JPH01152978A - Dielectric polarization motor - Google Patents

Dielectric polarization motor

Info

Publication number
JPH01152978A
JPH01152978A JP30892287A JP30892287A JPH01152978A JP H01152978 A JPH01152978 A JP H01152978A JP 30892287 A JP30892287 A JP 30892287A JP 30892287 A JP30892287 A JP 30892287A JP H01152978 A JPH01152978 A JP H01152978A
Authority
JP
Japan
Prior art keywords
dielectric
electrode
plate
electrode plates
electrode boards
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30892287A
Other languages
Japanese (ja)
Inventor
Shunei Yamamoto
山本 俊英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30892287A priority Critical patent/JPH01152978A/en
Publication of JPH01152978A publication Critical patent/JPH01152978A/en
Pending legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PURPOSE:To produce rotary force, by utilizing force produced based on dielectric polarization occurring in a dielectric inserted between electrode boards. CONSTITUTION:A pair of semi-circular electrode boards 1, 2 are faced each other in parallel through a predetermined distance and a semi-circular dielectric board 3 is placed between them. The dielectric board 3 is secured at the central section to a rotary shaft 4 and held rotatably in a noncontact manner with the electrode boards 1, 2. Upon application of DC voltage from a DC power source 5 between the electrode boards 1, 2, electric field is formed between the electrode boards 1, 2 to induce polarization in the dielectric board 3. If the dielectric board 3 is placed with a predetermined rotary angle between the electrode boards 1, 2, torque T for pulling the dielectric board 3 between the electrode boards 1, 2 is produced in the shaft 4. Consequently, a motor where rotary force is produced only through the electric field and the dielectric board 3 functions as a rotor can be provided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、一般産業用動力源として適用可能な誘電分極
電動機に関し、さらに詳しくは電場により誘電体に生じ
る誘電分極現象に基づいて発生する力を回転力として取
出すようにした誘電分極電動機に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a dielectric polarization motor that can be applied as a general industrial power source, and more specifically relates to a dielectric polarization motor that can be applied as a general industrial power source, and more specifically to a dielectric polarization motor that is applicable to a dielectric polarization motor that is applied as a general industrial power source. The present invention relates to a dielectric polarization motor that extracts rotational force as rotational force.

[従来の技術] 従来の直流電動機及び交流電動機は、いずれもフレミン
グの左手二指の法則に基づいて発生する力すなわち磁束
中に介在している通電導体に働く電磁力を回転力として
取出す如く構成されたものである。
[Prior Art] Conventional DC motors and AC motors are both configured to extract the force generated based on Fleming's two-finger law, that is, the electromagnetic force acting on a current-carrying conductor interposed in magnetic flux, as rotational force. It is what was done.

[発明が解決しようとする問題点] 上記したように従来の電動機は、電磁力を利用したもの
であるため、ステータやロータに巻線を施す必要があり
、大形で複雑な構成となる上、発熱や誘導障害等を引き
起こすおそれがある。このような従来の電動機が有して
いる欠点をもたない電動機として、電場により誘電体に
生じる誘電分極現象に基づいて発生する力を利用した電
動機が考えられる。しかし電場のみを利用した回転型の
電動機は今だ現存していない。
[Problems to be solved by the invention] As mentioned above, conventional electric motors use electromagnetic force, so it is necessary to wind the stator and rotor, resulting in a large and complicated structure. , there is a risk of causing heat generation and induction problems. As an electric motor that does not have the drawbacks of conventional electric motors, it is possible to consider an electric motor that utilizes force generated based on a dielectric polarization phenomenon that occurs in a dielectric material due to an electric field. However, there are still no rotary electric motors that use only electric fields.

そ・こで本発明は、電場のみを利用した回転型の誘電分
極電動機を提供することを目的とする。
Therefore, an object of the present invention is to provide a rotary dielectric polarization motor that uses only an electric field.

