JP2013112530A - Method for producing high-purity nickel sulfate - Google Patents
Method for producing high-purity nickel sulfate Download PDFInfo
- Publication number
- JP2013112530A JP2013112530A JP2011256822A JP2011256822A JP2013112530A JP 2013112530 A JP2013112530 A JP 2013112530A JP 2011256822 A JP2011256822 A JP 2011256822A JP 2011256822 A JP2011256822 A JP 2011256822A JP 2013112530 A JP2013112530 A JP 2013112530A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- magnesium
- containing material
- nickel sulfate
- purity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、ニッケルを含む沈殿物からマグネシウムを効率的に除去し、高純度の硫酸ニッケルを製造するプロセスに関するものである。 The present invention relates to a process for efficiently removing magnesium from a precipitate containing nickel to produce high-purity nickel sulfate.
硫酸ニッケルを工業的に製造する一般的な方法として、原料を酸溶液に溶解後、不純物を除去する浄液工程を経て硫酸ニッケル溶液を得て、さらに蒸発晶析などにより硫酸ニッケル結晶を得る方法がある。
この浄液工程には、原料に含まれる不純物により様々な方法が採られるが、原料中にコバルトが含まれる場合、効率良くニッケルとコバルトを分離する方法として、ホスホン酸やホスフィン酸を用いた溶媒抽出法が広く知られている。
As a general method for industrially producing nickel sulfate, a nickel sulfate solution is obtained by dissolving a raw material in an acid solution, followed by a cleaning step for removing impurities, and further obtaining nickel sulfate crystals by evaporation crystallization, etc. There is.
Various methods are adopted for this liquid purification step depending on the impurities contained in the raw material. When cobalt is contained in the raw material, a solvent using phosphonic acid or phosphinic acid is an effective method for separating nickel and cobalt. Extraction methods are widely known.
その溶媒抽出法に用いられるホスホン酸やホスフィン酸としては、2−エチルヘキシルホスホン酸モノ2−エチルヘキシルエステル、ジ−(2,4,4−トリメチルペンチル)ホスフィン酸が、ニッケルとコバルトの抽出分離が良好であり好適である。
これらのホスホン酸およびホスフィン酸による溶媒抽出は、溶液のpHに依存し、pHが上昇するほど抽出率が向上する。そして、元素により抽出に対するpH依存性が異なり、この特性を利用してコバルトやその他不純物元素を有機溶媒中へ抽出することが可能である。
As the phosphonic acid and phosphinic acid used in the solvent extraction method, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester and di- (2,4,4-trimethylpentyl) phosphinic acid are excellent in extracting and separating nickel and cobalt. It is preferable.
Solvent extraction with these phosphonic acids and phosphinic acids depends on the pH of the solution, and the extraction rate improves as the pH increases. And the pH dependence with respect to extraction changes with elements, It is possible to extract cobalt and other impurity elements in an organic solvent using this characteristic.
すなわち、ニッケルが抽出されるpHより低いpHに設定した状態で、不純物元素を有機相へ分配させ、一方ニッケルは水相に残留するため、不純物を除去したニッケル溶液を得ることができる。 That is, the impurity element is distributed to the organic phase while the pH is set lower than the pH at which nickel is extracted, while nickel remains in the aqueous phase, so that a nickel solution from which impurities are removed can be obtained.
また、特許文献1、2、3に示されるように、あらかじめ高いpHでニッケルを有機溶媒中へ抽出し、この抽出されたニッケルを含む有機溶媒と、不純物を含むニッケル溶液を接触させることにより、ニッケルより抽出されやすい元素が有機相へ、有機溶媒中のニッケルが水相側へ移行する交換反応が起こり、ニッケル溶液中の不純物を除去することができる。
この方法は、pH調整剤に含まれるNaなどの不純物元素がニッケル溶液へ混入し、製品を汚染することを防止する方法として有効である。
In addition, as shown in
This method is effective as a method for preventing impurity elements such as Na contained in the pH adjuster from being mixed into the nickel solution and contaminating the product.
