JPH01154550A - Manufacture of complementary mos semiconductor device - Google Patents

Manufacture of complementary mos semiconductor device

Info

Publication number
JPH01154550A
JPH01154550A JP62312253A JP31225387A JPH01154550A JP H01154550 A JPH01154550 A JP H01154550A JP 62312253 A JP62312253 A JP 62312253A JP 31225387 A JP31225387 A JP 31225387A JP H01154550 A JPH01154550 A JP H01154550A
Authority
JP
Japan
Prior art keywords
insulating film
diffusion layer
type diffusion
interlayer insulating
polysilicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62312253A
Other languages
Japanese (ja)
Other versions
JPH0770611B2 (en
Inventor
Junji Kiyono
純司 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62312253A priority Critical patent/JPH0770611B2/en
Publication of JPH01154550A publication Critical patent/JPH01154550A/en
Publication of JPH0770611B2 publication Critical patent/JPH0770611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a complementary MOS semiconductor device capable of preventing short-circuit caused by electrostatic breakdown of an insulating film, by forming a polysilicon layer on an interlayer insulating film including contact holes, providing the polysilicon layer with electrical conductivity, and introducing dopants in the contact holes by means of ion implantation. CONSTITUTION:Contact holes 8, 9 and 10 are formed in an interlayer insulating film 7 of PSG reflown by a heat treatment, corresponding to a P-type diffusion layer region 6, an N-type diffusion layer region 5 and a gate electrode 4, respectively. Then a thin polysilicon layer 11 is deposited all over the surface. Phosphorus contained in the interlayer insulating film 7 is diffused thermally into the polysilicon layer 11 and it is further heat-treated to decrease its specific resistance. Only the P-channel side is covered with a resist mask 12 and phosphorus ions as N-type dopant are implanted so that a second N-type diffusion layer region 13 deeper than the N-type diffusion layer region 5 is formed in the region 5. Then, the N-channel side is covered with a resist mask 14, and boron ions as P-type dopants are implanted so that a P-type diffusion layer region 15 deeper than the P-type diffusion layer region 8 is formed in the region 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相補型MOS半導体装置の製造方法に関し、特
に電極取出し用のコンタクトホールへの不純物導入方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a complementary MOS semiconductor device, and particularly to a method for introducing impurities into a contact hole for taking out an electrode.

〔従来の技術〕[Conventional technology]

近年、相補型MOS半導体装置の微細化、高密度集積化
に伴って平面的な種々のマージンは小さくなり、半導体
基板の主表面に形成されるP、 Nの拡散層の接合深さ
も浅くなっている。このため、この種の拡散層に対して
電極を接続する場合、二〇P、Nの拡散層に対応した絶
縁膜の箇所にコンタクトホールを開口した上で、各拡散
層と同一導電型の不純物をこのコンタクトホールにセル
ファラインで導入し、コンタクトホール部で生じ易い接
合破壊による電極と半導体基板との短絡を防止する構成
がとられている。
In recent years, with the miniaturization and high-density integration of complementary MOS semiconductor devices, various planar margins have become smaller, and the junction depth of the P and N diffusion layers formed on the main surface of the semiconductor substrate has also become shallower. There is. Therefore, when connecting electrodes to this type of diffusion layer, contact holes are opened in the insulating film at locations corresponding to the 20P and N diffusion layers, and then impurities of the same conductivity type as each diffusion layer are inserted. is introduced into this contact hole by a self-line, thereby preventing a short circuit between the electrode and the semiconductor substrate due to junction breakdown that is likely to occur in the contact hole portion.

したがって、従来相補型MOS半導体装置にこの構成を
形成する場合には、コンタクトホール形成後に−チャネ
ル側、例えばPチャネル側をマスク材で覆ってNチャネ
ル側のコンタクトホール内にN型不純物をイオン注入法
で導入し、しかる上で反対のNチャネル側をマスク材で
覆ってPチャネル側にP型不純物をイオン注入法で導入
する方法が必要とされている。
Therefore, when forming this structure in a conventional complementary MOS semiconductor device, after forming a contact hole, the -channel side, for example, the P channel side, is covered with a mask material and N type impurity ions are implanted into the contact hole on the N channel side. What is needed is a method of introducing P-type impurities into the P-channel side by ion implantation, covering the opposite N-channel side with a mask material, and then introducing P-type impurities into the P-channel side by ion implantation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のコンタクトホールへの不純物の導入方法
は、不純物のイオン注入時に半導体基板の主表面が層間
絶縁膜またはマスク用のレジスト層により覆われている
ため、イオン注入時のエネルギにより表面が帯電し、ゲ
ート絶縁膜の静電破壊によりゲート電極と半導体基板が
短絡したり、層間絶縁膜自身が静電破壊して配線電極と
半導体基板等が短絡するという問題がある。
In the conventional method of introducing impurities into contact holes described above, the main surface of the semiconductor substrate is covered with an interlayer insulating film or a resist layer for a mask when impurity ions are implanted, so the surface is charged by the energy during ion implantation. However, there are problems in that the gate electrode and the semiconductor substrate are short-circuited due to electrostatic breakdown of the gate insulating film, and the interlayer insulating film itself is electrostatically damaged, resulting in short-circuiting between the wiring electrode and the semiconductor substrate.