[問題点を解決するための手段] 本発明は上記問題点を解決し目的を達成するために次の
ような手段を講じた。すなわち、平行に配設され対向領
域内に電場を生じせしめる如く設けられた電極板と、こ
の電極板間に回転自在に介挿され上記電場による誘電分
極現象に基づいて力が発生する如く設けられた誘電体板
と、この誘電体板の回転角に対応して前記各電極板に周
期的に電圧を印加する手段とを備えるようにした。
[Means for Solving the Problems] In order to solve the above problems and achieve the object, the present invention takes the following measures. That is, electrode plates are arranged in parallel and are provided to generate an electric field in opposing regions, and electrode plates are rotatably interposed between the electrode plates and are provided to generate force based on the dielectric polarization phenomenon caused by the electric field. The electrode plate is provided with a dielectric plate and a means for periodically applying a voltage to each of the electrode plates in accordance with the rotation angle of the dielectric plate.

[作用] このような手段を講じたことにより、電場のみにより回
転力を発生し、誘電体板がロータとして回転する誘電分
極電動機を実現可能となる。
[Operation] By taking such measures, it becomes possible to realize a dielectric polarization motor in which rotational force is generated only by an electric field and the dielectric plate rotates as a rotor.

[実施例] 第1図(a)(b)〜第5図(a)(b)は、本発明の
一実施例の基本的な構成(原理)を示す図である。以下
第1図(a)(b)〜第5図(a)(b)を参照して本
発明の誘電分極電動機の作動原理について説明する。第
1図(a)(b)および第2図に示すように、一対の半
円状の電極板1゜2を所定距離を隔てて平行に対設し、
その間に半円状の誘電体板3を介在させる。この誘電体
板3はその中心部を回転軸4に固定されており、電極板
1,2とは非接触状態で回転自在に保持されている。そ
こで今、一対の電極板1.2間に直流電源5から直流電
圧Vを与えると、電極板1.2間には電場が形成され、
この誘電体板3には分極が生じる。かくして誘電体板3
が第1図(b)および第2図のような回転角で電極板1
.2間に介在していたとすると、誘電体板3を電極板1
,2間に引込むトルクTが軸4に生じる。このトルクT
は以下に示す原理に基づいて発生する。
[Embodiment] FIGS. 1(a) and 5(b) to FIG. 5(a) and (b) are diagrams showing the basic configuration (principle) of an embodiment of the present invention. The operating principle of the dielectric polarization motor of the present invention will be explained below with reference to FIGS. 1(a) and 5(b) to FIG. 5(a) and (b). As shown in FIGS. 1(a), (b) and 2, a pair of semicircular electrode plates 1°2 are arranged parallel to each other with a predetermined distance apart,
A semicircular dielectric plate 3 is interposed between them. This dielectric plate 3 has its center fixed to a rotating shaft 4, and is rotatably held in a non-contact state with the electrode plates 1 and 2. Therefore, when a DC voltage V is applied from the DC power supply 5 between the pair of electrode plates 1.2, an electric field is formed between the electrode plates 1.2,
Polarization occurs in this dielectric plate 3. Thus, dielectric plate 3
The electrode plate 1 is rotated at the rotation angle as shown in Fig. 1(b) and Fig. 2.
.. If the dielectric plate 3 is interposed between the electrode plate 1 and the
, 2 is generated on the shaft 4. This torque T
occurs based on the principle shown below.

第1図(a)(b)および第2図に示すように、電極板
1,2の端面Sを角度の基準点にとり、このときの誘電
体板3の回転角をθ、電極板1,2の扇状角度をφとす
る(図ではφ−πradとしである)。又、電極板1,
2の内半径を「1、外半径をr2  (−誘電体板3)
、電極板1,2間の間隔と誘電体板3の厚さをdとする
(実際は面同士の摩擦を避ける為、誘電体板3の厚さは
電極板間隔より薄くする必要があるが、ここでは説明を
簡単にする為、同一寸法と考える)。
As shown in FIGS. 1(a) and 2, the end surface S of the electrode plates 1 and 2 is taken as the angle reference point, and the rotation angle of the dielectric plate 3 at this time is θ, the electrode plate 1, Let the fan-shaped angle of 2 be φ (in the figure, it is φ−πrad). Moreover, the electrode plate 1,
The inner radius of 2 is ``1, the outer radius is r2 (-dielectric plate 3)
, the distance between the electrode plates 1 and 2 and the thickness of the dielectric plate 3 are d (actually, in order to avoid friction between the surfaces, the thickness of the dielectric plate 3 needs to be thinner than the distance between the electrode plates, (Here, to simplify the explanation, we assume that the dimensions are the same).