しかし、以上のような硫酸ニッケルの浄液工程において、溶液中のマグネシウムは、ニッケルと反応挙動が似ており、ニッケル溶液から選択的にマグネシウムを除去することは困難であった。 However, in the nickel sulfate cleaning process as described above, the reaction behavior of magnesium in the solution is similar to that of nickel, and it has been difficult to selectively remove magnesium from the nickel solution.
本発明の目的は、このような従来技術の問題点に鑑み、ニッケルを含む含有物、特に沈殿物からマグネシウムを効率的に除去し、高純度の硫酸ニッケルを製造する方法を提供することにある。 An object of the present invention is to provide a method for producing high-purity nickel sulfate by efficiently removing magnesium from a nickel-containing material, in particular, a precipitate, in view of such problems of the prior art. .
このような課題を解決する本発明の第1の発明は、ニッケル含有物を水と接触させて混合物を形成した後、混合物を固液分離することによりニッケル含有物からマグネシウムを分離するマグネシウム除去工程を含むことを特徴とする高純度硫酸ニッケルの製造方法である。 A first invention of the present invention that solves such a problem is a magnesium removal step of separating magnesium from a nickel-containing material by solid-liquid separation of the mixture after forming the mixture by contacting the nickel-containing material with water. It is a manufacturing method of the high purity nickel sulfate characterized by including.
本発明の第2の発明は、第1の発明におけるニッケル含有物が、ニッケルを含む沈殿物であって、ニッケルおよびコバルト混合硫化物、工業中間物である粗硫酸ニッケル、酸化ニッケル、水酸化ニッケル、炭酸ニッケルのいずれかであることを特徴とする高純度硫酸ニッケルの製造方法である。 According to a second invention of the present invention, the nickel-containing material in the first invention is a precipitate containing nickel, and nickel and cobalt mixed sulfide, an industrial intermediate, crude nickel sulfate, nickel oxide, nickel hydroxide And a method for producing high-purity nickel sulfate, characterized in that it is any one of nickel carbonate.
本発明の第3の発明は、第1及び第2の発明におけるニッケル含有物を粉砕することにより、含まれるマグネシウム品位を低減する粉砕工程を含むことを特徴とする高純度硫酸ニッケルの製造方法である。 3rd invention of this invention is a manufacturing method of the high purity nickel sulfate characterized by including the grinding | pulverization process which reduces the magnesium quality contained by grind | pulverizing the nickel containing material in 1st and 2nd invention. is there.
本発明の第4の発明は、第1から第3の発明におけるニッケル含有物の粒径が、50μm以下であることを特徴とする高純度硫酸ニッケルの製造方法である。 A fourth aspect of the present invention is a method for producing high-purity nickel sulfate, wherein the nickel-containing material in the first to third aspects has a particle size of 50 μm or less.
本発明によれば、マグネシウム品位の低い高純度硫酸ニッケルを容易に得ることができ、さらにニッケル溶液中からのマグネシウムの除去は、水を使用するため低コストであり、工程が簡単で利点を有する。 According to the present invention, high-purity nickel sulfate having a low magnesium quality can be easily obtained, and the removal of magnesium from the nickel solution is low in cost because water is used, and the process is simple and has an advantage. .
以下に、本発明の高純度硫酸ニッケルの製造方法を説明する。
図1は、高純度硫酸ニッケルの製造方法の一例を示すフロー図で、ニッケルを含むニッケル含有物から通常、白抜き矢印1に従って工程が進行して高純度硫酸ニッケル溶液が製造される。その製造過程中において、不不純物元素は「破線」枠の工程を経ることによって、ニッケル含有物から除去され、排水若しくは排水澱物として系外に排出されるが、不純物元素の中のマグネシウムは、溶液中ではニッケルと反応挙動が似ており、ニッケルを含む溶液からのマグネシウムの除去は不十分であった。
Below, the manufacturing method of the high purity nickel sulfate of this invention is demonstrated.
