JPH01153913A - Exhaust gas flow rate measuring instrument for combustion furnace - Google Patents

Exhaust gas flow rate measuring instrument for combustion furnace

Info

Publication number
JPH01153913A
JPH01153913A JP31212187A JP31212187A JPH01153913A JP H01153913 A JPH01153913 A JP H01153913A JP 31212187 A JP31212187 A JP 31212187A JP 31212187 A JP31212187 A JP 31212187A JP H01153913 A JPH01153913 A JP H01153913A
Authority
JP
Japan
Prior art keywords
exhaust gas
flow rate
cooler
gas
gas cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31212187A
Other languages
Japanese (ja)
Inventor
Masao Orui
大類 正夫
Yoshihisa Ogasaka
小賀坂 善久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP31212187A priority Critical patent/JPH01153913A/en
Publication of JPH01153913A publication Critical patent/JPH01153913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To measure an exhaust gas flow rate with high reliability by controlling the flow rate of the atomized water in a gas cooler so that the entrance exhaust gas temperature of the gas cooler is constant, and calculating the heat balance of the gas cooler. CONSTITUTION:The gas cooler 2 which cools the exhaust gas of a combustor 1 by atomization is provided on the downstream side of the combustor 1 and the flow rate of the exhaust gas is measured. At this time, the temperature of the exit of the cooler 2 is measured by a temperature detector 5b, whose measured value is sent to a cooler controller 6, which controls the flow rate of the atomized water so that the exit temperature is constant. Then an arithmetic processor 7 calculates the heat balance of the cooler 2 from the point where the heat input and heat output of the cooler 2 become equal to each other, thereby calculating the exhaust gas flow rate.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、例えば、ごみ焼却プラントの焼却炉などの
燃焼炉の排ガス流量を測定する装置にかかるものであり
、特に熱収支を演算することにより、専用の流量計を設
置することなく、排ガス流量を算出する燃焼炉の排ガス
流量測定装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for measuring the exhaust gas flow rate of a combustion furnace such as an incinerator in a waste incineration plant, and in particular to a device for calculating a heat balance. The present invention relates to an exhaust gas flow measuring device for a combustion furnace that calculates the exhaust gas flow rate without installing a dedicated flow meter.

[従来の技術] 従来の排ガス流量計としては、一般に、■管路の中に絞
りとしてのオリフィス板を入れて、その前後の圧力差か
ら流量を測定するオリフィス流量計、■同心二重管を流
れに平行に配置し、その正面で総圧を、側面で静圧を検
出し、その差圧より流速を求めるピトー管を用いたもの
、■タービンメータを用いたものなどが知られている。
[Prior art] Conventional exhaust gas flowmeters generally include: (1) an orifice flowmeter that measures the flow rate from the pressure difference before and after an orifice plate inserted into the pipe as a restriction, and (2) a concentric double pipe. There are two known methods: one that uses a pitot tube that is placed parallel to the flow, detects the total pressure at the front and the static pressure at the side, and determines the flow velocity from the differential pressure, and the other that uses a turbine meter.

[発明が解決しようとする問題点] しかしながら、■のオリフィスによるものは、計測点の
圧力損失が大きく、排ガスを外部に引き出すファンの容
量の増大につながる″。
[Problems to be Solved by the Invention] However, the method using the orifice in (2) causes a large pressure loss at the measurement point, leading to an increase in the capacity of the fan that draws the exhaust gas to the outside.

■のピトー管によるものは、排ガス中の応煤によりピト
ー管が閉塞し、短期間で使用不能となるためパージ装置
が必要となり、コトスアップを招くとともに、欠測時間
が必要となる。
In the case of (2) using a pitot tube, the pitot tube becomes clogged with soot in the exhaust gas and becomes unusable in a short period of time, so a purge device is required, leading to cost increase and missing measurement time.

■のタービンメータによるものは、計測部の腐食、破損
が起こりやすい。
③ Turbine meters are prone to corrosion and damage to the measuring part.

