JPH01153534A - Production of nickel carbonate - Google Patents

Production of nickel carbonate

Info

Publication number
JPH01153534A
JPH01153534A JP30946887A JP30946887A JPH01153534A JP H01153534 A JPH01153534 A JP H01153534A JP 30946887 A JP30946887 A JP 30946887A JP 30946887 A JP30946887 A JP 30946887A JP H01153534 A JPH01153534 A JP H01153534A
Authority
JP
Japan
Prior art keywords
water
nickel
component
ammonia
nickel carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30946887A
Other languages
Japanese (ja)
Other versions
JPH0753582B2 (en
Inventor
Yoichi Takazawa
高沢 洋一
Mitsuaki Kimura
木村 光昭
Takehiko Inomata
猪股 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP30946887A priority Critical patent/JPH0753582B2/en
Publication of JPH01153534A publication Critical patent/JPH01153534A/en
Publication of JPH0753582B2 publication Critical patent/JPH0753582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/06Carbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain NiCO3 useful as semiconductor devices readily and stably by adding an alkalizing agent of carbonate to a specific solution to give NiCO3 precipitate and washing the precipitate with water, adding NaClO to remove a NH4 compound. CONSTITUTION:NiSO4 containing 0.3-0.5wt.% NH3 is dissolved in water under heating with steam to give an aqueous solution of NiSO4 (A). Then an alkalizing agent is added to component A to give NiCO3 precipitate (B). Then water is added to the component B, which is stirred about 30min and sufficiently washed with water by decantations of two or more times to remove NH3 attached to the component B. Then NaClO is continuously added to the prepared component B from which NH3 is removed under control of ORP (oxidation-reduction potential) until ORP becomes equilibrium approximately at 600mV and the component B is treated until the grade of NH3 in NiCO3 becomes <=0.05wt.% of product standard to give the component B from which NH3 is highly removed. NaClO is removed from the component B by washing with water to produce NiCO3.

Description

【発明の詳細な説明】 x■Rと交野 本発明は、炭酸ニッケルの製造方法に関するものであり
、特には、アンモニアを含有する硫酸ニッケル水溶液か
ら低アンモニア含有量の炭酸ニッケルを製造する方法に
関する。本発明は、特にニッケルめっきにおけるニッケ
ル源として用いられるスルファミン酸ニッケルの原料と
しての炭酸ニッケルの製造に有用であり、本発明により
ニッケルや銅の精練工程から産出される硫酸ニッケル水
溶液から低アンモニア含有量の炭酸ニッケルが製造され
得る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing nickel carbonate, and more particularly to a method for producing nickel carbonate with a low ammonia content from an aqueous nickel sulfate solution containing ammonia. The present invention is particularly useful for producing nickel carbonate as a raw material for nickel sulfamate, which is used as a nickel source in nickel plating. of nickel carbonate can be produced.

″、と の。題壱 近時、半導体デバイスの発展に伴ない、ニッケルめっき
は益々重要なものとなっている。
''.Title 1Recently, with the development of semiconductor devices, nickel plating has become increasingly important.

ニッケルめっきにおいては、そのニッケル源として、ニ
ッケルメタル粉は高価なため、スルファミン酸ニッケル
が用いられ、その原料として炭酸ニッケルが必要とされ
る。
In nickel plating, nickel sulfamate is used as the nickel source because nickel metal powder is expensive, and nickel carbonate is required as the raw material.

炭酸ニッケルは、従来、ニッケルや銅の精練工程から産
出される硫酸ニッケル水溶液を原料として、そこに重炭
酸ソーダ等を含めての炭酸アルカリ剤を添加して炭酸ニ
ッケルを沈殿せしめた後、付着アンモニアを除去するべ
く水洗を行なうことにより製造されていた。
Conventionally, nickel carbonate is produced using an aqueous nickel sulfate solution produced from the scouring process of nickel and copper as a raw material. After adding an alkaline carbonate agent such as sodium bicarbonate to it to precipitate the nickel carbonate, the ammonia adhering to it is removed. It was manufactured by washing with water.