電極板1,2と誘電板3は、一種の平板コンデンサーを
形成することになり、その静電容量は、電極板間の全自
由電荷と電極板間の電圧の比および回転角θで与えられ
る。電極板1,2に電圧Vが加えられると、自由電荷の
面密度は、角度が0から9間ではε8・εO” V /
 d s角度がθからφの間では、εo−V/dとなる
。但し、εSは誘電体板3の比誘電率、ε0は真空の誘
電率である。従って、電極板1,2上の全電荷Q(θ)
は、Q(θ)−((εS・εo−■) ・θ(r22− rl 2)/2d) +((εo−■)・ (φ−θ) ・ (r22−rl2)/2d) =[((εS・ε0) 争 θ  (r  22−  rl  2 )  /2
dl+(ε0 (φ−θ) ・  (「 22 − r 1 2 ) / 2 d 
)  コ  −Vよって、静電容量C−C(θ)は、 C(θ)−(εS・ε。
The electrode plates 1 and 2 and the dielectric plate 3 form a kind of plate capacitor, whose capacitance is given by the ratio of the total free charge between the electrode plates to the voltage between the electrode plates and the rotation angle θ. . When a voltage V is applied to the electrode plates 1 and 2, the areal density of free charges is ε8・εO” V/at an angle between 0 and 9.
When the d s angle is between θ and φ, it becomes εo−V/d. However, εS is the relative permittivity of the dielectric plate 3, and ε0 is the permittivity of vacuum. Therefore, the total charge Q(θ) on electrode plates 1 and 2
is Q(θ)-((εS・εo-■) ・θ(r22-rl2)/2d) +((εo-■)・(φ-θ)・(r22-rl2)/2d) = [ ((εS・ε0) conflict θ (r 22− rl 2 ) /2
dl+(ε0 (φ−θ) ・(22 − r 1 2 ) / 2 d
) Co-V Therefore, the capacitance C-C(θ) is C(θ)-(εS・ε.

・θ(r22− rl 2)/2d) 十  (ε 0  ・  (φ −θ )・ (r22
−rl ” )/2dl となる。
・θ(r22− rl 2)/2d) 10 (ε 0 ・ (φ −θ )・ (r22
−rl”)/2dl.

以上のことから、回転軸4に生じるトルクTは、仮想変
位の原理により T−V2−13 C(19) /29 e鴫ε0争 (
ε5−1) −(r22−rl 2) ・V2/4d−(1)となる
。すなわち誘電体板により生じる回転軸回りのトルクT
は、エネルギー保存則を用いて求められる。
From the above, the torque T generated on the rotating shaft 4 can be expressed as
ε5-1) -(r22-rl 2) ・V2/4d-(1). In other words, the torque T around the rotation axis generated by the dielectric plate
is determined using the law of conservation of energy.

