を吸収しよ
うとする性質から、樹脂の成形前に吸湿してしまう恐れ
がある。従ってこれら乾燥剤の混合された樹脂を用いて
合成樹脂積層体を得ようとすると、細心の注意を払って
充分に樹脂が乾燥した状態で押出し、成形をしない限り
水分に起因する発泡などのトラブルを生じ易く、極めて
高度な技術および管理を必要とする。
As is well known, these desiccants have the property of actively absorbing moisture under normal conditions, so from the time they are mixed with the adhesive resin, they constantly try to absorb moisture from the air. Therefore, there is a risk that the resin will absorb moisture before being molded. Therefore, if you try to obtain a synthetic resin laminate using a resin mixed with these drying agents, problems such as foaming due to moisture will occur unless you take extreme care to extrude and mold the resin in a sufficiently dry state. easily occur and require extremely sophisticated technology and management.

また、仮に高度な技術および管理により、かかる乾燥剤
が混合された樹脂を用いて合成樹脂積層体が得られたと
しても、中に含まれる乾燥剤は常に空気中又は周囲の介
在物から水分を吸収しようとし、−度とり込んだ水分は
、相当なエネルギーを加えない限り再び放出しようとし
ない為、得られた合成樹脂積層体から成る容器包装材料
等の積層体は、製造後、可及的すみやかに内容物を充填
しないと、目的とするレトルト時の効果が薄れてしまう
恐れがある。
Furthermore, even if a synthetic resin laminate is obtained using a resin mixed with such a desiccant through advanced technology and management, the desiccant contained therein will always remove moisture from the air or surrounding inclusions. Since the water that is tried to be absorbed and taken in will not be released again unless a considerable amount of energy is applied, laminates such as containers and packaging materials made of the resulting synthetic resin laminate should be kept as long as possible after manufacturing. If the contents are not filled promptly, the desired effect during retorting may be diminished.

以上の様に、エチレン−酢酸ビニル共重合体ケン化物を
ガスバリヤ−層とする多層構造体において、レトルト殺
菌処理によるガスバリヤ−層の低下を防ぐことが出来、
しかも、製造が容易で内容物充填前の経時安定性も良好
でかつ安価な多層構造体は、得られておらず、開発が切
望されていた。
As described above, in a multilayer structure having a saponified ethylene-vinyl acetate copolymer as a gas barrier layer, deterioration of the gas barrier layer due to retort sterilization treatment can be prevented,
Moreover, a multilayer structure that is easy to manufacture, has good stability over time before being filled with contents, and is inexpensive has not yet been obtained, and its development has been eagerly desired.

く解決しようとする問題点〉 従来のエチレン−酢酸ビニル共重合体ケン化物をガスバ
リヤ−層とする多層構造体において、乾燥剤を利用する
方法が提案されているが、すなわち特開昭57−170
748号公報による、乾燥剤を目的とするポリオレフィ
ン樹脂や接着性樹脂に混練し、ガスバリヤ−層をエチレ
ン酢酸ビニル共重合体ケン化物とし、共押出し法にて成
膜した多層構造体である。
Problems to be Solved> A method has been proposed in which a desiccant is used in a conventional multilayer structure having a saponified ethylene-vinyl acetate copolymer as a gas barrier layer.
According to Japanese Patent No. 748, this is a multilayer structure in which a polyolefin resin or an adhesive resin is kneaded to serve as a desiccant, a saponified ethylene-vinyl acetate copolymer is used as a gas barrier layer, and a film is formed by coextrusion.

しかし、この方法は、粉末状態である乾燥剤は、分散性
が悪く、ポリオレフィン樹脂に混練した場合凝集しやす
く、隣接した接着層に影響を与え、接着強度の低下を招
くという問題があった。また、乾燥剤が吸湿するにした
がい、潮解作用による水分の影響で、その接着強度が、
増々低下する傾向にある。
However, this method has a problem in that the desiccant in powder form has poor dispersibility and tends to aggregate when kneaded with the polyolefin resin, affecting the adjacent adhesive layer and causing a decrease in adhesive strength. In addition, as the desiccant absorbs moisture, its adhesive strength decreases due to the influence of moisture due to deliquescent action.
There is a tendency to decrease more and more.