半導体デバイスに代表されるニッケルめっきへの品質要
求が厳しくなるに伴い、この炭酸ニッケルから調製され
たスルファミン酸ニッケルを用いてのニッケルめっきに
おいて、めっき面の仕上りが悪く、めっき液の寿命が短
いことが改めて認識されるようになった。
As quality requirements for nickel plating, which is typical for semiconductor devices, have become stricter, nickel plating using nickel sulfamate prepared from nickel carbonate has resulted in poor finish on the plating surface and short life of the plating solution. began to be recognized once again.

X皿 本発明者等は、この問題について原因の究明に検討を重
ねた結果、残留するアンモニアが犯人であることを突き
止めるに至った。すなわち、炭酸ニッケルはニッケルや
銅の精練工程から産出される硫酸ニッケル水溶液を原料
として製造されるため不可避的にアンモニアを含んでい
る。従来の水洗工程においてアンモニアの除去は一応は
もたらされるものの、これだけでは表面に付着するもの
しか除去しえず、製品炭酸ニッケル中にアンモニアが残
留し、このアンモニアがスルファミン酸ニッケル中にも
残って有害作用を及ぼしていたことがここに初めて判明
したものである。
X Dish The inventors of the present invention have repeatedly investigated the cause of this problem, and as a result, have found that residual ammonia is the culprit. That is, since nickel carbonate is manufactured using an aqueous nickel sulfate solution produced from a nickel or copper scouring process as a raw material, it inevitably contains ammonia. Although ammonia can be removed to some extent in the conventional water washing process, it only removes what adheres to the surface, and ammonia remains in the nickel carbonate product, and this ammonia also remains in the nickel sulfamate, which is harmful. This is the first time that it has been found to have an effect.

残留アンモニアを最小限まで除去するには、単に水洗を
重ねるだけでは不十分で、別途の対策が必要である。試
行を重ねた結果、次亜塩素酸ソーダを添加してアンモニ
ア化合物を分解除去することが有効であることがわかっ
た。更には、次亜塩素酸ソーダの添加を効果的たらしめ
るには、その前に付着アンモニアを充分水洗して除去し
ておく必要があることも判明した。
In order to remove residual ammonia to the minimum level, simply repeated washing with water is not sufficient, and separate measures are required. As a result of repeated trials, it was found that adding sodium hypochlorite to decompose and remove ammonia compounds was effective. Furthermore, it has been found that in order to make the addition of sodium hypochlorite effective, it is necessary to thoroughly wash away the attached ammonia with water before adding sodium hypochlorite.

この知見に基すいて、本発明は、アンモニアを含有する
硫酸ニッケル水溶液に炭酸アルカリ剤を添加して炭酸ニ
ッケルを沈殿せしめ、付着アンモニアを除去するに充分
水洗し、′次いで次亜塩素酸ソーダを添加してアンモニ
ア化合物を分解除去することを特徴とする低アンモニア
含有量の炭酸ニッケルの製造方法を提供するものである
。次亜塩素酸ソーダの添加は、ORPの管理の下で、O
RPが600 mV付近で平衡となるまで複数回にわけ
て回分的に行なうことが好ましい。次亜塩素酸ソーダの
添加前の炭酸ニッケルの水洗を、少なくとも2回のデカ
ンテーションによりもたらすことが好ましい。
Based on this knowledge, the present invention involves adding an alkaline carbonate agent to an aqueous nickel sulfate solution containing ammonia to precipitate nickel carbonate, washing thoroughly with water to remove adhering ammonia, and then adding sodium hypochlorite to the solution. The present invention provides a method for producing nickel carbonate with a low ammonia content, which is characterized in that the ammonia compound is added and decomposed and removed. The addition of sodium hypochlorite is carried out under the control of ORP.
It is preferable to carry out the test in batches over multiple times until RP reaches equilibrium around 600 mV. Preferably, the water washing of the nickel carbonate before addition of the sodium hypochlorite is effected by at least two decantations.