電圧Vが一定の場合、微小回転角をΔθ、静電容量の変
化をΔCとする。電圧Vを一定に保つために電気系のな
す仕事はV2ΔC(−W)であり、これに軸の回転と力
学的仕事T・Δθを加えたものが電極−誘電体系のコン
デンサとしての全静電エネルギー変化v2ΔC/2とな
るからT・Δθ+v2・ΔC−v2・Δc/2、.T・
Δθ−−V2 ・ΔC/2−Wよって、誘電体板に作用
するトルクTは、Wをθにて偏微分し T−−9W/aθ −+V2−aC(θ)/29 θ なおT・θ+W−0である ここで 9CCθ)/a θ 閤 a/a θ *  [εs  a  εo”  θ (F2 2  
rl ”)/2d  コ + a / 9 θ [ε 
0  ・  (φ −θ )”(F2”   r+  
2 )/2dコ膳 ε。 豐 (εs −1) ・ (F2 2  rl 2 )/2d以上より T−V2 ・ε。・ (ε5−1) ’  (F22−r) 2)/4d =ε0 φ (ε5−1) ・ (F22−F12)・v2/4d となり所属の式を得る。
When the voltage V is constant, the minute rotation angle is Δθ, and the change in capacitance is ΔC. The work done by the electrical system to keep the voltage V constant is V2ΔC(-W), and the addition of the rotation of the shaft and the mechanical work T・Δθ is the total electrostatic charge as a capacitor in the electrode-dielectric system. Since the energy change is v2ΔC/2, T・Δθ+v2・ΔC−v2・Δc/2, . T.
Δθ−−V2 ・ΔC/2−W Therefore, the torque T acting on the dielectric plate is obtained by partially differentiating W with respect to θ: T−−9W/aθ −+V2−aC(θ)/29 θ Note that T・θ+W −0 here9CCθ)/a θ 閤 a/a θ * [εs a εo” θ (F2 2
rl ”) / 2d co + a / 9 θ [ε
0 ・ (φ −θ )”(F2” r+
2)/2d cozen ε. From 豐 (εs −1) ・(F2 2 rl 2 )/2d or more, T-V2 ・ε.・(ε5−1)′(F22−r)2)/4d=ε0φ(ε5−1)・(F22−F12)・v2/4d to obtain the associated formula.

被誘電率ε5〉1であるからTooとなる。したがって
トルクTは(+)方向(誘電体3が電極板1,2間へ引
込まれる方向)に発生し、誘電体板3とこれを保持して
いる回転軸4は回転することになる。また(1)式より
誘電体板3の回転角θが0くθくφである場合には、ト
ルクTの値は回転角θには関係なく一定値をとる。そし
てφくθとなると、トルクTの方向は(−)方向に変化
することになる。従って、電動機として一定方向に回転
させる場合には、第3図(a)(b)に示す如く制御す
ればよい。
Since the dielectric constant ε5>1, it becomes Too. Therefore, torque T is generated in the (+) direction (the direction in which the dielectric 3 is drawn between the electrode plates 1 and 2), and the dielectric plate 3 and the rotating shaft 4 holding it rotate. Furthermore, from equation (1), when the rotation angle θ of the dielectric plate 3 is 0, θ, and φ, the value of the torque T takes a constant value regardless of the rotation angle θ. When φ becomes θ, the direction of the torque T changes in the (-) direction. Therefore, if the motor is to be rotated in a fixed direction, it may be controlled as shown in FIGS. 3(a) and 3(b).

(a)  誘電体板3の回転角θがOくθくφの範囲で
あるときは、電極板1,2に電圧Vを加えてトルクTを
生じさせ、回転軸4を(+)方向に回転させる。
(a) When the rotation angle θ of the dielectric plate 3 is in the range of O x θ x φ, a voltage V is applied to the electrode plates 1 and 2 to generate a torque T, and the rotation axis 4 is moved in the (+) direction. Rotate.

(b)  誘電体板3の回転角がφくθの範囲にあると
きは、電極板1.2に電圧Vを加えず、回転軸4を(−
)方向に逆回転させるトルクTを生じさせない。従って
回転軸4は(a)におけるトルクTによる慣性で(+)
方向に回転運動を続け、再び(a)の状態に移る。以上
の(a)(b)の作動を繰返すことにより、回転軸4は
一定方向へ回転し続ける。
(b) When the rotation angle of the dielectric plate 3 is in the range of φ and θ, the voltage V is not applied to the electrode plate 1.2, and the rotation axis 4 is rotated (-
) does not generate a torque T that causes reverse rotation in the direction. Therefore, the rotating shaft 4 has an inertia due to the torque T in (a) (+)
It continues to rotate in the direction shown in FIG. 2, and returns to state (a). By repeating the above operations (a) and (b), the rotating shaft 4 continues to rotate in a fixed direction.

トルクTが発生する理由について補足説明する。A supplementary explanation will be given of the reason why torque T is generated.