さらに、トレー成形後、内容物を充填し、長期間保存す
ると乾燥剤が、吸湿するにしたがい、接着強度の低下が
進み、最悪の場合、肉厚の薄いトレーコーナ一部に水ぶ
くれが生じる。この水ぶくれは、乾燥剤の過剰な吸湿作
用によるもので、商品としての価値を著しく損う問題点
が生じる。これらの問題点を解決するため、乾燥剤の分
散性を向上させ、接着強度の低下を抑制し、かつ内容物
充填後、耐レトルト性があり、しかも長期間保存した場
合でも、内容物が良好である積層体を提供するものであ
る。
Furthermore, if the tray is filled with contents after molding and stored for a long period of time, the desiccant absorbs moisture and the adhesive strength decreases, and in the worst case, blisters occur in some thin-walled tray corners. This blistering is caused by the excessive hygroscopic action of the desiccant, resulting in a problem that significantly reduces the value as a product. In order to solve these problems, we have improved the dispersibility of the desiccant, suppressed the decline in adhesive strength, and achieved retort resistance after filling the contents, and the contents remained good even when stored for a long time. The present invention provides a laminate having the following properties.

く問題点を解決するための手段〉 すなわち、本発明は、乾燥剤をポリオレフィン樹脂に混
練する際、−度多孔質体に混練し、その後目的のポリオ
レフィン樹脂に混練することで解決した。
Means for Solving the Problems> That is, the present invention has solved the problem by kneading the drying agent into a polyolefin resin, first by kneading it into a porous body, and then kneading it into the target polyolefin resin.

すなわち、乾燥剤を多孔質体に充填し、ガスバリヤ−層
を有する多層構造体に配合し、該ガスバリヤ−層を保護
しであることを特徴とする多層構造体である。
That is, the multilayer structure is characterized in that a desiccant is filled into a porous body and blended into a multilayer structure having a gas barrier layer to protect the gas barrier layer.

〔作用〕[Effect]

通常、市販されている乾燥剤は、粉末状態であり、その
ままポリオレフィン樹脂に混練すると、凝集しやすく、
分散性が悪い、したがって、隣接した接着層に影響を与
え、さらに乾燥剤は潮解性があるので、過剰に吸湿した
際、その潮解した水分により、接着力が低下する。特に
トレー成形し内容物充填し長期間保存した場合、トレー
コーナ部の接着強度が低下し、最悪の場合、潮解作用に
より、水ぶくれが生じる。
Commercially available desiccants are usually in powder form, and when mixed directly into polyolefin resin, they tend to aggregate.
The desiccant has poor dispersibility, thus affecting the adjoining adhesive layer, and since the desiccant has deliquescent properties, when excessive moisture is absorbed, the deliquesced water reduces the adhesive strength. In particular, when a tray is formed, filled with contents, and stored for a long period of time, the adhesive strength at the tray corners decreases, and in the worst case, blisters occur due to deliquescence.

この水ぶくれは、商品価値を著しく低下させ、たとえバ
リヤー性が良くても商品化は、困難である。よって、こ
の問題を解決するため、乾燥剤をあらかじめ、多孔質体
に充填し、とじ込めるので潮解現象を防ぐのである。ま
た、乾燥剤の回りは、多孔質体で、細かい孔をもった構
造なので、本来のもつ乾燥効果は、失なわないのである
。さらに多孔質体に充填するので、凝集を防ぎ、分散性
が向上し、接着強度低下は、抑制できるのである。
This blistering significantly lowers the commercial value and makes commercialization difficult even if the barrier properties are good. Therefore, in order to solve this problem, the porous body is filled with a desiccant agent in advance, and the desiccant is sealed in, thereby preventing the deliquescence phenomenon. In addition, the desiccant is surrounded by a porous material with fine pores, so the original drying effect is not lost. Furthermore, since it is filled into a porous body, agglomeration is prevented, dispersibility is improved, and a decrease in adhesive strength can be suppressed.

以上の方法を用いることにより、問題を解決した。The problem was solved by using the above method.

多孔質体の例として、二酸化ケイ素、シリカゲル、活性
炭、炭酸カルシウム、ゼオライト等とする。
Examples of porous materials include silicon dioxide, silica gel, activated carbon, calcium carbonate, and zeolite.

〈実施例−1〉 2軸の共押出し装置を用い、乾燥剤(第2燐酸水素ナト
リウム)と多孔質体(シリカゲル)を混練ペレタイズし
、出来た乾燥剤添加多孔質体をさらにエチレン−プロピ
レンランダム共重合体(チッソポリプロ: F−302
0)に混練しペレットを形成した。それぞれの配合比は
1:2:17とした。
<Example-1> Using a twin-screw coextrusion device, a desiccant (dibasic sodium hydrogen phosphate) and a porous body (silica gel) were kneaded and pelletized, and the resulting desiccant-added porous body was further mixed with ethylene-propylene random. Copolymer (Tissopolypro: F-302
0) to form pellets. The mixing ratio of each was 1:2:17.

