JPH01153785A - Regenerating agent - Google Patents

Regenerating agent

Info

Publication number
JPH01153785A
JPH01153785A JP62312578A JP31257887A JPH01153785A JP H01153785 A JPH01153785 A JP H01153785A JP 62312578 A JP62312578 A JP 62312578A JP 31257887 A JP31257887 A JP 31257887A JP H01153785 A JPH01153785 A JP H01153785A
Authority
JP
Japan
Prior art keywords
agent
clathrate
supercooling
cold storage
freon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62312578A
Other languages
Japanese (ja)
Inventor
Yoji Akitani
鷹二 秋谷
Masaru Owa
大輪 優
Masaru Nakaiwa
勝 中岩
Yoshinori Oki
大木 良典
Yoshimasa Ando
喜昌 安藤
Toyotake Saji
佐治 豊武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Heavy Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP62312578A priority Critical patent/JPH01153785A/en
Publication of JPH01153785A publication Critical patent/JPH01153785A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a regenerating agent capable of forming clathrate advantageously in viewpoint of thermal efficiency, by blending the regenerating agent comprising a guest and a host agents with a metal element of group II as a supercooling inhibitor. CONSTITUTION:(A) A guest agent (e.g. at least one of fluorocarbon R11, CFC R12 and CFC R21) is mixed with (B) a host agent (e.g. water) and (C) a metal element of group II as a supercooling agent (preferably at least one of Fe, Zn, Cu) to give a regenerating agent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蓄冷剤、特にクラスレートを利用した蓄冷剤
であって、クラスレート生成の過冷却現象を防止させ得
る蓄冷剤に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a cold storage agent, particularly a cold storage agent using clathrate, which can prevent the supercooling phenomenon of clathrate formation. .

〔従来の技術〕[Conventional technology]

現在、省エネルギーの観点から蓄冷法の研究が実用化を
目指して行われており、これらの蓄冷法の一つとしてガ
スクラスレートを利用する方法が考えられている。
Currently, research on cold storage methods is being carried out with the aim of putting them into practical use from the perspective of energy conservation, and a method using gas clathrates is being considered as one of these cold storage methods.

クラスレートとは、「原子まだは分子が結合してできた
三次元構造の内部に適当な大きさの空孔があってその中
に他の原子まだは分子が入り込んで特定の結晶構造を形
成する物質」とされている。三次元構造の骨組をつくる
物質は。
A clathrate is a three-dimensional structure formed by bonding atoms and molecules, with holes of appropriate size inside which other atoms and molecules can enter to form a specific crystal structure. It is said to be a substance that What is the material that makes up the framework of a three-dimensional structure?

ホストと呼ばれ、−船釣には水が用いられ、また、骨組
の中に取り込まれる物質はゲストと呼ばれ、メタン、エ
タン、プロパン等の炭化水素類やフロンR11(CCA
aF)、フロンR12(CCd2F2)。
-Water is used for boat fishing, and the substances taken into the framework are called guests, including hydrocarbons such as methane, ethane, and propane, and fluorocarbons R11 (CCA).
aF), Freon R12 (CCd2F2).

フロンR21(CHC&F)等のフロン類が用いられる
。特にゲストがガス状物質であるクラスレートをガスク
ラスレートと呼んでいる。
Freon such as Freon R21 (CHC&F) is used. In particular, clathrates whose guests are gaseous substances are called gas clathrates.

ガスクラスレートを蓄冷に利用すると、氷と同程度の蓄
冷容量があること。水とガスクラスレートとの混合物(
スラリー)は、氷より伝熱特性が良いこと等多くのメリ
ットが期待できる。
When gas clathrate is used for cold storage, it has a cold storage capacity comparable to that of ice. A mixture of water and gas clathrate (
Slurry) can be expected to have many advantages, including better heat transfer properties than ice.

第5図(5)、 C10)に蓄冷槽の概念図の一例を示
す。
Figure 5 (5), C10) shows an example of a conceptual diagram of a cold storage tank.

