JPH01152378A - Semiconductor apparatus - Google Patents

Semiconductor apparatus

Info

Publication number
JPH01152378A
JPH01152378A JP62312851A JP31285187A JPH01152378A JP H01152378 A JPH01152378 A JP H01152378A JP 62312851 A JP62312851 A JP 62312851A JP 31285187 A JP31285187 A JP 31285187A JP H01152378 A JPH01152378 A JP H01152378A
Authority
JP
Japan
Prior art keywords
transistor
terminal
power supply
emitter
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62312851A
Other languages
Japanese (ja)
Inventor
Koichi Yoshii
吉井 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62312851A priority Critical patent/JPH01152378A/en
Publication of JPH01152378A publication Critical patent/JPH01152378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To easily detect a leak current by an external terminal even when a weak leak current is generated, by mounting the diode connected between the emitter electrode of a transistor and the external terminal in series. CONSTITUTION:When power supply voltage Vcc is applied to a power supply terminal in such a state that an external terminal EXT is earthed, a current flows through a route composed of power supply terminal (to which power supply voltage Vcc is applied) resistor R3 collector emitter of transistor Q1 diode D3 EXT terminal if any resistance component is present between the collector and emitter of the transistor Q1 and, therefore, said current can be measured at the EXT terminal. At this time, not only in such a case that the resistance component present between the collector and emitter of the transistor Q1 is relatively small but also in such a case that only a weak current flows because of the presence of high resistance, a leak current can be measured from the EXT terminal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に複数のトランジスタに
よって回路が構成される半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device whose circuit is constituted by a plurality of transistors.

〔従来の技術〕[Conventional technology]

近年、半導体装置の技術革新はめざましく、ダイオード
、トランジスタなどの個別半導体のみならず多数の素子
を1つのシリコン基板上に集積した集積回路(以下、I
Cと称す)の分野では、高集積化の傾向が顕著でありそ
れに伴い拡散における微細プロセス化が進められている
。プロセスの微細化によって生じる問題は種々あるが、
そのひとつとして素子のリークの問題がある。
In recent years, technological innovations in semiconductor devices have been remarkable.In addition to individual semiconductors such as diodes and transistors, integrated circuits (hereinafter referred to as I
In the field of (referred to as C), there is a remarkable trend toward higher integration, and along with this, miniaturization of diffusion processes is progressing. There are various problems caused by process miniaturization, but
One of them is the problem of element leakage.

とりわけ、トランジスタのリークの問題は無視できず、
リーク量大の場合は当然のことながらトランジスタ本来
の動作にも影響を及ぼすが、トランジスタの動作に影響
を及ぼさない程度の微少なリークの場合にも、非常に多
くのトランジスタを集積しているICでは電力消費の面
において不都合な点が生じる。
In particular, the problem of transistor leakage cannot be ignored.
If the amount of leakage is large, it will naturally affect the actual operation of the transistor, but even in the case of a small amount of leakage that does not affect the operation of the transistor, ICs that integrate a large number of transistors will be affected. This poses a disadvantage in terms of power consumption.

第3図は従来の半導体装置の一例の回路図で、−船釣な
バイポーラ型トランジスタで構成されるDTLインバー
タ回路を示す。
FIG. 3 is a circuit diagram of an example of a conventional semiconductor device, showing a DTL inverter circuit composed of bipolar transistors.