以上より多層シート共押出し装置にて、エチレン−プロ
ピレンランダム共重合体(同上)とエチレン酢酸ビニル
共重合体ケン化物(クラレ■:F1旧)(以下EVOH
と称す)と接着剤樹脂(三菱油化:P300F)と上記
、乾燥剤添加多孔質体を加えたエチレン−プロピレンラ
ンダム共重合体を総厚600 μの厚み設定でシートを
成膜した。成膜したシートを圧空成形機にてトレー成形
を行ない、出来たトレーを引張試験機にて、接着強度を
測定した。比較として多孔質体を添加せず、乾燥剤のみ
として、同様に成膜し、トレー成形し、接着強度を測定
した。
From the above, using a multilayer sheet coextrusion device, ethylene-propylene random copolymer (same as above) and saponified ethylene-vinyl acetate copolymer (Kuraray ■: F1 old) (hereinafter EVOH)
A sheet was formed using the above-mentioned ethylene-propylene random copolymer containing a desiccant-added porous material, an adhesive resin (P300F manufactured by Mitsubishi Yuka Co., Ltd.), and a total thickness of 600 μm. The formed sheet was molded into a tray using a pressure forming machine, and the adhesive strength of the resulting tray was measured using a tensile tester. As a comparison, a film was formed in the same manner using only a drying agent without adding a porous material, and a tray was formed, and the adhesive strength was measured.

さらに出来た2種類のトレーを用いて、内容物(水)を
充填し、レトルト処理し、長期保存における接着強度の
変化並びにトレーの状態について経時的に確認した。そ
の結果を表1に示す。
Furthermore, using the two types of trays produced, they were filled with contents (water) and subjected to retort treatment, and changes in adhesive strength during long-term storage and the condition of the trays were checked over time. The results are shown in Table 1.

表1 尚、レトルト条件は、120°C30分間の回転レトル
トを行なった。
Table 1 The retort conditions were a rotational retort at 120°C for 30 minutes.

以上から多孔質体無添加品は保存するに従いトレーコー
ナ部の接着強度が著しく低下し、6力月目に水ぶくれが
、トレーコーナ部に発生し、商品としての価値を失なっ
た。尚、多孔質体添加品は、保存中の接着強度低下を防
ぎ、水ぶくれが発生せず、良好であった。
From the above, as the porous material-free product was stored, the adhesive strength at the tray corner decreased significantly, and blisters appeared at the tray corner after 6 months, and the product lost its value as a product. In addition, the porous material-added product prevented a decrease in adhesive strength during storage and did not cause blisters, and was in good condition.

〈実施例−2〉 2軸の共押し出し装置を用い、乾燥剤(第2燐酸水素ナ
トリウム)と多孔質体(ゼオライト)を混練ペレタイズ
し、実施例−1同様に多層シート押し小装置で成膜し、
圧空成形機にてトレー成形を行なった。
<Example-2> Using a twin-screw co-extrusion device, a desiccant (dibasic sodium hydrogen phosphate) and a porous material (zeolite) were kneaded and pelletized, and a film was formed using a multilayer sheet pressing device in the same manner as in Example-1. death,
Tray molding was performed using a pressure molding machine.

出来たトレーを100℃のボイル槽に入れ、水分を過剰
に与えボイル促進テストを行なった。比較として、多孔
質体(ゼオライト)を添加せず、乾燥剤のみとして成膜
トレー成形後、同様にボイル促進テストを行なった。
The resulting tray was placed in a boiling tank at 100°C, and an excessive amount of water was added to perform a boiling acceleration test. For comparison, a boiling acceleration test was similarly conducted after forming a film-forming tray using only a desiccant agent without adding a porous material (zeolite).

表2は、その試験結果である。Table 2 shows the test results.

表2 以上から多孔質体無添加品は24hr36hrボイル後
トレ一コーナ部に水ぶくれが発生し、商品としての価値
を失なった。
Table 2 From the above, the porous material-free product developed blisters at the corner of the tray after 24 hours and 36 hours of boiling, and lost its value as a product.

尚、多孔質体添加品は、水ぶくれが発生せず、良好であ
り、多孔質体の添加効果が確認された。
Note that the porous material-added product did not cause blisters and was in good condition, confirming the effect of the porous material addition.

〈発明の効果〉 本発明は、以上のように、乾燥剤添加方式多層構造体で
の乾燥剤の分散性を挙げ、潮解性による接着強度低下を
抑制し、水ぶくれの発生をおさえ、しかも本来もつ乾燥
剤の乾燥効果を損わない。
<Effects of the Invention> As described above, the present invention improves the dispersibility of the desiccant in a desiccant-added multilayer structure, suppresses the decrease in adhesive strength due to deliquescent property, suppresses the occurrence of blisters, and Does not impair the drying effect of the desiccant.