蓄冷時には第5図(5)に示すように蓄冷槽2内の水と
フロンの混合液1を冷熱源あるいは冷凍機8によりクラ
スレートの臨界分解温度以下まで冷却し、クラスレート
1を生成させる。そして、放冷時には第5図(B)に示
すように、蓄冷槽2内のクラスレート1を冷房用媒体等
4を循環することにより、水とフロン混合液1に分解し
During cold storage, as shown in FIG. 5 (5), the mixed liquid 1 of water and chlorofluorocarbon in the cold storage tank 2 is cooled down to below the critical decomposition temperature of the clathrate by a cold heat source or the refrigerator 8, and clathrate 1 is generated. Then, during cooling, as shown in FIG. 5(B), the clathrate 1 in the cold storage tank 2 is decomposed into water and a fluorocarbon mixture 1 by circulating a cooling medium or the like 4.

冷熱を取り出す。Remove cold heat.

この方法の場合、蓄冷時にフロンと水の混合液1を臨界
分解温度まで冷却してもクラスレートは生成せず、クラ
スレートを生成させるには。
In the case of this method, clathrate is not generated even if the mixed liquid 1 of fluorocarbon and water is cooled to the critical decomposition temperature during cold storage, and clathrate is generated.

臨界分解温度よりかなり低い温度まで冷却する過冷却が
必要であった。この過冷却は、熱効率的に不利であり、
過冷却を防止するだめに過冷却防止剤を添加することが
よく利用されている。
Supercooling to a temperature well below the critical decomposition temperature was required. This supercooling is disadvantageous in terms of thermal efficiency;
Adding an anti-supercooling agent is often used to prevent supercooling.

本発明者らは、特願昭59−266270 、特願昭5
9−266271にて過冷却防止剤として、微粒ゼオラ
イト、スラグ、フライアッシュ、けい酸カルシウム、炭
酸カルシウムを提案している。
The inventors of the present invention have filed Japanese Patent Application No. 59-266270, Japanese Patent Application No. 5
No. 9-266271 proposes fine zeolite, slag, fly ash, calcium silicate, and calcium carbonate as supercooling inhibitors.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし、前記した過冷却防止剤では、過冷却の大きさは
あまり改善されることなく更に過冷却を小さくする必要
があった。
However, with the above-mentioned supercooling inhibitor, the magnitude of supercooling is not significantly improved, and it is necessary to further reduce the supercooling.

本発明では、前記の物質以外の過冷却防止剤を探索し、
クラスレートの生成を熱効率上有利に行なわせ得る蓄冷
剤を提案するものである。
In the present invention, we search for supercooling inhibitors other than the above-mentioned substances,
This paper proposes a cold storage agent that can generate clathrates advantageously in terms of thermal efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記した問題点を解決するため、ゲスト剤とホ
スト剤とからなり、冷却することによりクラスレートを
生成する蓄冷剤において。
In order to solve the above-mentioned problems, the present invention provides a cold storage agent that includes a guest agent and a host agent and generates clathrate when cooled.

過冷却防止剤として第2族の金属元素を混入したことを
特徴とするものである。
It is characterized in that a Group 2 metal element is mixed as a supercooling inhibitor.

〔作用〕[Effect]

水とフロンの混合液に過冷却防止剤としての第2族の金
属元素9例えばFe 、 Zn、 Cuのうち少なくと
も1種を混入することにより、過冷却を極めて小さくす
ることが可能となり、クラスレートの生成を熱効率的に
有利に行なわせ得ることができた。
By mixing at least one of Group 2 metal elements 9, such as Fe, Zn, and Cu, as a supercooling inhibitor into the mixture of water and CFC, supercooling can be made extremely small, and the clathrate can be reduced. could be produced thermally efficiently.

〔実施例〕〔Example〕

以下に本発明の詳細な説明する。 The present invention will be explained in detail below.

■lの耐圧ガラス製の晶析槽本体にイオン交換水700
g所定量の種晶を採取し、槽内を減圧。
■700 liters of ion-exchanged water in the crystallizer body made of pressure-resistant glass
g Collect a predetermined amount of seed crystals and reduce the pressure inside the tank.

脱気後、フロン12を所定量(15〜16g)液状で加
え900 rpmで攪拌しながら60m1n80°Cに
保持した。次いで、このフロン−水混合溶液を攪拌しな
がら冷却し、クラスレートを生成させた。
After degassing, a predetermined amount (15 to 16 g) of Freon 12 was added in liquid form, and the mixture was maintained at 60 ml at 80°C while stirring at 900 rpm. Next, this Freon-water mixed solution was cooled while stirring to generate clathrate.