FIG. 1 is a flow chart showing an example of a method for producing high-purity nickel sulfate, and a high-purity nickel sulfate solution is usually produced from nickel-containing materials containing nickel by proceeding according to the
そのような中、本発明の高純度硫酸ニッケルの製造方法は、図2の製造工程フロー図に示すように高純度硫酸ニッケルの製造工程中に生成、及び使用されるニッケルを含むニッケル含有物を水と接触させて混合物を形成した後、固液分離して沈殿物と分離後液に分離することで、生成する沈殿物のMg品位を、固液分離する前のニッケル含有物のマグネシウム品位より低減するMg除去処理方法(その工程フローを図3に示す。)を含むことを特徴とするものである。なお、図2において、太線矢印は「Mg除去処理の経路」を示し、細線矢印は「硫酸ニッケル溶液の製造工程の経路」を示し、破線矢印は「Mg除去処理をしない場合の硫酸ニッケル溶液の製造工程の経路の一部」を示す。
ここで使用するニッケル含有物は、特に限定されるものではなく、原料のニッケル酸化鉱石を酸浸出、硫化して沈殿物として形成したニッケルおよびコバルト混合硫化物、さらに工業中間物である粗硫酸ニッケル、酸化ニッケル、水酸化ニッケル、炭酸ニッケルなどが使用できる。
Under such circumstances, the method for producing high-purity nickel sulfate according to the present invention comprises a nickel-containing material containing nickel produced and used during the production process of high-purity nickel sulfate as shown in the production process flow chart of FIG. After forming a mixture by contacting with water, solid-liquid separation is performed to separate the precipitate from the separated liquid, so that the Mg quality of the resulting precipitate is greater than the magnesium quality of the nickel-containing material before solid-liquid separation. It includes a reducing Mg removal treatment method (the process flow is shown in FIG. 3). In FIG. 2, the thick arrow indicates the “Mg removal treatment path”, the thin arrow indicates the “nickel sulfate production process path”, and the broken arrow indicates “the nickel sulfate solution without Mg removal treatment”. "Part of manufacturing process path".
The nickel-containing material used here is not particularly limited. Nickel and cobalt mixed sulfide formed by acid leaching and sulfidation of raw nickel oxide ore as a precipitate, and crude nickel sulfate as an industrial intermediate Nickel oxide, nickel hydroxide, nickel carbonate, etc. can be used.
ニッケル含有物と純水を接触させてNi含有物分散混合物(水溶液)を得る方法としては、純水にニッケル含有物を分散せしめ、攪拌してマグネシウム元素をニッケル含有物から溶出させるレパルプ洗浄法が望ましいが、マグネシウム元素を溶出できる洗浄方法ならば特に限定されない。
また、図3に示すようにニッケル含有物を水(純水)と接触させる前に、物理的な粉砕(粉砕処理)を行うことにより、ニッケル含有物中のマグネシウム品位をさらに低減することも可能である。
物理的な粉砕を行う装置は、特に限定されるものではなく、一般的な、ロッドミルやボールミルなどを使用することができる。このニッケル含有物を粉砕する場合、好ましくは、50μm以下に粉砕することが望ましい。
As a method of obtaining a Ni-containing material dispersion mixture (aqueous solution) by bringing a nickel-containing material into contact with pure water, there is a repulp washing method in which the nickel-containing material is dispersed in pure water and stirred to elute magnesium element from the nickel-containing material. Although it is desirable, it is not particularly limited as long as it is a cleaning method capable of eluting magnesium element.
In addition, as shown in FIG. 3, it is possible to further reduce the magnesium quality in the nickel-containing material by performing physical grinding (pulverization treatment) before bringing the nickel-containing material into contact with water (pure water). It is.
An apparatus for performing physical pulverization is not particularly limited, and a general rod mill, ball mill, or the like can be used. When this nickel-containing material is pulverized, it is preferably pulverized to 50 μm or less.
この粉砕処理を行うニッケル含有物としては、硫酸ニッケルの原料として用いられるニッケル酸化鉱石などより、固液分離して得られる沈殿物の方が粉砕のし易さ、マグネシウム除去の効果などの点から望ましい。 As the nickel-containing material for this pulverization treatment, the precipitate obtained by solid-liquid separation is more easily pulverized than the nickel oxide ore used as a raw material for nickel sulfate, in terms of the effect of removing magnesium. desirable.
以下に、図を参照して、実施例によって本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings.