兄ILLλ伴」月笈朋 ニッケルや銅の非鉄精練工程で副産する硫酸ニッケルは
一般に0.3〜0.5%程度のアンモニアを含有してい
る。硫酸ニッケルから炭酸ニッケルを製造するに当たり
、このアンモニアを有害作用を及ぼさない程度にまで除
去する技術の開発が本発明の課題である。スルファミン
酸ニッケル用の炭酸ニッケル製品のアンモニア品位規格
は0.05%以下とされている。
Nickel sulfate, a by-product of the nonferrous smelting process for nickel and copper, generally contains about 0.3 to 0.5% ammonia. In producing nickel carbonate from nickel sulfate, it is an object of the present invention to develop a technique for removing ammonia to the extent that it does not cause any harmful effects. The ammonia quality standard for nickel carbonate products used for nickel sulfamate is 0.05% or less.

硫酸ニッケルは、水蒸気の加温の下で水に溶解されて硫
酸ニッケル水溶液とされる。
Nickel sulfate is dissolved in water under heating with steam to form an aqueous nickel sulfate solution.

炭酸ニッケル製造工程は、硫酸ニッケル水溶液に炭酸ア
ルカリ剤を添加して炭酸ニッケルを沈殿せしめる工程で
ある。これは、例えば、従来法の一態様に従えば、硫酸
ニッケル水溶液に重炭酸ソーダが添加されて炭酸ニッケ
ルを生ぜしめる。重炭酸ソーダを添加して炭酸ニッケル
を製造する。
The nickel carbonate production process is a process in which an alkali carbonate agent is added to an aqueous nickel sulfate solution to precipitate nickel carbonate. For example, according to one conventional method, sodium bicarbonate is added to an aqueous nickel sulfate solution to form nickel carbonate. Addition of bicarbonate of soda produces nickel carbonate.

従来、このあとは、デカンテーションにより水洗を繰り
返し実施し、濾過後製品炭酸ニッケルとしていたのであ
るが、単なる水洗だけでは付着アンモニアは除去しえて
も、化合物として炭酸ニッケル中に包蔵されるアンモニ
アは除去しえない。
Conventionally, this was followed by repeated washing with water using decantation to obtain the nickel carbonate product after filtration.However, although the adhering ammonia could be removed by simply washing with water, the ammonia encapsulated in the nickel carbonate as a compound could not be removed. I can't do it.

そこで、本発明に従えば、次亜塩素酸ソーダを用いるこ
とにより炭酸ニッケル中に包蔵される化合物アンモニア
を分解除去する。
Therefore, according to the present invention, the compound ammonia encapsulated in nickel carbonate is decomposed and removed by using sodium hypochlorite.

この際に重要なことは、次亜塩素酸ソーダを添加する前
に付着残留アンモニアを充分洗浄除去しておかないと、
次亜塩素酸ソーダの添加効果が薄くなることである。例
えば、炭酸ニッケルバルブに水を加えて30分程度攪拌
し、自然沈降後上澄み液を捨てるデカンテーションを一
回行なう程度の水洗では、次亜塩素酸ソーダの添加によ
るアンモニア低減効果は見られない。水洗の仕方にもよ
るが、上記のようなデカンテーションを少なくとも2〜
3回、好ましくは3〜5回繰り返す必要がある。
What is important at this time is that the residual ammonia must be thoroughly washed away before adding sodium hypochlorite.
The effect of adding sodium hypochlorite becomes weaker. For example, if water is added to a nickel carbonate bulb, stirred for about 30 minutes, allowed to settle naturally, and then decanted once to discard the supernatant liquid, no ammonia reduction effect will be observed due to the addition of sodium hypochlorite. It depends on how you wash it, but at least 2~2 decantations as above.
It is necessary to repeat 3 times, preferably 3-5 times.

こうして、付着残留アンモニアを充分洗浄除去した炭酸
ニッケルには、水バルブ状態において次亜塩素酸ソーダ
が添加される。好ましくは、次亜塩素酸ソーダの添加は
酸化還元電位ORPの管理の下で行なわれる。ORPは
、炭酸ニッケルが酸化ニッケルに変換する目安となりつ
る電位を表わすものである。図面は、炭酸ニッケル生成
反応後、炭酸ニッケルパルプに水を加えて30分程度攪
拌し、自然沈降後上澄み液を捨てるデカンテーションを
四回行なった後、五回目の水を張り、次亜塩素酸ソーダ
を添加していった場合のORP及びアンモニア品位の経
時変化を示す。ORPが550〜600mV付近に達す
ると炭酸ニッケル中のアンモニア品位は製品規格の0.
05%以下となることがわかる。
Sodium hypochlorite is added to the nickel carbonate from which the residual ammonia has been thoroughly washed and removed in a water valve state. Preferably, the addition of sodium hypochlorite is carried out under control of the redox potential ORP. ORP is a standard for converting nickel carbonate into nickel oxide and represents the potential. The drawing shows that after the nickel carbonate production reaction, water is added to the nickel carbonate pulp, stirred for about 30 minutes, natural sedimentation is performed, the supernatant liquid is discarded, decantation is performed four times, water is added for the fifth time, and hypochlorous acid is added. Figure 2 shows changes in ORP and ammonia quality over time when soda is added. When ORP reaches around 550 to 600 mV, the ammonia quality in nickel carbonate reaches the product standard of 0.
It can be seen that it is less than 0.05%.

ORPが600 mVを越えるとき、急激にORPの上
昇が始まり、炭酸ニッケル製品は黒色酸化ニッケルとな
る。従って、脱アンモニア反応の管理点としてORPが
重要であり、且つORP管理により反応の進行状況が的
確に把握出来るので便宜でもある。
When the ORP exceeds 600 mV, the ORP starts to rise rapidly and the nickel carbonate product becomes black nickel oxide. Therefore, ORP is important as a control point for the deammoniation reaction, and it is also convenient because the progress of the reaction can be accurately grasped by ORP control.

斯様に、次亜塩素酸ソーダの添加は、ORPの管理の下
で、ORPが600 mV付近で平衡となるまで複数回
にわけて回分的に行なうことが好ましい。添加中炭酸ニ
ッケルバルブは攪拌される。最終添加後、攪拌を行ない
、次亜塩素酸ソーダを洗い流すに充分水洗される。水洗
は、上記と同様デカンテーションにより行なうのが好都
合である。最後に、遠心分離等により脱水して製品炭酸
ニッケルが製造される。
In this manner, the addition of sodium hypochlorite is preferably carried out in batches under the control of the ORP, in multiple batches until the ORP reaches an equilibrium around 600 mV. The nickel carbonate bulb is stirred during the addition. After the final addition, stir and rinse thoroughly with water to wash away the sodium hypochlorite. Washing with water is conveniently carried out by decantation as described above. Finally, the product is dehydrated by centrifugation or the like to produce the product nickel carbonate.

l豆五蓋釆 1、従来からの製造フローを変更することなく次亜塩素
酸ソーダの添加のみで低アンモニア炭酸ニッケルの製造
を可能とした。
1. Made it possible to produce low ammonia nickel carbonate simply by adding sodium hypochlorite without changing the conventional production flow.

2、スルファミン酸ニッケル用の炭酸ニッケル製品のア
ンモニア品位規格0.05%以下を満足する製品が安定
して製造される。
2. Products that satisfy the ammonia quality standard of 0.05% or less for nickel carbonate products for nickel sulfamate can be stably manufactured.

3、ORP管理により反応の進行状況が的確に把握出来
る。
3. The progress of the reaction can be accurately grasped by ORP management.

K血■ユ Ni濃度50g/lそしてNH,濃度4g/lの硫酸ニ
ッケル水溶液8m’に対してNi量の3倍の重炭酸ソー
ダを添加し、3時間攪拌を行なった。液温は30℃以下
に保った。次で、水蒸気を加えつつソーダ灰をバッチ当
たり75kg添加した。液温は60〜65℃に保った。
Sodium bicarbonate in an amount three times the amount of Ni was added to 8 m' of an aqueous nickel sulfate solution with a Ni concentration of 50 g/l and an NH concentration of 4 g/l, and the mixture was stirred for 3 hours. The liquid temperature was kept below 30°C. Next, 75 kg of soda ash was added per batch while adding steam. The liquid temperature was maintained at 60-65°C.

同液温を保って3時間攪拌を行なった。Stirring was performed for 3 hours while maintaining the same liquid temperature.

こうして、炭酸ニッケル沈殿物を得た。In this way, a nickel carbonate precipitate was obtained.

炭酸ニッケル1.2トン(バルブとして2m3)に7.
0〜7.5m3の水を加えて30分攪拌し、攪拌後に、
自然沈降させて上澄み液を捨てるデカンテーション操作
を四回行なった後、五回目の水を張った時に次亜塩素酸
ソーダ112〜160f2を6回に分けて添加し、OR
Pを600 mVまで上昇させた。その後、15分攪拌
し、自然沈降させて上澄み液を捨てた。最後に、上述の
方法で2回水洗し、遠心分離機で脱水して製品炭酸ニッ
ケルとした。次表の通り低アンモニア含有量の製品炭酸
ニッケルが得られた。
7. 1.2 tons of nickel carbonate (2 m3 as a bulb).
Add 0-7.5m3 of water and stir for 30 minutes. After stirring,
After performing the decantation operation four times to let it naturally settle and discard the supernatant liquid, when filling with water for the fifth time, add 112 to 160 f2 of sodium hypochlorite in six parts and OR
P was increased to 600 mV. Thereafter, the mixture was stirred for 15 minutes, allowed to settle naturally, and the supernatant liquid was discarded. Finally, it was washed twice with water using the method described above and dehydrated using a centrifuge to obtain a product of nickel carbonate. Product nickel carbonate with low ammonia content was obtained as shown in the following table.

し  阻ユU  阻区μ吐 1  28.08  0.04 2  29.71  0.05 3  28.52  0.05 4  2B、86  0.05 5  29.69  0.04 ル煎m区珠) 上記と同じ炭酸ニッケルに7.0〜7.5m”の水を加
えて30分攪拌し、攪拌後に、自然沈降させて上澄み液
を捨てるデカンテーション操作を七回行なった。最後に
、遠心分離機で脱水して製品炭酸ニッケルとした。次表
の通り、水洗だけでは回数を増やしても高いアンモニア
含有量の製品炭酸ニッケルしか得られなかった。
The above 7.0 to 7.5 m" of water was added to the same nickel carbonate and stirred for 30 minutes. After stirring, the decantation operation was performed seven times to let it settle naturally and discard the supernatant liquid.Finally, it was centrifuged. The product was dehydrated to obtain a nickel carbonate product.As shown in the following table, even if the number of washings was increased, only a nickel carbonate product with a high ammonia content could be obtained.

No   NiユU  胆訂U 1  29.43  0.20 2  29.18  0.18 3  28.72  0.19 4  30.0?   0.17 5  29.39  0.19 1互1 実施例において、次亜塩素酸ソーダ添加前の水洗を一回
しか行なわなかった。製品炭酸ニッケルのアンモニア含
有量は0.17〜0,20%の高い水準に留まった。
No NiyuU Citation U 1 29.43 0.20 2 29.18 0.18 3 28.72 0.19 4 30.0? 0.17 5 29.39 0.19 1 to 1 In the example, washing with water before addition of sodium hypochlorite was performed only once. The ammonia content of the product nickel carbonate remained at a high level of 0.17-0.20%.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、炭酸ニッケル生成反応後、水洗後、少量ずつ次
亜塩素酸ソーダを添加していった場合のORP及びア°
ンモニア品位の経時変化を示すグラフである。
The drawing shows the ORP and A
It is a graph showing a change in ammonia quality over time.

Claims (1)

【特許請求の範囲】 1)アンモニアを含有する硫酸ニッケル水溶液に炭酸ア
ルカリ剤を添加して炭酸ニッケルを沈殿せしめ、付着ア
ンモニアを除去するに充分水洗し、次いで次亜塩素酸ソ
ーダを添加してアンモニア化合物を分解除去することを
特徴とする低アンモニア含有量の炭酸ニッケルの製造方
法。 2)次亜塩素酸ソーダの添加は、ORPの管理の下で、
ORPが600mV付近で平衡となるまで行なう特許請
求の範囲第1項記載の方法。 3)次亜塩素酸ソーダの添加前の炭酸ニッケルの水洗が
少なくとも2回のデカンテーションによりもたらされる
特許請求の範囲第1項記載の方法。
[Claims] 1) Add an alkaline carbonate agent to an aqueous nickel sulfate solution containing ammonia to precipitate nickel carbonate, wash with water sufficiently to remove adhering ammonia, and then add sodium hypochlorite to precipitate the ammonia. A method for producing nickel carbonate with a low ammonia content, which comprises decomposing and removing a compound. 2) Addition of sodium hypochlorite is under the control of ORP.
The method according to claim 1, wherein the method is carried out until the ORP reaches equilibrium around 600 mV. 3) A method according to claim 1, wherein the washing of the nickel carbonate with water before addition of the sodium hypochlorite is effected by at least two decantations.
JP30946887A 1987-12-09 1987-12-09 Method for producing nickel carbonate Expired - Lifetime JPH0753582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30946887A JPH0753582B2 (en) 1987-12-09 1987-12-09 Method for producing nickel carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30946887A JPH0753582B2 (en) 1987-12-09 1987-12-09 Method for producing nickel carbonate