ざらに■〜■の排ガス流量計を設置するためには、排ガ
スダクトに各々必要とされる直間部が必要であり、排ガ
スダクトの形状にも制約を受けるが、通常の燃焼プラン
トでは充分な直間部を確保できないのが実状である。
In order to install the exhaust gas flow meters of roughly The reality is that it is not possible to secure a direct section.

従って、この発明の主要な課題は、これらの流量計を設
置することなく、信頼性の高い排ガス流量測定を可能と
する燃焼炉の排ガス流量測定装置を)是イ共することで
ある。
Therefore, the main object of the present invention is to provide an exhaust gas flow rate measuring device for a combustion furnace that enables highly reliable exhaust gas flow rate measurement without installing these flowmeters.

[問題点を解決するための手段] この発明による燃焼炉の排ガス流量測定装置は、燃焼炉
の下流側に、この燃焼炉の排ガスを噴i冷却するガスク
ーラーを備えた系における前記排ガスの流量を測定する
ものにおいて、前記ガスクーラーの入口排ガス温度が一
定となるように前記ガスクーラー内のTIJI’71f
、水の流量を制御する制御手段と、 前記ガスクーラーにおける熱収支を計算することにより
前記排ガスの流量を算出する演算手段とを備えたことに
より上記問題点を解決したものである。
[Means for Solving the Problems] The exhaust gas flow rate measuring device for a combustion furnace according to the present invention measures the flow rate of the exhaust gas in a system including a gas cooler downstream of the combustion furnace that injects and cools the exhaust gas of the combustion furnace. TIJI'71f inside the gas cooler so that the exhaust gas temperature at the inlet of the gas cooler is constant.
The above-mentioned problems are solved by providing a control means for controlling the flow rate of water, and a calculation means for calculating the flow rate of the exhaust gas by calculating the heat balance in the gas cooler.

[作用] この発明によれば、制御手段によりガスクーラー内の噴
霧水の流量を制御することによって、ガスクーラーの人
口排ガス温度が一定となる。この場合、ガスクーラの入
熱と出熱は等しくなる(但し、ガスクーラでの熱損失は
無視できるものとする)点に着目し、演算手段によって
ガスクーラーにおける熱収支を演算することにより、排
ガス流量が算出される。
[Operation] According to the present invention, the temperature of the artificial exhaust gas in the gas cooler becomes constant by controlling the flow rate of spray water in the gas cooler by the control means. In this case, focusing on the fact that the heat input and heat output of the gas cooler are equal (however, the heat loss in the gas cooler can be ignored), the exhaust gas flow rate can be calculated by calculating the heat balance in the gas cooler using the calculation means. Calculated.

[実施例コ 以下、添付図面を参照して本発明の実施例に付いて説明
する。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の装置構成の一例を示すブロック図であ
る。
FIG. 1 is a block diagram showing an example of the device configuration of the present invention.

図において、燃焼炉(例えば、ごみ焼却炉)1からの燃
焼排ガスは、ガスクーラー2内の水噴霧により冷却され
、集塵器3を介して煙突4から排出される。
In the figure, combustion exhaust gas from a combustion furnace (for example, a garbage incinerator) 1 is cooled by water spray in a gas cooler 2, and is discharged from a chimney 4 via a dust collector 3.

ガスクーラー2の出口温度tsは温度検出器5bで測定
され、その測定値はクーラー制御器6(制御手段)に与
えられる。クーラー制御器6は、ガスクーラー出口温度
ts[t]が一定となるようにガスクーラー自噴霧氷流
量W。[にg/h]を制御する。
The outlet temperature ts of the gas cooler 2 is measured by a temperature detector 5b, and the measured value is given to a cooler controller 6 (control means). The cooler controller 6 controls the gas cooler self-sprayed rime ice flow rate W so that the gas cooler outlet temperature ts[t] is constant. Control [g/h].

ここで、ガスクーラー2における熱収支を考える。Here, the heat balance in the gas cooler 2 will be considered.