本発明は、絶縁膜の静電破壊による短絡事故を防止して
信頼性の高い相補型MOS半導体装置を製造することが
可能な製造方法を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method capable of manufacturing a highly reliable complementary MOS semiconductor device by preventing short-circuit accidents caused by electrostatic breakdown of an insulating film.

〔問題点を解決するための手段] 本発明の相補型MOS半導体装置の製造方法は、半導体
基板に形成したPN接合に臨むコンタクトホールを層間
絶縁膜に開設する工程と、このコンタクトホールを含む
層間絶縁膜上にポリシリコン層を形成する工程と、層間
絶縁膜に含まれる不純物をこのポリシリコン層に拡散し
て導電性を持たせる工程と、コンタクトホール部にイオ
ン注入法によって不純物を導入する工程とを含み、絶縁
膜に帯電させることなくコンタクトホール部へのイオン
注入を可能としている。
[Means for Solving the Problems] The method for manufacturing a complementary MOS semiconductor device of the present invention includes a step of opening a contact hole in an interlayer insulating film facing a PN junction formed in a semiconductor substrate, and an interlayer insulating film including this contact hole. A process of forming a polysilicon layer on the insulating film, a process of diffusing impurities contained in the interlayer insulating film into this polysilicon layer to make it conductive, and a process of introducing impurities into the contact hole area by ion implantation. This makes it possible to implant ions into the contact hole portion without charging the insulating film.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図乃至第3図は本発明の一実施例の主要工程を示す
縦断面図である。
1 to 3 are longitudinal cross-sectional views showing the main steps of an embodiment of the present invention.

第1図はP型半導体基板1の主表面にNウェル2を形成
し、かつ素子分離用のフィールド絶縁膜3を形成した上
で、ここにMOS型FETのゲート電極4を形成し、更
に半導体基板1の主表面にNチャネルMOS)ランジス
タのソース・ドレインを構成するN型拡散層領域5と、
PチャネルMOSトランジスタのソース・ドレインを構
成するP型拡散層領域6を形成した状態を示している。
In Figure 1, an N well 2 is formed on the main surface of a P-type semiconductor substrate 1, a field insulating film 3 for element isolation is formed, a gate electrode 4 of a MOS type FET is formed here, and a semiconductor N-type diffusion layer regions 5 forming the source and drain of an N-channel MOS transistor on the main surface of the substrate 1;
This shows a state in which P-type diffusion layer regions 6 forming the source and drain of a P-channel MOS transistor are formed.

なお、符号7は熱処理によりリフローされたPSGより
なる層間絶縁膜であり、ここには前記P型拡散層領域6
.N型拡散N領域5.ゲート電極4に夫々対応してコン
タクトホール8,9.10を開設している。
Note that 7 is an interlayer insulating film made of PSG that has been reflowed by heat treatment, and here the P-type diffusion layer region 6 is
.. N-type diffusion N region5. Contact holes 8, 9 and 10 are formed corresponding to the gate electrodes 4, respectively.

しかる上で、第2図のように全面に薄いポリシリコン層
11を被着する。ポリシリコン層11の厚さは、100
〜1000人が適当である。そして、前記層間絶縁膜7
に含まれるリンをこのポリシリコン層11の中へ熱拡散
させ、更に熱処理により比抵抗率を低下させる。熱処理
温度としては、層間絶縁膜7がリフローしない温度の7
00〜900°Cが適当である。
Then, as shown in FIG. 2, a thin polysilicon layer 11 is deposited over the entire surface. The thickness of the polysilicon layer 11 is 100
~1000 people is appropriate. Then, the interlayer insulating film 7
The phosphorus contained in the polysilicon layer 11 is thermally diffused into the polysilicon layer 11, and the specific resistivity is further reduced by heat treatment. The heat treatment temperature is 7, which is a temperature at which the interlayer insulating film 7 does not reflow.
00-900°C is suitable.