図3のフロー図に従って、ニッケル含有物として、沈殿物である表1に示す粒度とマグネシウム品位のニッケル・コバルト混合硫化物を用い、水と接触させるレパルプ洗浄をした場合のニッケル・コバルト混合硫化物のマグネシウム品位の変化を測定した。なお、粒度はマイクロトラック法で測定した。 According to the flow chart of FIG. 3, the nickel-cobalt mixed sulfide in the case of repulp washing in which the nickel-cobalt mixed sulfide having the particle size and magnesium grade shown in Table 1 as the nickel-containing material is brought into contact with water as shown in Table 1 The change in the magnesium quality was measured. The particle size was measured by the microtrack method.
具体的には、ニッケル・コバルト混合硫化物100gを分取し、これを200mlの純水に分散させて混合物を形成し、レパルプ洗浄を常温で15分攪拌の条件で行った。
その後、固液分離し、沈殿物(Ni含有物)である硫化物のマグネシウム品位を分析し、その結果を表1に示す。なお、分析法にはICP発光分光分析法を採用した。
Specifically, 100 g of nickel / cobalt mixed sulfide was collected and dispersed in 200 ml of pure water to form a mixture, and repulp washing was performed at room temperature for 15 minutes under stirring.
Then, it separated into solid and liquid, and analyzed the magnesium quality of the sulfide which is a deposit (Ni containing material), and the result is shown in Table 1. As an analysis method, ICP emission spectroscopic analysis was adopted.
表1に示すように、ニッケル・コバルト混合硫化物に含まれていた50ppmのマグネシウム品位が洗浄により、30ppmまで低減されていることを確認した。 As shown in Table 1, it was confirmed that the magnesium quality of 50 ppm contained in the nickel / cobalt mixed sulfide was reduced to 30 ppm by washing.
実施例1で用いた表1に記載されるニッケル・コバルト混合硫化物を粉砕後、水と接触させる洗浄を行い、ニッケル・コバルト混合硫化物のマグネシウム品位の変化を測定した。 The nickel / cobalt mixed sulfide described in Table 1 used in Example 1 was pulverized and then washed with water, and the change in magnesium quality of the nickel / cobalt mixed sulfide was measured.
具体的には表1のニッケル・コバルト混合硫化物を粉砕後、純水と混合してレパルプ洗浄し、マグネシウム品位の変化を測定した。なお、粉砕法はロッドミル、遊星ボールミルの二種類を用いた。 Specifically, the nickel / cobalt mixed sulfide shown in Table 1 was pulverized, mixed with pure water, washed with repulp, and the change in magnesium quality was measured. Two types of grinding methods were used: a rod mill and a planetary ball mill.
[ロッドミル粉砕法]
ロッドミルを用いて粉砕した硫化物200gを200mlの純水に分散させて混合物を形成し、その混合物にレパルプ洗浄を常温で15分攪拌の条件で行った。
[Rod mill grinding method]
A mixture was formed by dispersing 200 g of sulfide pulverized using a rod mill in 200 ml of pure water, and the pulp was washed under normal temperature for 15 minutes.
[遊星ボールミル粉砕法]
遊星ボールミルを用いて粉砕した硫化物100gを100mlの純水に分散させて混合物を形成し、その混合物にレパルプ洗浄を常温で30分攪拌の条件で行った。
粉砕前後の粒度は、いずれもマイクロトラック法で測定した。
[Planet ball mill grinding method]
100 g of sulfide pulverized using a planetary ball mill was dispersed in 100 ml of pure water to form a mixture, and the pulp was washed under normal temperature for 30 minutes.
The particle size before and after pulverization was measured by the microtrack method.
洗浄後、実施例1と同様に両者とも固液分離を行い、沈殿物(Ni含有物)である硫化物のマグネシウム品位を分析し、その結果を表1に示す。なお、分析法にはICP発光分光分析法を採用した。 After washing, both were subjected to solid-liquid separation in the same manner as in Example 1, and the magnesium quality of the sulfide as a precipitate (Ni-containing material) was analyzed. The results are shown in Table 1. As an analysis method, ICP emission spectroscopic analysis was adopted.