G、:排ガス流量       [Nm3/hlt6 
:ガスクーラー人口排ガス温度[’C]tw:ガスクー
ラー内噴霧氷温度[1]δ:ガスクーラー自噴露水の蒸
気密度[にg/Nm3]Igta:ガスクーラー人口排
ガスエンタルピーIgti:ガスクーラー出口排ガスエ
ンタルピーiw:ガスクーラー内噴霧氷エンタルピーと
して、ガスクーラー2への入熱(1+nは次式で与えら
れる。
G: Exhaust gas flow rate [Nm3/hlt6
: Gas cooler artificial exhaust gas temperature ['C] tw: Gas cooler spray ice temperature [1] δ: Gas cooler self-propelled water vapor density [g/Nm3] Igta: Gas cooler artificial exhaust gas enthalpy Igti: Gas cooler exit exhaust gas enthalpy iw: Heat input to the gas cooler 2 as enthalpy of sprayed ice in the gas cooler (1+n is given by the following formula.

1+n= (Gh−Wn/δ)、i、to+Wo−i 
w・−・・・・ (1) 同じくガスクーラー2からの出熱Q outは次式%式
% ガスクーラー2の入熱Qtnと出熱Q。utとは、ガス
クーラー2の熱損失が無視できるとして、等しくなる。
1+n=(Gh-Wn/δ), i, to+Wo-i
w・−・・・・ (1) Similarly, the heat output Q out from the gas cooler 2 is calculated by the following formula: % Heat input Qtn and heat output Q of the gas cooler 2. ut is equal to ut assuming that the heat loss of the gas cooler 2 is negligible.

従って、(I)、(o)式より、ガスクーラー出ロ排ガ
ス流量Ghは次式で与えられる。
Therefore, from equations (I) and (o), the gas cooler outlet exhaust gas flow rate Gh is given by the following equation.

G hi(i w   i 1Ita・δ)・Wn)/
 (i、rt−1)・・・・・ (II+ ) また、各エンタルピーは次式で近似される。
G hi(i w i 1Ita・δ)・Wn)/
(i, rt-1)... (II+) Moreover, each enthalpy is approximated by the following formula.

11tG=C3+C2・ to   ・・・・・ (!
v)1w=C3+C4・ tw   ・・・・・ (V
)11tffi=C5+C6・ ts   ・・・・・
 (v■)(但し、C,−C4は定数) これら(IV )〜(Vl)式におけるC4〜C4は予
め測定可能であり、C5とC6はガスクーラー自噴霧氷
流量W。の値によって若干変化するが、ガスクーラー自
噴露水流量Wnの関数として測定可能である。
11tG=C3+C2・to・・・・・・(!
v) 1w=C3+C4・tw... (V
)11tffi=C5+C6・ts・・・・・・
(v■) (However, C and -C4 are constants.) In these formulas (IV) to (Vl), C4 to C4 can be measured in advance, and C5 and C6 are the gas cooler self-spraying rime ice flow rate W. Although it changes slightly depending on the value of , it can be measured as a function of the gas cooler self-spouting water flow rate Wn.

これらHv)〜(Vl)式を(II! )式に代入する
と、ガスクーラー出ロ排ガス流量Ghは次式で与えられ
る。
When these equations Hv) to (Vl) are substituted into equation (II!), the gas cooler outlet exhaust gas flow rate Gh is given by the following equation.

G h = ((:3”C3tw−(C++C2ta)
/ δ・W、)/ (Cs (wn+ +(:6fWn
l ・t5−t)  [Nm3/h]・・・・・ (■
) (但し、C3fWnl 、  C81W。)は、ガスク
ーラー自噴露水流”X W nの関数として表現された
定数05゜Ca) かかる排ガス流量Ghの算出を第1図を参照して説明す
ると、ガスクーラー2の入口排ガス温度tGは温度検出
器5bで測定され、その測定値は演算処理装置7(演算
手段)に与えられる。
G h = ((:3”C3tw-(C++C2ta)
/ δ・W, )/ (Cs (wn+ +(:6fWn
l ・t5-t) [Nm3/h]... (■
) (However, C3fWnl, C81W.) is a constant 05°Ca expressed as a function of the gas cooler self-spouting water flow "X W n." To explain the calculation of the exhaust gas flow rate Gh with reference to FIG. The inlet exhaust gas temperature tG of No. 2 is measured by the temperature detector 5b, and the measured value is given to the arithmetic processing device 7 (arithmetic means).