そして、コンタクト部に不純部を導入するため、Pチャ
ネル側のみレジストマスク12で覆い、N型不純物のリ
ンをイオン注入し、N型拡散層領域5にこれよりも深い
第2のN型拡散層領域13を形成する。
Then, in order to introduce an impurity into the contact part, only the P channel side is covered with a resist mask 12, ions of phosphorus as an N type impurity are implanted, and a second N type diffusion layer deeper than this is formed in the N type diffusion layer region 5. A region 13 is formed.

また同様にして、第3図のようにNチャネル側をレジス
トマスクで覆い、P型不純物のボロンを注入し、P型拡
散層領域6にこれよりも深い第2のP型拡散層領域15
を形成する。
Similarly, the N-channel side is covered with a resist mask as shown in FIG.
form.

なお、前記いずれのイオン注入においても、イオンがポ
リシリコン層11を十分貫通するエネルギーでコンタク
ト部表面の不純物濃度が1020以上となるようにドー
ズ量を設定している。
In each of the ion implantations described above, the dose is set so that the impurity concentration on the surface of the contact portion becomes 1020 or more with energy that allows the ions to sufficiently penetrate the polysilicon layer 11.

以上の工程の後は、通常通り電極用の金属或いはポリシ
リコン膜を形成し、これを所要パターンにエツチングす
ることにより、前記P型拡散層領域6.N型拡散層領域
5に夫々接続される電極を形成できる。前記ポリシリコ
ン層11はこのエツチング時に同時にエツチングして前
記各電極と遺体化すればよい。或いは、電極用の金属を
形成する前に除去すればよい。
After the above steps, a metal or polysilicon film for an electrode is formed as usual and etched into a desired pattern to form the P-type diffusion layer region 6. Electrodes connected to each of the N-type diffusion layer regions 5 can be formed. The polysilicon layer 11 may be etched at the same time as the respective electrodes during this etching. Alternatively, it may be removed before forming the metal for the electrode.

したがって、この製造方法ではコンタクト部へのイオン
注入時には、導電性が付与されたポリシリコン層11に
より半導体装置の全面を覆っているので、絶縁膜に帯電
が生じることはなく、この際における絶縁膜の静電破壊
を確実に防止することができる。
Therefore, in this manufacturing method, when ions are implanted into the contact portion, the entire surface of the semiconductor device is covered with the polysilicon layer 11 imparted with conductivity, so the insulating film is not charged, and the insulating film at this time Electrostatic damage can be reliably prevented.

ここで上述の例では、リンを含む層間絶縁膜としてPS
Gで説明したが、BPSG又はそれらと他のガラスの混
合物でも良い。また、薄いポリシリコン層11の被着方
法にも制限はなく CVD法。
In the above example, PS is used as the interlayer insulating film containing phosphorus.
Although BPSG was explained above, it may also be BPSG or a mixture of these and other glasses. Furthermore, there is no limit to the method of depositing the thin polysilicon layer 11, and CVD can be used.

スパッタ法等どのような手段でも良い。更に、ポυシリ
32層中へリンを熱拡散する熱処理も雰囲気は自由に選
べる。
Any method such as sputtering may be used. Furthermore, the atmosphere for heat treatment for thermally diffusing phosphorus into the polysilicon layer 32 can be freely selected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、コンタクトホールを含む
層間絶縁膜上にポリシリコン層を形成し、かつこのポリ
シリコン層に導電性を持たせた上でコンタクトホール部
にイオン注入法によって不純物を導入する工程を含んで
いるので、このポリシリコン層によってイオン注入時に
絶縁膜表面に蓄積する電荷を有効に排除することができ
、この絶縁膜における静電破壊を生じさせることなく相
補型MOS半導体装置が製造できるという効果がある。
As explained above, the present invention forms a polysilicon layer on an interlayer insulating film including a contact hole, makes this polysilicon layer conductive, and then introduces impurities into the contact hole by ion implantation. Since this polysilicon layer includes a step of It has the advantage of being manufacturable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の一実施例を工程順に示す縦
断面図である。 1・・・半導体基板、2・・・Nウェル、3・・・フィ
ールド絶縁膜、4・・・ゲート電極、5・・・N型拡散
層領域、6・・・P型拡散層領域、7・・・層間絶縁膜
(psc)、8.9.10・・・コンタクトホール、1
1・・・ポリシリコン層、12・・・レジストマスク、
13・・・第2のN型拡散層領域、14・・・レジスト
マスク、15・・・第2のP型拡散層領域。
1 to 3 are vertical sectional views showing an embodiment of the present invention in the order of steps. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... N well, 3... Field insulating film, 4... Gate electrode, 5... N type diffusion layer region, 6... P type diffusion layer region, 7 ...Interlayer insulating film (psc), 8.9.10...contact hole, 1
1... Polysilicon layer, 12... Resist mask,
13... Second N type diffusion layer region, 14... Resist mask, 15... Second P type diffusion layer region.