次に混合溶液の温度を上げてクラスレートを分解した後
、フロン12クラスレートの臨界分解温度(Te = 
12.07°C)より高い温度Tdに混合溶液を69 
min保持した後、前記と同様にして冷却し。
Next, after increasing the temperature of the mixed solution to decompose the clathrate, the critical decomposition temperature of Freon-12 clathrate (Te =
The mixed solution is heated to a temperature Td higher than 69°C (12.07°C).
After holding the temperature for 20 minutes, it was cooled in the same manner as above.

クラスレートの生成−分解を繰り返した。この時の典型
的な温度経時変化を第2図に示す。
The generation and decomposition of clathrates was repeated. A typical temperature change over time at this time is shown in FIG.

第1図に種晶を4g添加し、7°C/hで冷却した時の
クラスレートの生成温度Tfを示す。第1図中でNon
eと示したものは2種晶を添加しない系である。この系
では、クラスレートが生成する前に0°C以下にまで過
冷却し、氷が先に生成した後、クラスレートが生成した
Figure 1 shows the clathrate formation temperature Tf when 4g of seed crystals were added and cooled at 7°C/h. Non in Figure 1
The system indicated as e is a system in which no two seed crystals are added. In this system, supercooling was performed to below 0°C before clathrate was formed, and ice was formed first, followed by clathrate.

種晶がA I + Nir Mnでは2種晶を添加して
いない系と同様に先に氷が生成したが9種晶がFe。
When the seed crystals were A I + Nir Mn, ice was formed first as in the system without the addition of two seed crystals, but the nine seed crystals were Fe.

Znでは、氷よりも先にクラスレートが生成し。In Zn, clathrate is formed before ice.

種晶として有効であった。種晶がCuでは、生成・分解
を行った溶液を再度冷却した場合に、氷よりも先にクラ
スレートが生成し1種晶として有効であった。
It was effective as a seed crystal. When the seed crystal was Cu, when the solution that had been generated and decomposed was cooled again, clathrate was generated before ice, and it was effective as a seed crystal.

第8図及び第4図に種晶としてFe、Znを用いた時の
種晶添加量の△Tfへの影響を調べた結果を各々示す。
FIGS. 8 and 4 show the results of investigating the influence of the amount of seed crystals added on ΔTf when Fe and Zn were used as seed crystals, respectively.

Fe、Znのいずれの系においても添加量の多い時に△
Tfは小さくなり2種晶として効果が大きくなることが
わかる。
In both Fe and Zn systems, when the amount added is large, △
It can be seen that as Tf becomes smaller, the effect as a two-seed crystal increases.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように9本発明により、クラスレート蓄冷
において、蓄冷剤に第2族の金属元素を混入することに
より過冷却を極めて小さくすることができ、熱効率上有
利に蓄冷することが可能となる。
As described above, according to the present invention, in clathrate cold storage, by mixing a group 2 metal element into the cold storage agent, supercooling can be extremely reduced, and cold storage can be advantageously achieved in terms of thermal efficiency. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は種晶を添加したときのクラスレート生成温度T
fを示す図、第2図はクラスレート生成−分解時の温度
経時変化図、第3図及び第4図は種晶としてFe、Zn
を用いたときめ添加量のクラスレート生成温度への影響
を示す図、第5図(4)、集)は蓄冷剤を用いた蓄冷装
置の概念図である。
Figure 1 shows the clathrate formation temperature T when seed crystals are added.
Fig. 2 is a diagram showing temperature change over time during clathrate formation and decomposition, Fig. 3 and Fig. 4 are graphs showing Fe and Zn as seed crystals.
Figure 5 (4), a diagram showing the influence of the amount of grain added on the clathrate formation temperature using a cold storage agent, is a conceptual diagram of a cold storage device using a cold storage agent.