また、ガスクーラー2内の噴霧水の流量W。。Also, the flow rate W of spray water in the gas cooler 2. .

温度tw、蒸気密度δは各々クーラー制御器6を介して
演算処理装置7に与えられる。予め測定された定数C7
〜C4及びn水流量Wnの関数表示C5N1n1 、 
C611n+ は、演算処理装置7に付属する人力装装
置8を介して設定入力される。
The temperature tw and the vapor density δ are each given to the arithmetic processing unit 7 via the cooler controller 6. Pre-measured constant C7
~C4 and n Function representation of water flow rate Wn C5N1n1,
C611n+ is set and input via a human-powered device 8 attached to the arithmetic processing device 7.

演算処理装置7は、クーラー制御器6を介して与えられ
た噴霧水流量Wnに基いてO8+□)。
The arithmetic processing unit 7 calculates O8+□ based on the spray water flow rate Wn given via the cooler controller 6.

061Wnl の値を演算し、その演算結果と各測定値
、設定入力値C1〜C4より、上述の(■)式に従う演
算を行ない、排ガス流量Ghを算出する。
The value of 061Wnl is calculated, and the exhaust gas flow rate Gh is calculated using the calculation result, each measured value, and the set input values C1 to C4 according to the above-mentioned formula (■).

なお上記実施例では、各定数は入力値@8より設定入力
するものとしたが、予め演算処理装置7の記憶器に記憶
させておいてもよい。また、水1■露量制御器6と演算
処理装置7とは、説明のために各々別個の機能を果たす
構成要素として示したが、それらと同一機能を内蔵する
ディジタルコントローラにて実現してもよい。
In the above embodiment, each constant is set and inputted from the input value @8, but it may be stored in the memory of the arithmetic processing unit 7 in advance. Furthermore, although the water 1/2 exposure amount controller 6 and the arithmetic processing unit 7 are shown as constituent elements each having separate functions for the purpose of explanation, they may also be realized by a digital controller that has the same functions as those described above. good.

[発明の効果コ この発明は以上説明したように、熱収支を計算すること
により排ガス流量を算出することができるから、排ガス
ダクトに計測のための直間部や、排ガス流量計を設ける
必要がなく、従来、排ガス流!測定に要していたコスト
やスペースを大幅に節約できる。
[Effects of the invention] As explained above, this invention allows the exhaust gas flow rate to be calculated by calculating the heat balance, so there is no need to provide a direct section for measurement or an exhaust gas flowmeter in the exhaust gas duct. Instead of conventional exhaust gas flow! The cost and space required for measurement can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る装誼構成の一例を示すブ
ロック図である。 1・・・燃焼炉、2・・・ガスクーラー、3・・・集廐
器、4・・・煙突、5a、5b・・・温度検出器、6・
・・クーラー制御器、7・・・演算処理装置、8・・・
人力装置 代  理  人  弁理士  佐  藤  正  年第
1図 6:クーラー制御器 8:入力装置
FIG. 1 is a block diagram showing an example of an installation configuration according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Combustion furnace, 2... Gas cooler, 3... Collector, 4... Chimney, 5a, 5b... Temperature detector, 6...
...Cooler controller, 7...Arithmetic processing unit, 8...
Human Power Equipment Representative Masaru Sato Patent Attorney Figure 1 6: Cooler controller 8: Input device

Claims (1)