したがって、エチレン−酢酸ビニル共重合体ケン化物等
の水分の影響を受け、気体透過遮断能力が低下しやすい
樹脂を共用することにより、その能力を保持し、内容物
を充填した際、その商品価値を損わず、良好である。
Therefore, by sharing resins such as saponified ethylene-vinyl acetate copolymer whose gas permeation blocking ability tends to decrease due to the influence of moisture, this ability can be maintained and its commercial value will be increased when filled with contents. It is in good condition without any damage.

尚、得られた、多層構造体は、レトルト容器をはじめ、
過湿環境下における防湿容器等多目的に利用することが
出来る。
The obtained multilayer structure can be used for retort containers, etc.
It can be used for multiple purposes such as moisture-proof containers in hyperhumid environments.

特  許  出  願  人 凸版印刷株式会社 代表者 鈴木和夫Patent applicant Toppan Printing Co., Ltd. Representative: Kazuo Suzuki

Claims (2)

【特許請求の範囲】[Claims] (1)乾燥剤を多孔質体に充填した保護層を、吸湿性ガ
スバリヤー層を有する多層構造体の前記ガスバリヤー層
を保護する位置に配したことを特徴とする多層構造体。
(1) A multilayer structure, characterized in that a protective layer in which a porous material is filled with a desiccant agent is disposed at a position protecting the gas barrier layer of a multilayer structure having a hygroscopic gas barrier layer.
(2)保護層が内層とし、ガスバリヤー層の外側の位置
に単層あるいは、複数層に配したことを特徴とする特許
請求の範囲第1項記載の多層構造体。
(2) The multilayer structure according to claim 1, wherein the protective layer is an inner layer, and a single layer or multiple layers are arranged outside the gas barrier layer.
JP31382387A 1987-12-11 1987-12-11 Multi-layer structure Pending JPH01154738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31382387A JPH01154738A (en) 1987-12-11 1987-12-11 Multi-layer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31382387A JPH01154738A (en) 1987-12-11 1987-12-11 Multi-layer structure

Publications (1)

Publication Number Publication Date
JPH01154738A true JPH01154738A (en) 1989-06-16

Family

ID=18045942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31382387A Pending JPH01154738A (en) 1987-12-11 1987-12-11 Multi-layer structure

Country Status (1)

Country Link
JP (1) JPH01154738A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170748A (en) * 1981-04-13 1982-10-21 American Can Co Multilayer polymer structure
JPS61249750A (en) * 1985-04-30 1986-11-06 東洋製罐株式会社 Multilayer plastic vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170748A (en) * 1981-04-13 1982-10-21 American Can Co Multilayer polymer structure
JPS61249750A (en) * 1985-04-30 1986-11-06 東洋製罐株式会社 Multilayer plastic vessel

Similar Documents

Publication Publication Date Title
US11851551B2 (en) Sealant film for packaging liquid contents, laminate including same, packaging material for liquid contents, and package for liquid contents
JP2653337B2 (en) Double package
WO2016013595A1 (en) Easily peelable packaging bag
JPH03109917A (en) Formed desiccant
JP5568855B2 (en) Resin multilayer structure
JP5663828B2 (en) Water absorbent resin composition
JP4225062B2 (en) Moisture absorption packaging container
JP2003300292A (en) Plastic multilayer structure
JPH03215031A (en) Multilayer structure for packaging
JP2955776B2 (en) Package
JPS61249750A (en) Multilayer plastic vessel
JPH01154738A (en) Multi-layer structure
JP7419664B2 (en) Deodorizing PTP packaging
JP7383897B2 (en) Carbon dioxide adjustment laminate and packaging
JP3403798B2 (en) Oxygen-absorbing resin composition, sheet, film and oxygen-absorbing container
JP6950288B2 (en) Laminates for sterilization and sterilization, packaging materials using the laminates, and packaging
JP6727025B2 (en) Heat seal laminate
JP4085218B2 (en) Oxygen scavenger composition and storage method
JP2020158140A (en) Deodorant package
JP2019064633A (en) Laminate for liquid content packaging, packaging material for liquid content, and package for liquid content
CN113166464B (en) Polyolefin compositions with improved oxygen scavenging capability
JP7371341B2 (en) Carbon dioxide absorption laminate and valveless packaging
JPH0380628B2 (en)
JPS62208344A (en) Multilayer structure for packaging
JP3460801B2 (en) Deoxidizing multilayer or method for food heating