Claims (1)

【特許請求の範囲】[Claims] (1)リン等の不純物を含む層間絶縁膜を有する相補型
MOS半導体装置の製造に際し、半導体基板に形成した
PN接合に臨むコンタクトホールを前記層間絶縁膜に開
設する工程と、このコンタクトホールを含む層間絶縁膜
上にポリシリコン層を形成する工程と、前記層間絶縁膜
に含まれる不純物をこのポリシリコン層に拡散して導電
性を持たせる工程と、前記コンタクトホール部にイオン
注入法によって不純物を導入する工程とを含むことを特
徴とする相補型MOS半導体装置の製造方法。
(1) When manufacturing a complementary MOS semiconductor device having an interlayer insulating film containing impurities such as phosphorus, a step of opening a contact hole in the interlayer insulating film facing a PN junction formed in a semiconductor substrate, and including this contact hole. a step of forming a polysilicon layer on the interlayer insulating film; a step of diffusing impurities contained in the interlayer insulating film into the polysilicon layer to make it conductive; and a step of implanting impurities into the contact hole by ion implantation. 1. A method for manufacturing a complementary MOS semiconductor device, the method comprising: introducing a complementary MOS semiconductor device.
JP62312253A 1987-12-11 1987-12-11 Manufacturing method of complementary MOS semiconductor device Expired - Lifetime JPH0770611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312253A JPH0770611B2 (en) 1987-12-11 1987-12-11 Manufacturing method of complementary MOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312253A JPH0770611B2 (en) 1987-12-11 1987-12-11 Manufacturing method of complementary MOS semiconductor device

Publications (2)

Publication Number Publication Date
JPH01154550A true JPH01154550A (en) 1989-06-16
JPH0770611B2 JPH0770611B2 (en) 1995-07-31

Family

ID=18027010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312253A Expired - Lifetime JPH0770611B2 (en) 1987-12-11 1987-12-11 Manufacturing method of complementary MOS semiconductor device

Country Status (1)

Country Link
JP (1) JPH0770611B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464460A (en) * 1977-10-11 1979-05-24 Supadea Guregorio Ion implantation method
JPS62213277A (en) * 1986-03-14 1987-09-19 Nec Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464460A (en) * 1977-10-11 1979-05-24 Supadea Guregorio Ion implantation method
JPS62213277A (en) * 1986-03-14 1987-09-19 Nec Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0770611B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US4422885A (en) Polysilicon-doped-first CMOS process
US5047358A (en) Process for forming high and low voltage CMOS transistors on a single integrated circuit chip
US5141882A (en) Semiconductor field effect device having channel stop and channel region formed in a well and manufacturing method therefor
JP2508818B2 (en) Method for manufacturing semiconductor device
JPS62174966A (en) Manufacture of semiconductor device
US4639274A (en) Method of making precision high-value MOS capacitors
US5837602A (en) Method of manufacturing doped interconnect
US5169796A (en) Process for fabricating self-aligned metal gate field effect transistors
JP2645088B2 (en) Method for manufacturing semiconductor device
US5158900A (en) Method of separately fabricating a base/emitter structure of a BiCMOS device
JP4547753B2 (en) Manufacturing method of semiconductor device
JPS6251216A (en) Manufacture of semiconductor device
JPH01154550A (en) Manufacture of complementary mos semiconductor device
JPS60175458A (en) Semiconductor device and manufacture thereof
JPH06163576A (en) Manufacture of semiconductor device
JPH0355850A (en) Manufacture of semiconductor device
JPS6251248A (en) Manufacture of semiconductor device
KR100344218B1 (en) Method for fabricating heavily doped well of semiconductor device
JPS6193641A (en) Semiconductor device
JPS5856450A (en) Complementary mos semiconductor device
JPH04363019A (en) Manufacture of semiconductor device
JPS6281051A (en) Semiconductor device and manufacture thereof
JPH0488666A (en) Semiconductor integrated circuit device and manufacture thereof
JP2000114393A (en) Manufacture of semiconductor device
JPS63300564A (en) Manufacture of semiconductor device