【特許請求の範囲】 燃焼炉の下流側に、この燃焼炉の排ガスを噴霧冷却する
ガスクーラーを備えた系における前記排ガスの流量を測
定するものにおいて、 前記ガスクーラーの入口排ガス温度が一定となるように
前記ガスクーラー内の噴霧水の流量を制御する制御手段
と、 前記ガスクーラーにおける熱収支を計算することにより
前記排ガスの流量を算出する演算手段とを備えたことを
特徴とする燃焼炉の排ガス流量測定装置。
[Claims] In a system that measures the flow rate of the exhaust gas in a system including a gas cooler downstream of the combustion furnace that spray-cools the exhaust gas of the combustion furnace, the temperature of the exhaust gas at the inlet of the gas cooler is constant. A combustion furnace comprising: a control means for controlling the flow rate of spray water in the gas cooler; and a calculation means for calculating the flow rate of the exhaust gas by calculating the heat balance in the gas cooler. Exhaust gas flow rate measuring device.
JP31212187A 1987-12-11 1987-12-11 Exhaust gas flow rate measuring instrument for combustion furnace Pending JPH01153913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31212187A JPH01153913A (en) 1987-12-11 1987-12-11 Exhaust gas flow rate measuring instrument for combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31212187A JPH01153913A (en) 1987-12-11 1987-12-11 Exhaust gas flow rate measuring instrument for combustion furnace

Publications (1)

Publication Number Publication Date
JPH01153913A true JPH01153913A (en) 1989-06-16

Family

ID=18025499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31212187A Pending JPH01153913A (en) 1987-12-11 1987-12-11 Exhaust gas flow rate measuring instrument for combustion furnace

Country Status (1)

Country Link
JP (1) JPH01153913A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030009619A (en) * 2001-07-23 2003-02-05 현대자동차주식회사 Molding method for ZAS mold
WO2010061916A1 (en) 2008-11-28 2010-06-03 東日本旅客鉄道株式会社 Power generation member, power generation device using same, and power generation system
JP2016185351A (en) * 2016-06-20 2016-10-27 東芝ホームテクノ株式会社 Cordless iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030009619A (en) * 2001-07-23 2003-02-05 현대자동차주식회사 Molding method for ZAS mold
WO2010061916A1 (en) 2008-11-28 2010-06-03 東日本旅客鉄道株式会社 Power generation member, power generation device using same, and power generation system
JP2016185351A (en) * 2016-06-20 2016-10-27 東芝ホームテクノ株式会社 Cordless iron

Similar Documents

Publication Publication Date Title
JPH01153913A (en) Exhaust gas flow rate measuring instrument for combustion furnace
JP6909425B2 (en) Air preheater differential pressure rise predictor
US20210172343A1 (en) Turbine monitoring system and turbine monitoring method
JPH0137451B2 (en)
JPS582527A (en) Flow controller of pulverized coal
TWI784308B (en) Abnormality detecting device and display device
JPH0375402A (en) Combustion control for fluidized bed furnace
JP3846188B2 (en) Humidity control method of cold air on the hot air furnace entrance side
JP2004162948A (en) Steam generating amount measuring device
JP3264152B2 (en) Air blowing method in coke dry fire extinguishing equipment
EP0005425B1 (en) Control means for an augmentor for a gas turbine engine
JPS63117125A (en) Exhaust gas straightening device for gas turbine
JP3705042B2 (en) Smoke treatment system
Willems et al. A pragmatic approach to evaluation of inlet fogging system effectiveness
JPH0387513A (en) Method for controlling combustion in industrial furnace
JPS572933A (en) Direct reading type heat loss indicator
JPS5819510A (en) Hot wire type airflow meter
JPS5918303A (en) Method of controlling steam generator
JP3016061B2 (en) Gas cooling equipment
JPS61246515A (en) Detecting method and device for water concentration of exhaust gas in incinerator
JPH03263509A (en) Method of controlling city waste incinerator provided with gas cooler
Downs et al. Closure to “Discussions of ‘New Particle Size Measuring Probe—Application to Aerosol Collector and Emissions Evaluations’”(1972, ASME J. Eng. Power, 94, pp. 123–125)
JP2000317241A (en) Control device for spray cooling column
JPH0721551Y2 (en) Furnace temperature measuring device
Wilson et al. Laser Velocimetry Measurementsat the Diffuser Exit of a Coal-Fired MHD Channel