Claims (2)

【特許請求の範囲】[Claims] (1)ゲスト剤とホスト剤とからなり、冷却することに
よりクラスレートを生成する蓄冷剤において、過冷却防
止剤として第2族の金属元素を混入したことを特徴とす
る蓄冷剤。
(1) A cold storage agent comprising a guest agent and a host agent and generating clathrate upon cooling, characterized in that a metal element of Group 2 is mixed as an anti-supercooling agent.
(2)ゲスト剤がフロンR11、フロンR12、又はフ
ロンR21の少なくとも1種、ホスト剤が水、過冷却防
止剤としての第2族の金属元素がFe、Zn、又はCu
の少なくとも1種であることを特徴とする特許請求の範
囲(1)項記載の蓄冷剤。
(2) The guest agent is at least one type of Freon R11, Freon R12, or Freon R21, the host agent is water, and the Group 2 metal element as a supercooling inhibitor is Fe, Zn, or Cu.
The cold storage agent according to claim (1), characterized in that it is at least one of the following.
JP62312578A 1987-12-10 1987-12-10 Regenerating agent Pending JPH01153785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312578A JPH01153785A (en) 1987-12-10 1987-12-10 Regenerating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312578A JPH01153785A (en) 1987-12-10 1987-12-10 Regenerating agent

Publications (1)

Publication Number Publication Date
JPH01153785A true JPH01153785A (en) 1989-06-15

Family

ID=18030894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312578A Pending JPH01153785A (en) 1987-12-10 1987-12-10 Regenerating agent

Country Status (1)

Country Link
JP (1) JPH01153785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927299A2 (en) 2014-04-02 2015-10-07 Panasonic Intellectual Property Management Co., Ltd. Heat storage apparatus, method for storing heat, and method for producing heat storage apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184584A (en) * 1984-03-02 1985-09-20 Mitsubishi Heavy Ind Ltd Refrigerant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184584A (en) * 1984-03-02 1985-09-20 Mitsubishi Heavy Ind Ltd Refrigerant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927299A2 (en) 2014-04-02 2015-10-07 Panasonic Intellectual Property Management Co., Ltd. Heat storage apparatus, method for storing heat, and method for producing heat storage apparatus
US10161688B2 (en) 2014-04-02 2018-12-25 Panasonic Intellectual Property Management Co., Ltd. Heat storage apparatus, method for storing heat, and method for producing heat storage apparatus
US10921064B2 (en) 2014-04-02 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Heat storage apparatus, method for storing heat, and method for producing heat storage apparatus

Similar Documents

Publication Publication Date Title
JP3641362B2 (en) Cold storage method using cold clathrate, cold storage system, and cold storage agent
CN101128710A (en) Method and device for ensuring maintained temperature inside a transport container or the like
US5348080A (en) Latent heat storage apparatus and latent heat storage solution therefor
US5778685A (en) Clathrate forming medium and its use in thermal energy storage systems and processes for thermal energy storage and transfer
JP2000337742A (en) Method and device for transporting cold by utilizing polyvinyl alcohol
JPH01153785A (en) Regenerating agent
JP2000205775A (en) Manufacture of clathrate hydrate slurry
JP4304848B2 (en) Cold heat transport method, cold heat transport system, operation method of cold heat transport system, storage device, and hydrate production device
JP2002060739A5 (en) Cold heat transport method, cold heat transport system, operation method of cold heat transport system, storage device, and hydrate production device
JPS61145274A (en) Cold storage agent
JPS6250381A (en) Cold-energy storage material
JPH045909B2 (en)
WO1993004139A1 (en) Improved thermal energy storage system and process for thermal energy storage and transfer
JPH0726252A (en) Cold storage material
JPH0792307B2 (en) Ice heat storage device
JPS6250380A (en) Cold-energy storage material
JPS61197668A (en) Thermal energy storage material
JPH06508679A (en) Improved coolant for thermal energy storage systems
JP3956556B2 (en) Method and apparatus for producing tetra n-butylammonium bromide hydrate heat storage material slurry
JP2000111285A (en) Method and device for producing inclusion hydrate slurry
JPS60184584A (en) Refrigerant
JPH1135930A (en) Cold storage material utilizing latent heat
JPS61145275A (en) Cold storage agent
JPS58136684A (en) Thermal energy storage material
JP2006290990A (en) Mixture, heat medium, and heat pump and heat-utilizing apparatus using the same heat medium