表1よりロッドミルで粉砕した場合、D90で示した粒径は洗浄前の103μmから48μmまで粉砕され、そのマグネシウム品位は50ppmから20ppmまで低減した。
一方、遊星ボールミルを用いて粉砕した場合、D90で示した粒径は約3μmまで微細化されたが、マグネシウム品位はロッドミル粉砕の場合と同じだった。
以上のことから判るように過剰な粉砕は、粉砕に要するコストを増加させる。また、硫化物が酸化し易くなって発塵が促進されたり、発火する可能性が生じるなど好ましくない影響もある。
そのため、このように混合硫化物の粉砕はD90で示した粒径で、50μm以下の程度まで粉砕すれば充分な効果をあげることができることがわかる。
From Table 1, when pulverized with a rod mill, the particle size indicated by D90 was pulverized from 103 μm to 48 μm before washing, and the magnesium quality was reduced from 50 ppm to 20 ppm.
On the other hand, when pulverized using a planetary ball mill, the particle size indicated by D90 was refined to about 3 μm, but the magnesium quality was the same as in the rod mill pulverization.
As can be seen from the above, excessive pulverization increases the cost required for pulverization. In addition, there is an unfavorable influence such that the sulfide is easily oxidized and dust generation is promoted or there is a possibility of ignition.
Therefore, it can be seen that the mixed sulfide can be sufficiently pulverized to have a particle size indicated by D90 and pulverized to a level of 50 μm or less.
実施例1および2で得られた硫化物を原料とし、図2のフロー図に従って、高純度の硫酸ニッケル溶液を作製した。その時のマグネシウム品位を実施例1と同様の方法で測定した。その結果を表2に示す。 Using the sulfides obtained in Examples 1 and 2 as raw materials, a high-purity nickel sulfate solution was prepared according to the flow chart of FIG. The magnesium quality at that time was measured by the same method as in Example 1. The results are shown in Table 2.
(比較例1)
混合硫化物に対して、Mg除去処理方法をせずに、図2の破線矢印に示す浸出工程、及び再溶解処理を行う製造工程で硫酸ニッケルを製造した時の、マグネシウム品位を表2に合わせて示す。
(Comparative Example 1)
Table 2 shows the magnesium quality when nickel sulfate was produced in the leaching process indicated by the broken line arrow in FIG. 2 and the remelting process for the mixed sulfide without using the Mg removal treatment method. Show.
表2からも明らかなように、Mg除去処理を施した実施例3では、Mg除去処理を行わなかった比較例1に比べて、マグネシウム品位が十分に低い硫酸ニッケル溶液が得られているのがわかる。 As is apparent from Table 2, in Example 3 where the Mg removal treatment was performed, a nickel sulfate solution having a sufficiently low magnesium quality was obtained compared to Comparative Example 1 where the Mg removal treatment was not performed. Recognize.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011256822A JP5867015B2 (en) | 2011-11-24 | 2011-11-24 | Manufacturing method of high purity nickel sulfate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011256822A JP5867015B2 (en) | 2011-11-24 | 2011-11-24 | Manufacturing method of high purity nickel sulfate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013112530A true JP2013112530A (en) | 2013-06-10 |
JP5867015B2 JP5867015B2 (en) | 2016-02-24 |
Family
ID=48708418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011256822A Active JP5867015B2 (en) | 2011-11-24 | 2011-11-24 | Manufacturing method of high purity nickel sulfate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5867015B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015218075A (en) * | 2014-05-15 | 2015-12-07 | 住友金属鉱山株式会社 | Method for producing high purity nickel sulfate aqueous solution |
JP2020158819A (en) * | 2019-03-26 | 2020-10-01 | 住友金属鉱山株式会社 | Refining method of nickel hydroxide |
JPWO2020196046A1 (en) * | 2019-03-26 | 2020-10-01 |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4976796A (en) * | 1972-11-27 | 1974-07-24 | ||
US3928020A (en) * | 1973-07-10 | 1975-12-23 | Sherritt Gordon Mines Ltd | Treatment of nickel-bearing ammonium carbonate leach liquors |
JPS589821A (en) * | 1981-07-07 | 1983-01-20 | Sumitomo Metal Mining Co Ltd | Recovery of valuable metals from waste catalyst for desulfurization |
JPS6075536A (en) * | 1983-07-22 | 1985-04-27 | カリフオルニア・ニツケル・コ−ポレイシヨン | Recovery of metals from laterite ore containing magnesium, nickel and cobalt |