上記した説明では、電極1.2および誘電体板4がいず
れも半円板状をしている場合についてであったが、基本
的には、電磁見学の教科書等に頻繁に引用されている平
板コンデンサ内の誘電体板に働く力を、円板に置き変え
たと考えればよい。
In the above explanation, the electrode 1.2 and the dielectric plate 4 are both shaped like semicircular plates, but basically they are flat plates, which are often cited in electromagnetic field study textbooks. You can think of it as replacing the force acting on the dielectric plate inside the capacitor with a disk.

第4図および第5図(a)(b)はその概念を示す図で
ある。第4図において11.12は平行に配設された矩
形状電極板であり、13はその間に摺動自在に挿入され
た矩形状の誘電体板である。
FIG. 4 and FIGS. 5(a) and 5(b) are diagrams showing the concept. In FIG. 4, 11 and 12 are rectangular electrode plates arranged in parallel, and 13 is a rectangular dielectric plate slidably inserted between them.

平板コンデンサを構成する電極板11.12に一定の電
圧Vを加えた場合には、誘電体板13にはその挿入量x
の大小に係りなく一定の力Fが発生し、電極間に引きず
り込まれる。なお電圧Vが変化する場合には、電極板1
1.12上の電荷が変化し、発生する力Fは挿入ikx
に依存する。当然のことながら、誘電体板13が電極板
11.12間のスペースを充填しりくずと力Fは発生し
ない。
When a constant voltage V is applied to the electrode plates 11 and 12 constituting the plate capacitor, the insertion amount x of the dielectric plate 13 is
A constant force F is generated regardless of the magnitude of the force F, which is drawn between the electrodes. Note that when the voltage V changes, the electrode plate 1
1.12 The charge on the surface changes and the force F generated is the insertion ikx
Depends on. Naturally, the dielectric plate 13 fills the space between the electrode plates 11, 12 and no force F is generated.

上記の作用を円板状の電極板および誘電体板の組合せに
置き変えた場合の原理は次のとおりである。
The principle when the above action is replaced by a combination of a disk-shaped electrode plate and a dielectric plate is as follows.

第5図(a)に示すように、中心点0から距離R1,R
2,R3なる位置に平行電極板21゜22.23を配置
し、これらの各平行電極板21゜22.23間に、それ
ぞれ誘電体板31,32゜33が介在するように配置す
る。そしてこれらの誘電体板31.32.33は中心点
0を中心に回転自在な如く保持する。この状態で、電極
板21゜22.23に電圧Vを印加すると、各誘電体板
31.32.33には図示矢印の如<Fl、F2゜F3
なる力が発生する。しかるに誘電体板31゜32.33
は0点回りにしか移動できないものとなっているので、
力Fl、F2.F3はトルクTl、T2.T3に変換さ
れる。上記電極板21゜22.23および誘電体板31
,32.33の組合せを無数個寄せ集めれば第5図(b
)のような扇形状の電極板20と誘電体板30との組合
せが得られるわけである。
As shown in FIG. 5(a), the distance R1, R from the center point 0
Parallel electrode plates 21°22.23 are arranged at positions 2 and R3, and dielectric plates 31 and 32°33 are interposed between these parallel electrode plates 21°22.23, respectively. These dielectric plates 31, 32, and 33 are held rotatably about the center point 0. In this state, when a voltage V is applied to the electrode plates 21, 22, and 23, each dielectric plate 31, 32, and 33 has a voltage of <Fl, F2, and F3 as shown by the arrows in the figure.
A force is generated. However, the dielectric plate 31°32.33
can only be moved around the 0 point, so
Force Fl, F2. F3 is torque Tl, T2. Converted to T3. The above electrode plate 21°22.23 and dielectric plate 31
, 32. If we collect countless combinations of 33, we get Figure 5 (b
) A combination of fan-shaped electrode plate 20 and dielectric plate 30 can be obtained.

第6図(a)(b) 〜第8図(a)(b)は本実施例
の具体的な構成例を示す図である。
FIG. 6(a)(b) to FIG. 8(a)(b) are diagrams showing specific configuration examples of this embodiment.

第6図(a)(b)は前述した作動原理に基づいて構成
した誘電分極電動機を示す図で、(a)は縦断面図、(
b)は同図(a)のA−A線断面図である。本例におい
ては、電極板41.42゜43.44および51.52
.53. 54に4分割され、電極板41と51.42
と52.43と53.44と54とが各々対をなしく第
1図、第2図に示した電極板1,2の対に相当する平行
電極板を構成している)これらの電極板は外周を絶縁体
60で機械的に結合され、電気的には互いに絶縁された
状態で固定化されている。各電極板1゜2にはリード端
子61,62,63.64が接続されている。絶縁体6
0はさらに、円盤状ハウジング70の内周面に固定され
ている。ハウジングの軸心部には回転軸71が軸受72
,73により支持されている。本実施例においては、誘
電体板80は1/4円の扇形状をしたもの81.82を
軸対象に2枚配置する。この誘電体板80は回転軸71
に機械的に固定される。
FIGS. 6(a) and 6(b) are diagrams showing a dielectric polarization motor constructed based on the above-mentioned operating principle, where (a) is a longitudinal cross-sectional view;
b) is a sectional view taken along the line A-A in FIG. In this example, electrode plates 41.42° 43.44 and 51.52
.. 53. divided into 4 parts, electrode plates 41 and 51.42
, 52, 43, 53, 44, and 54 constitute parallel electrode plates corresponding to the pair of electrode plates 1 and 2 shown in FIGS. 1 and 2). are mechanically coupled at their outer peripheries with an insulator 60, and are fixed in a state where they are electrically insulated from each other. Lead terminals 61, 62, 63, and 64 are connected to each electrode plate 1°2. Insulator 6
0 is further fixed to the inner peripheral surface of the disc-shaped housing 70. A rotating shaft 71 is attached to a bearing 72 at the axial center of the housing.
, 73. In this embodiment, two dielectric plates 80 having a sector shape of 1/4 circle 81 and 82 are arranged axially symmetrically. This dielectric plate 80 is connected to the rotating shaft 71
mechanically fixed.

第7図(a) 〜(c) 、第8図(a) 〜(c)は
動作説明図である。電極板40.50が4等分されてい
る場合、電極板40.50間に加える電圧は第7図(a
)〜(C)の如く変化させることにより回転を生じさせ
得る。以下の説明では、誘電体板80の回転角θを第8
図に示すように選ぶものとする。
FIGS. 7(a) to (c) and FIGS. 8(a) to (c) are operation explanatory diagrams. When the electrode plate 40.50 is divided into four equal parts, the voltage applied between the electrode plates 40.50 is as shown in Fig. 7 (a).
) to (C), rotation can be caused. In the following explanation, the rotation angle θ of the dielectric plate 80 is
shall be selected as shown in the figure.

(a)  回転角θが、0くθくπでは電極板41.5
1および43.53の2組に電圧Vを加え、その他の電
極板電圧はすべて0にする。こうすることにより、電極
板41.51と43.53の2組により、誘電体板50
にトルクTが生じ、図示時計方向に回転する。
(a) When the rotation angle θ is 0, θ, and π, the electrode plate is 41.5
A voltage V is applied to the two sets of 1 and 43.53, and all other electrode plate voltages are set to 0. By doing this, the dielectric plate 50 is
A torque T is generated at the position, causing rotation in the clockwise direction shown in the figure.

(b)  π/2くθくπに達すると、電極板42.5
2および44.54の2組に電圧Vを加え、その他の電
極板電圧をすべてOにする。この場合には、電極板42
.52および44.54の2組により誘電体板80にト
ルクが生じ回転する。
(b) When π/2 × θ × π is reached, the electrode plate 42.5
A voltage V is applied to the two sets of 2 and 44.54, and all other electrode plate voltages are set to O. In this case, the electrode plate 42
.. Torque is generated in the dielectric plate 80 by the two sets of 52 and 44.54, causing it to rotate.

(C)  πくθく3π/2においては0くθくπ/2
の場合と同じく、電極板41.51および43.53の
2組に電圧Vを加え、その他の電極板電圧をすべて0に
し、誘電体板80にトルクTを生じさせ、回転させる。
(C) 0 x θ x π/2 in π x θ x 3π/2
As in the case of , a voltage V is applied to the two sets of electrode plates 41.51 and 43.53, all other electrode plate voltages are set to 0, and a torque T is generated in the dielectric plate 80 to rotate it.

(c)の後は再び(a)の状態となり、以後も回転を続
けることになる。
After (c), it returns to the state of (a) and continues to rotate.

なお本発明は上記実施例に限定されるものではない。例
えば第6図(a)に示す実施例は4分割電極板および三
板式誘電体板を用いた誘電分極電動機の例を示したが、
これに限らず電極板および誘電体板の分割数を増したり
、電極板および誘電体板の構成枚数を増す等の手段を講
じることにより、電動機としての出力を増加させるよう
にしてもよい。
Note that the present invention is not limited to the above embodiments. For example, the embodiment shown in FIG. 6(a) shows an example of a dielectric polarization motor using a four-part electrode plate and a three-plate dielectric plate.
However, the output of the motor may be increased by increasing the number of divided electrode plates and dielectric plates, increasing the number of electrode plates and dielectric plates, etc.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電極板間に挿入された誘電体に生じる
誘電分極現象に基づいて発生する力を利用し、この力を
回転力に変換するようにしたので、電場のみにて回転力
を生じる誘電分極電動機を提供することができる。
According to the present invention, the force generated based on the dielectric polarization phenomenon that occurs in the dielectric inserted between the electrode plates is used and this force is converted into rotational force, so the rotational force can be generated using only an electric field. A dielectrically polarized motor can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b) 〜第5図(a)(b)は本発明の
一実施例の基本的構成(原理)を示す図であり、第1図
(a)(b)および第2図はその構成を示す図、第3図
(a)(b)は回転駆動させる手段の説明図、第4図お
よび第5図は動作原理の補足説明図である。第6図(a
)(b)〜第8図(a)〜(c)は同実施例の具体的構
成例を示す図で、第6図(a)は縦断面図、第6図(b
)は同図(a)のA−A矢視断面図、第7図Ca)〜(
c)は印加電圧のタイミング波形図、第8図(a)〜(
c)は第7図(a)〜(C)に対応した回転状態図であ
る。 1.2・・・電極板、3・・・誘電体板、4・・・回転
軸、11.12・・・矩形状の電極板、13・・・矩形
状の誘電体板、20・・・扇形状の電極板、21〜23
・・・平行電極板、31〜33・・・誘電体板、40〜
44゜50〜54・・・電極板、60・・・絶縁体、6
1〜64・・・リード端子、70・・・円盤状ハウジン
グ、71・・・回転軸、80・・・誘電体板。 出願人代理人 弁理士 鈴江武彦 、 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 手続ネ甫正書 41[lIG壽1.^98 特許庁長官 小 川 邦 夫 殿 1、事イ1の表示 特願昭62−308922号 2、発明の名称 誘電分極電動機 3、補正をする者 事件との関係 特許出願人 (620)  三菱重工業株式会社 4、代理人 東京都千代田区霞が関3丁目7番2号1jBEビル〒1
00  電話03(502>3181 (大代表)別紙
のとおり(内容に変更なし)
1(a)(b) to FIG. 5(a)(b) are diagrams showing the basic configuration (principle) of an embodiment of the present invention, and FIG. 1(a)(b) and FIG. 2 is a diagram showing its configuration, FIGS. 3(a) and 3(b) are explanatory diagrams of means for rotationally driving, and FIGS. 4 and 5 are supplementary explanatory diagrams of the operating principle. Figure 6 (a
)(b) to FIG. 8(a) to (c) are diagrams showing specific configuration examples of the same embodiment, and FIG. 6(a) is a longitudinal cross-sectional view, and FIG.
) is a sectional view taken along the line A-A in Figure (a), and Figure 7 Ca) to (
c) is a timing waveform diagram of the applied voltage, Fig. 8(a) to (
c) is a rotation state diagram corresponding to FIGS. 7(a) to (C). 1.2... Electrode plate, 3... Dielectric plate, 4... Rotating shaft, 11.12... Rectangular electrode plate, 13... Rectangular dielectric plate, 20...・Fan-shaped electrode plate, 21-23
...Parallel electrode plate, 31-33...Dielectric plate, 40-
44°50~54... Electrode plate, 60... Insulator, 6
1 to 64... Lead terminal, 70... Disc-shaped housing, 71... Rotating shaft, 80... Dielectric plate. Applicant's representative Patent attorney Takehiko Suzue, Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8. ^98 Director General of the Japan Patent Office Kunio Ogawa 1, Indication of Matter A 1 Patent Application No. 1982-308922 2, Title of Invention Dielectric Polarization Motor 3, Relationship with the Amendment Person Case Patent Applicant (620) Mitsubishi Heavy Industries 4 Co., Ltd., Agent 3-7-2 Kasumigaseki, Chiyoda-ku, Tokyo 1jBE Building 〒1
00 Telephone 03 (502>3181 (main representative)) As shown in the attached sheet (no change in content)

Claims (1)

【特許請求の範囲】[Claims] 平行に配設され対向領域内に電場を生じせしめる如く設
けられた電極板と、この電極板間に回転自在に介挿され
上記電場による誘電分極現象に基づいて力が発生する如
く設けられた誘電体板と、この誘電体板の回転角に対応
して前記各電極板に周期的に電圧を印加する手段とを具
備したことを特徴とする誘電分極電動機。
Electrode plates arranged in parallel and provided so as to generate an electric field in opposing regions; and a dielectric plate rotatably interposed between the electrode plates so as to generate a force based on the dielectric polarization phenomenon caused by the electric field. A dielectric polarization motor comprising: a body plate; and means for periodically applying a voltage to each of the electrode plates in accordance with the rotation angle of the dielectric plate.
JP30892287A 1987-12-07 1987-12-07 Dielectric polarization motor Pending JPH01152978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30892287A JPH01152978A (en) 1987-12-07 1987-12-07 Dielectric polarization motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30892287A JPH01152978A (en) 1987-12-07 1987-12-07 Dielectric polarization motor

Publications (1)

Publication Number Publication Date
JPH01152978A true JPH01152978A (en) 1989-06-15

Family

ID=17986895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30892287A Pending JPH01152978A (en) 1987-12-07 1987-12-07 Dielectric polarization motor

Country Status (1)

Country Link
JP (1) JPH01152978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106890U (en) * 1990-02-20 1991-11-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106890U (en) * 1990-02-20 1991-11-05

Similar Documents

Publication Publication Date Title
US9571010B2 (en) Varying capacitance rotating electrical machine
Jefimenko et al. Electrostatic current generator having a disk electret as an active element
US3013201A (en) Self-excited variable capacitance electrostatic generator
US3290528A (en) Direct current double air gap motor
JP4145181B2 (en) Electrostatic actuator and displacement method
CN103731063A (en) Hybrid generator
US4567407A (en) Biased unitized motor alternator with stationary armature and field
JPH01152978A (en) Dielectric polarization motor
US20050040729A1 (en) Electrostatic actuator and method of controlling the same
JPS60156283A (en) Piezoelectric electrostrictive motor
CN112636627B (en) Electrostatic motor based on electret film
US3638056A (en) Electrical generation apparatus
Mognaschi et al. Asynchronous dielectric induction motor
JP2719365B2 (en) Pyroelectric actuator
JPS62152381A (en) Rotating power device
US2526642A (en) Electret-type generator and motor
CN211151848U (en) Laminated capacitor motor
JPH06153481A (en) Single-pole generation alternating-current nn machine
US3404359A (en) Control signal generator for step motor
JPS6395858A (en) Electrostatic actuator
JPS62233078A (en) Electret motor
JP2017228584A (en) Electret substrate, method of manufacturing the same, and electromechanical transducer
KR810000082B1 (en) Static-electricity dynamo
JP2007043882A (en) Single-phase ac induction motor
JP2003047226A (en) Coilless magnet generator