第3図において、Ql、Q2はNPN型のトランジスタ
、DI、D2はダイオード、R1゜R2,R3は抵抗、
VCCは電源電圧、IN及びOUTはそれぞれこの回路
の入力端子及び出力端子を示す。なお、ここでは、出力
端子OUTが外部端子として外に取り出されている場合
について説明する。′ 第3図の回路では、入力端子INに印加される電圧をし
きい値(ダイオードD1の順方向導通電圧を0.8■と
仮定すると、この回路の場合1.6V)より高い電圧、
例えば3V、とするとトランジスタQ1.Q2とも導通
状態となり出力端子0.UTは低レベル(約0.2V)
となり、入力端子INに印加される電圧をしきい値以下
、例えばOV、とすると、トランジスタQl、Q2とも
非導通状態となり出力端子0tJTは高レベルとなるよ
うな動作を行う。
In Figure 3, Ql and Q2 are NPN transistors, DI and D2 are diodes, R1°R2 and R3 are resistors,
VCC represents the power supply voltage, and IN and OUT represent the input and output terminals of this circuit, respectively. Here, a case will be described in which the output terminal OUT is taken out as an external terminal. ' In the circuit shown in Fig. 3, the voltage applied to the input terminal IN is a voltage higher than the threshold value (1.6 V in this circuit, assuming the forward conduction voltage of diode D1 is 0.8 mm);
For example, if the voltage is 3V, the transistor Q1. Q2 is also in a conductive state, and output terminals 0. UT is low level (about 0.2V)
When the voltage applied to the input terminal IN is set to be less than a threshold value, for example OV, both transistors Ql and Q2 become non-conductive, and the output terminal 0tJT operates at a high level.

ここで、入力端子INに印加される電圧をしきい値以下
の電圧とし、出力端子OUTを高レベルにするような動
作について考える。このとき、トランジスタQ2のコレ
クタ・エミッタ間に何らかの理由で抵抗成分が存在し、
リーク電流が流れるようであれば、出力端子OUTから
容易にチエツクできる。しかし、トランジスタQ1のコ
レクタ・エミッタ間に上記のような抵抗性のリークが存
在した場合、抵抗値が小さくリーク電流がある程度大き
ければトランジスタQ2にベース電流が供給されること
により、トランジスタQ2は導通状 −態となり、出力
端子OUTは低レベルとなるから出力端子での特性の異
常をチエツクできるが、抵抗値が大きく微少なリーク電
流しか流れないような場合には、トランジスタQ2が導
通状態にならないから当然出力端子からのチエツクは不
可能となる。
Here, consider an operation in which the voltage applied to the input terminal IN is set to a voltage below a threshold value and the output terminal OUT is set to a high level. At this time, for some reason, a resistance component exists between the collector and emitter of transistor Q2,
If leakage current flows, it can be easily checked from the output terminal OUT. However, if there is a resistive leak as described above between the collector and emitter of the transistor Q1, if the resistance value is small and the leak current is large to some extent, the base current is supplied to the transistor Q2, and the transistor Q2 becomes conductive. - state and the output terminal OUT becomes a low level, so it is possible to check for abnormalities in the characteristics at the output terminal, but if the resistance value is large and only a small leakage current flows, the transistor Q2 will not become conductive. Naturally, checking from the output terminal becomes impossible.

更に、微少リークの場合、電源電圧と接地間の特性をみ
ても、第3図において、電源電圧VCC−抵抗R抵抗ト
ランジスタQ1のベース−エミッターダイオードD2−
抵抗R2−接地の電流パスがリーク電流に比べ非常に大
きいため、トランジスタQlのコレクタ・エミッタ間の
微少リーク電流は測定できない。いずれにしても、上述
したような微少リーク電流は入力端子IN、出力端子O
UT、電源電圧VCCと接地間の特性では何ら異常は検
出できず、IC内の多数のトランジスタに流れる微少リ
ーク電流はたとえそれが誤動作につながらなくても、電
力消費等の面から見て好ましいとはいえない。
Furthermore, in the case of a slight leak, looking at the characteristics between the power supply voltage and ground, in FIG.
Since the current path between the resistor R2 and the ground is much larger than the leakage current, the minute leakage current between the collector and emitter of the transistor Ql cannot be measured. In any case, the minute leakage current as mentioned above is caused by the input terminal IN and the output terminal O.
No abnormality can be detected in the characteristics between the UT, power supply voltage VCC, and ground, and even if the small leakage current flowing through the many transistors in the IC does not lead to malfunction, it is not desirable from the viewpoint of power consumption etc. No, no.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置では、トランジスタQ1のコ
レクタ・エミッタ間に微少リーク電流が流れていても、
いずれの特性を測定してもリーク電流の検出ができない
という欠点がある。
In the conventional semiconductor device described above, even if a small leakage current flows between the collector and emitter of the transistor Q1,
The drawback is that leakage current cannot be detected no matter which characteristic is measured.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、複数のトランジスタによって回
路が構成される半導体装置において、前記トランジスタ
のエミッタ電極と外端端子との間に直列接続されたダイ
オードを備えるリーク電流測定回路を有している。
A semiconductor device of the present invention includes a leakage current measuring circuit including a diode connected in series between an emitter electrode of the transistor and an outer terminal.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の回路図である。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