JPS6121902A (en) * | 1983-05-16 | 1986-01-30 | エイチア−ルアイ・インコ−ポレ−テツド | Method of recovering metallic compound depositiong on catalyst used |
JPS63247319A (en) * | 1987-04-03 | 1988-10-14 | Nisshin Steel Co Ltd | Treatment for silicomagnesia nickel ore |
JPH01153534A (en) * | 1987-12-09 | 1989-06-15 | Nippon Mining Co Ltd | Production of nickel carbonate |
JPH09263843A (en) * | 1996-03-29 | 1997-10-07 | Taiheiyo Kinzoku Kk | Method for recovering valuable metal-containing liquid from waste nickel catalyst |
JPH1030135A (en) * | 1996-07-18 | 1998-02-03 | Sumitomo Metal Mining Co Ltd | Production of aqueous high-purity nickel solution |
JPH11236631A (en) * | 1998-02-23 | 1999-08-31 | Sumitomo Metal Mining Co Ltd | Production of fine nickel powder by solid phase reducing method, and fine nickel powder obtained thereby |
JP2001192747A (en) * | 1999-12-28 | 2001-07-17 | Taiheiyo Cement Corp | Method for treating petroleum-base combustion ash |
JP2004516607A (en) * | 2000-09-13 | 2004-06-03 | オヴォニック バッテリー カンパニー インコーポレイテッド | How to make nickel hydroxide |
JP2005350766A (en) * | 2004-05-13 | 2005-12-22 | Sumitomo Metal Mining Co Ltd | Hydrometallurgical process of nickel oxide ore |
JP2009298647A (en) * | 2008-06-13 | 2009-12-24 | Tanaka Chemical Corp | Nickel oxide and production method of the same |
JP2010526940A (en) * | 2007-05-15 | 2010-08-05 | リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー | Method for producing Fe, Ni-containing raw material, ferronickel mass using the Fe, Ni-containing raw material, and method for producing the same |
JP2010207674A (en) * | 2009-03-09 | 2010-09-24 | Sumitomo Metal Mining Co Ltd | Method of removing manganese from wastewater |
CN102040252A (en) * | 2009-10-16 | 2011-05-04 | 中科铜都粉体新材料股份有限公司 | Method for producing battery-level refined nickel sulfate with electrolyte |
-
2011
- 2011-11-24 JP JP2011256822A patent/JP5867015B2/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4976796A (en) * | 1972-11-27 | 1974-07-24 | ||
US3928020A (en) * | 1973-07-10 | 1975-12-23 | Sherritt Gordon Mines Ltd | Treatment of nickel-bearing ammonium carbonate leach liquors |
JPS589821A (en) * | 1981-07-07 | 1983-01-20 | Sumitomo Metal Mining Co Ltd | Recovery of valuable metals from waste catalyst for desulfurization |
JPS6121902A (en) * | 1983-05-16 | 1986-01-30 | エイチア−ルアイ・インコ−ポレ−テツド | Method of recovering metallic compound depositiong on catalyst used |
JPS6075536A (en) * | 1983-07-22 | 1985-04-27 | カリフオルニア・ニツケル・コ−ポレイシヨン | Recovery of metals from laterite ore containing magnesium, nickel and cobalt |
JPS63247319A (en) * | 1987-04-03 | 1988-10-14 | Nisshin Steel Co Ltd | Treatment for silicomagnesia nickel ore |
JPH01153534A (en) * | 1987-12-09 | 1989-06-15 | Nippon Mining Co Ltd | Production of nickel carbonate |
JPH09263843A (en) * | 1996-03-29 | 1997-10-07 | Taiheiyo Kinzoku Kk | Method for recovering valuable metal-containing liquid from waste nickel catalyst |
JPH1030135A (en) * | 1996-07-18 | 1998-02-03 | Sumitomo Metal Mining Co Ltd | Production of aqueous high-purity nickel solution |
JPH11236631A (en) * | 1998-02-23 | 1999-08-31 | Sumitomo Metal Mining Co Ltd | Production of fine nickel powder by solid phase reducing method, and fine nickel powder obtained thereby |
JP2001192747A (en) * | 1999-12-28 | 2001-07-17 | Taiheiyo Cement Corp | Method for treating petroleum-base combustion ash |
JP2004516607A (en) * | 2000-09-13 | 2004-06-03 | オヴォニック バッテリー カンパニー インコーポレイテッド | How to make nickel hydroxide |
JP2005350766A (en) * | 2004-05-13 | 2005-12-22 | Sumitomo Metal Mining Co Ltd | Hydrometallurgical process of nickel oxide ore |