Publications (2)

Publication Number Publication Date
JPH01153534A true JPH01153534A (en) 1989-06-15
JPH0753582B2 JPH0753582B2 (en) 1995-06-07

Family

ID=17993353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30946887A Expired - Lifetime JPH0753582B2 (en) 1987-12-09 1987-12-09 Method for producing nickel carbonate

Country Status (1)

Country Link
JP (1) JPH0753582B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241529A (en) * 2005-03-03 2006-09-14 Taiheiyo Kinzoku Kk Refining method for removing sulfur and the like from nickel compound or cobalt compound, and method for producing ferronickel
JP2013112530A (en) * 2011-11-24 2013-06-10 Sumitomo Metal Mining Co Ltd Method for producing high-purity nickel sulfate
US9371343B2 (en) 2009-12-18 2016-06-21 Invista North America S.A. R.L. Nickel metal compositions and nickel complexes derived from basic nickel carbonates

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170154B2 (en) 2006-06-26 2015-10-27 Halliburton Energy Services, Inc. Data validation and classification in optical analysis systems
US9182282B2 (en) 2006-11-02 2015-11-10 Halliburton Energy Services, Inc. Multi-analyte optical computing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241529A (en) * 2005-03-03 2006-09-14 Taiheiyo Kinzoku Kk Refining method for removing sulfur and the like from nickel compound or cobalt compound, and method for producing ferronickel
US9371343B2 (en) 2009-12-18 2016-06-21 Invista North America S.A. R.L. Nickel metal compositions and nickel complexes derived from basic nickel carbonates
JP2013112530A (en) * 2011-11-24 2013-06-10 Sumitomo Metal Mining Co Ltd Method for producing high-purity nickel sulfate

Also Published As

Publication number Publication date
JPH0753582B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
CN104843770A (en) Method of resource utilization of tin sludge
CN107099672B (en) The recovery method of the fume from steel making containing zinc
JPH01153534A (en) Production of nickel carbonate
CN107399766B (en) A kind of preparation method of spherical nickel cobalt manganese persursor material
CN103088203A (en) Method for producing fine iron powder by sulfate slag
CN106319563A (en) Electrolytic copper and method for producing electrolytic copper from concentrated nitric acid copper-containing wastewater
CN108502911B (en) Barite purifying and whitening agent and purifying and whitening method thereof
CN108754140A (en) A method of it is produced containing zinc complexes using containing zinc ore crude
CN108275720A (en) A kind of method that zirconium oxychloride white residue takes off zirconium
US1361866A (en) Elimination of undesired acid substances from titanium hydrates and the product obtained thereby
US2999011A (en) Method for bleaching hydrous titanium dioxide
CN107162949A (en) A kind of Vonoprazan fumarate key intermediate and preparation method thereof
CN110422851A (en) The method of the components such as tapping, zinc, silica is separated from lead-zinc smelting Water Quenching Slag
CN106478871B (en) A kind of preparation method of chelating agent
CN104357672B (en) A kind of substep puies forward silver method
US2677653A (en) Copper electroplating compositions and process
CN115155562A (en) Recovery processing method of waste vanadium catalyst
US1018734A (en) Process of treating tin-bearing material.
US1338428A (en) Process of treating alunite
CN109336191A (en) A method of foreign ion cadmium in removal sulphate crystal post mother liquor
US1558963A (en) Process of bleaching nuts
CN108330283A (en) A kind of chemical treatment method of zirconium waste material
US2246396A (en) Reduction of chromates to produce chromic oxide
SU1129214A1 (en) Process for activating cellulose for producing viscose
US310628A (en) William wall