第1図に示すように、カソードが入力端子INに接続さ
れるダイオードD、と、一端が電源電圧VCCの電源端
子に接続され他端がダイオードD。
As shown in FIG. 1, a diode D has a cathode connected to an input terminal IN, and a diode D has one end connected to a power supply terminal of a power supply voltage VCC and the other end.

のアノードに接続される抵抗R,と、ベースがダイオー
ドD1のアノードに接続されるNPN型のトランジスタ
Q1と、一端が電源端子に接続され他端がトランジスタ
Qlのコレクタに接続される抵抗R3と、アノードがト
ランジスタQ1のエミッタに接続されるダイオードD2
と、ベースがダイオードD2のカソードに接続されコレ
クタが出力端子0tJTに接続されエミッタが接地端子
に接続されるNPN型のトランジスタQ2と、一端がト
ランジスタQ2のベースに接続され他端が接地端子に接
続される抵抗R2と、アノードがトランジスタQlのエ
ミッタに接続されカソードが外部端子EXTに接続され
るリーク電流測定回路CTとを含んで構成される。
an NPN transistor Q1 whose base is connected to the anode of the diode D1, and a resistor R3 whose one end is connected to the power supply terminal and the other end is connected to the collector of the transistor Ql. Diode D2 whose anode is connected to the emitter of transistor Q1
and an NPN type transistor Q2 whose base is connected to the cathode of the diode D2, whose collector is connected to the output terminal 0tJT, and whose emitter is connected to the ground terminal, and one end is connected to the base of the transistor Q2 and the other end is connected to the ground terminal. and a leakage current measuring circuit CT whose anode is connected to the emitter of the transistor Ql and whose cathode is connected to the external terminal EXT.

第1図において、外部端子F、XTを接地して電源電圧
VCCを電源端子に印加した場合、トランジスタQ+の
コレクター・エミッタ間に何らかの抵抗成分が存在すれ
ば電源電圧VCCの電源端子−抵抗R3)’ランジスタ
Q、のコレクターエミッターダイオードD、−EXT端
子の径路で電流が流れるから、EXT端子にて電流測定
が可能となる。
In Figure 1, when external terminals F and XT are grounded and power supply voltage VCC is applied to the power supply terminal, if there is some resistance component between the collector and emitter of transistor Q+, then the power supply terminal of power supply voltage VCC - resistor R3) 'Since current flows through the path of the collector emitter diode D of the transistor Q and the -EXT terminal, it is possible to measure the current at the EXT terminal.

このとき、トランジスタQ+のコレクタ・エミッタ間に
存在する抵抗成分が比較的小さい場合はもちろん、高抵
抗が存在するため微少なリーク電流しか流れないような
場合も、EXT端子からリーク電流の測定が可能である
At this time, leakage current can be measured from the EXT terminal not only when the resistance component existing between the collector and emitter of transistor Q+ is relatively small, but also when only a small leakage current flows due to the presence of high resistance. It is.

なお、実使用状態においては、EXT端子を開放するか
又はダイオードD3の逆耐圧(通常7〜8V)以下の電
圧を印加しておけば(例えば、電源端子に接続する等)
、ダイオードD、を通じての電流の出し入れは起らない
ので回路が誤動作することはない。
In addition, in actual use, if you open the EXT terminal or apply a voltage lower than the reverse withstand voltage of diode D3 (usually 7 to 8 V) (for example, by connecting it to the power supply terminal)
, diode D, there is no current flowing in or out, so the circuit will not malfunction.

第2図は本発明の第2の実施例の回路図である。FIG. 2 is a circuit diagram of a second embodiment of the invention.

第2図に示すように、第2の実施例ではリーク電流測定
回路CT1は、上述した第1図の第1の実施例のダイオ
ードD3と外部端子EXTの間に、NPN型のトランジ
スタQ3と抵抗R4及びR5とダイオードD4とを接続
している。
As shown in FIG. 2, in the second embodiment, the leakage current measuring circuit CT1 includes an NPN transistor Q3 and a resistor between the diode D3 of the first embodiment of FIG. 1 and the external terminal EXT. R4 and R5 are connected to diode D4.

第2図において、外部端子EXTにダイオードD4の逆
耐圧(約7〜8V)以上の高電圧、例えば、12V、を
印加すると電流制限用の抵抗R5を通じてトランジスタ
Q3のベース電流が供給され、抵抗R3を適当な値に設
定しておけばトランジスタQsは導通状態となる。この
とき、電源電圧VCCを電源端子に印加した場合、トラ
ンジスタQ1のコレクタ・エミッタ間に何らかの抵抗成
分が存在すれば、電源端子−抵抗R1−トランジスタQ
IのコレクターエミッターダイオードD−4−トランジ
スタQ3のコレクターエミッター接地端子の径路で電流
が流れるから、電源電圧VCCの電圧値を変化させるこ
とによりリーク電流の測定が可能となる。
In FIG. 2, when a high voltage, for example 12V, higher than the reverse breakdown voltage (approximately 7 to 8V) of the diode D4 is applied to the external terminal EXT, the base current of the transistor Q3 is supplied through the current limiting resistor R5, and the resistor R3 If Qs is set to an appropriate value, the transistor Qs becomes conductive. At this time, when power supply voltage VCC is applied to the power supply terminal, if some resistance component exists between the collector and emitter of transistor Q1, the power supply terminal - resistor R1 - transistor Q
Since current flows through the path from the collector-emitter diode D-4 of I to the collector-emitter ground terminal of the transistor Q3, leakage current can be measured by changing the voltage value of the power supply voltage VCC.

第2の実施例では、ダイオードD4の逆耐圧以下の電圧
が外部端子EXTに印加されても、トランジスタQ3は
導通状態とならないので、外部端子EXTを論理電圧域
(TTL回路の場合、−船釣には0〜5V)を入力電圧
とするような入力端子と兼用することができる利点があ
る。
In the second embodiment, even if a voltage equal to or lower than the reverse breakdown voltage of the diode D4 is applied to the external terminal EXT, the transistor Q3 does not become conductive. has the advantage that it can also be used as an input terminal that uses an input voltage of 0 to 5 V).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の半導体装置は、トランジス
タのコレクタ・エミッタ間に比較的高い抵抗成分を有し
微少なリーク電流が発生しても、外部端子により容易に
そのリーク電流を検出できる効果がある。更に、外部端
子を他の入力端子と兼用できるという効果も得られる。
As explained above, the semiconductor device of the present invention has a relatively high resistance component between the collector and emitter of a transistor, and even if a small leakage current occurs, the leakage current can be easily detected by the external terminal. be. Furthermore, the effect that the external terminal can also be used as another input terminal can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の回路図、第2図は本発
明の第2の実施例の回路図、第3図は従来の半導体装置
の一例の回路図である。 CT、CT、・・・リーク電流測定回路、Dl。 Dl、DS、D4・・・ダイオード、EXT・・・外部
端子、IN・・・入力端子、OUT・・・出力端子、Q
l。 Q2.Q9・・・NPN型のトランジスタ、R1゜R2
、Rq 、R4、R< ・・・抵抗、vcc・・・電源
電圧。 代理人 弁理士  内 原   音 素 1 図 第 2 図
FIG. 1 is a circuit diagram of a first embodiment of the invention, FIG. 2 is a circuit diagram of a second embodiment of the invention, and FIG. 3 is a circuit diagram of an example of a conventional semiconductor device. CT, CT, . . . leakage current measurement circuit, Dl. Dl, DS, D4...Diode, EXT...External terminal, IN...Input terminal, OUT...Output terminal, Q
l. Q2. Q9...NPN type transistor, R1°R2
, Rq, R4, R<...resistance, vcc...power supply voltage. Agent Patent Attorney Uchihara Phoneme 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  複数のトランジスタによって回路が構成される半導体
装置において、前記トランジスタのエミッタ電極と外端
端子との間に直列接続されたダイオードを備えるリーク
電流測定回路を有することを特徴とする半導体装置。
What is claimed is: 1. A semiconductor device in which a circuit is constituted by a plurality of transistors, comprising a leakage current measuring circuit including a diode connected in series between an emitter electrode and an outer terminal of the transistor.
JP62312851A 1987-12-09 1987-12-09 Semiconductor apparatus Pending JPH01152378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312851A JPH01152378A (en) 1987-12-09 1987-12-09 Semiconductor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312851A JPH01152378A (en) 1987-12-09 1987-12-09 Semiconductor apparatus

Publications (1)

Publication Number Publication Date
JPH01152378A true JPH01152378A (en) 1989-06-14

Family

ID=18034193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312851A Pending JPH01152378A (en) 1987-12-09 1987-12-09 Semiconductor apparatus

Country Status (1)

Country Link
JP (1) JPH01152378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303484A (en) * 1988-02-23 1989-12-07 Sun Flex Co Inc Apparatus attached to surface of video display terminal for reducing glaring and radiation from surface thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303484A (en) * 1988-02-23 1989-12-07 Sun Flex Co Inc Apparatus attached to surface of video display terminal for reducing glaring and radiation from surface thereof

Similar Documents

Publication Publication Date Title
JP3864864B2 (en) Clamp circuit
US4453092A (en) Comparator circuit having reduced input bias current
JPS63208324A (en) Semiconductor integrated circuit device
US20090224804A1 (en) Detecting circuit and electronic apparatus using detecting circuit
CN212723774U (en) Reference voltage generating circuit, voltage stabilizing circuit and chip
JPH03119812A (en) Current detecting circuit
JPH1050932A (en) Semiconductor device
US4503339A (en) Semiconductor integrated circuit device having a substrate voltage generating circuit
JPH01152378A (en) Semiconductor apparatus
JPH04198772A (en) Semiconductor device for electric power
EP0697757A1 (en) Electrostatic discharge protection circuit for an integrated circuit device
JPS6167952A (en) Cmos semiconductor device
US4683422A (en) Low voltage continuity tester
JPH11121683A (en) Semiconductor integrated circuit
JP2925287B2 (en) Semiconductor device
US20030137331A1 (en) Schmitt trigger circuit consuming low power
JP3194740B2 (en) Semiconductor integrated circuit capable of measuring leak current
JPS5827696B2 (en) Denshitsuchi Cairo
JPH0336748A (en) Semiconductor integrated circuit device
JPH04154216A (en) Semiconductor integrated circuit
JP2751372B2 (en) Semiconductor device
JP3644168B2 (en) Semiconductor integrated circuit
JPH02228714A (en) Power source device for multi-voltage output
JP4042510B2 (en) Semiconductor integrated circuit device and screening method for semiconductor integrated circuit device
CN115800979A (en) Power-on reset circuit, power system, chip and electronic equipment