JP2010526940A (en) * | 2007-05-15 | 2010-08-05 | リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー | Method for producing Fe, Ni-containing raw material, ferronickel mass using the Fe, Ni-containing raw material, and method for producing the same |
JP2009298647A (en) * | 2008-06-13 | 2009-12-24 | Tanaka Chemical Corp | Nickel oxide and production method of the same |
JP2010207674A (en) * | 2009-03-09 | 2010-09-24 | Sumitomo Metal Mining Co Ltd | Method of removing manganese from wastewater |
CN102040252A (en) * | 2009-10-16 | 2011-05-04 | 中科铜都粉体新材料股份有限公司 | Method for producing battery-level refined nickel sulfate with electrolyte |
Non-Patent Citations (1)
Title |
---|
JPN6014016162; 松本智志,外: '溶媒抽出法によるニッケル/コバルトの分離精製' 資源・素材 Vol.2010, No.2, 20100913, p.113-116 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015218075A (en) * | 2014-05-15 | 2015-12-07 | 住友金属鉱山株式会社 | Method for producing high purity nickel sulfate aqueous solution |
JP2020158819A (en) * | 2019-03-26 | 2020-10-01 | 住友金属鉱山株式会社 | Refining method of nickel hydroxide |
JPWO2020196046A1 (en) * | 2019-03-26 | 2020-10-01 | ||
JP7300115B2 (en) | 2019-03-26 | 2023-06-29 | 住友金属鉱山株式会社 | Method for producing nickel- and cobalt-containing solutions from nickel- and cobalt-containing hydroxides |
JP7356642B2 (en) | 2019-03-26 | 2023-10-05 | 住友金属鉱山株式会社 | Nickel hydroxide purification method |
Also Published As
Publication number | Publication date |
---|---|
JP5867015B2 (en) | 2016-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10118224B2 (en) | Method for producing nickel powder | |
JP5598778B2 (en) | Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel | |
JP6610425B2 (en) | Method for producing nickel powder | |
CN105296754B (en) | Method for separating copper, cobalt and manganese from impurity-removed solution of copper, manganese, cobalt, calcium and zinc chloride | |
JP7300115B2 (en) | Method for producing nickel- and cobalt-containing solutions from nickel- and cobalt-containing hydroxides | |
EP2832700A1 (en) | Method for producing high-purity nickel sulfate | |
WO2013099551A1 (en) | Method for producing cobalt sulfate | |
JP2017150063A5 (en) | ||
AU2014308300A1 (en) | Method for processing laterite-nickel ore and method for recycling scandium | |
JP5867710B2 (en) | Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel | |
CN105274352B (en) | A kind of method that copper cobalt manganese is separated in the manganese cobalt calcium zinc mixture from copper carbonate | |
JP5867015B2 (en) | Manufacturing method of high purity nickel sulfate | |
KR20130073507A (en) | A preparation method of tungsten compounds and cobalt compounds through a tungsten carbide scrap recycling | |
JP5757425B2 (en) | Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel | |
JP2014118598A (en) | Method for separating rare earth element | |
JP5881952B2 (en) | Method for producing cobalt sulfate | |
WO2014080665A1 (en) | Settling separation method for nuetralized slurry and wet smelting method for nickel oxide ore | |
AU2016345951B2 (en) | Method for producing seed crystal of cobalt powder | |
WO2017145892A1 (en) | Method for producing nickel powder | |
WO2020181607A1 (en) | Method for extracting ions from ore solution | |
CN109266870A (en) | The method for extracting scandium oxide | |
JP2006283163A (en) | Method for leaching nickel from iron removal precipitate | |
JP6531913B2 (en) | Method of producing nickel powder | |
JP2015212424A (en) | Method for producing cobalt sulfate | |
JP2008208438A (en) | Method for separating indium and tin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131002 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141002 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5867015 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |