JPH01152135A - Bination of filaments different in coefficients of expansion significantly in one matrix - Google Patents

Bination of filaments different in coefficients of expansion significantly in one matrix

Info

Publication number
JPH01152135A
JPH01152135A JP24889288A JP24889288A JPH01152135A JP H01152135 A JPH01152135 A JP H01152135A JP 24889288 A JP24889288 A JP 24889288A JP 24889288 A JP24889288 A JP 24889288A JP H01152135 A JPH01152135 A JP H01152135A
Authority
JP
Japan
Prior art keywords
expansion coefficient
filaments
filament
molecular weight
combination according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24889288A
Other languages
Japanese (ja)
Inventor
Martinus Johannes N Jacobs
マルティヌス・ヨハネス・ニコラース・ジャコブス
Peter Bruinink
ペーター・ブルインインク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stamicarbon BV
Original Assignee
Stamicarbon BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stamicarbon BV filed Critical Stamicarbon BV
Publication of JPH01152135A publication Critical patent/JPH01152135A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/005Compensating volume or shape change during moulding, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE: To prepare a composite material useful for bearing housings of fractional horsepower motors, parabola antennas, clock pendulums, of which expansion in adjustable shearing stress is absorbable which is superior in resisting against thermal stress breaking, by mixing combination of two kinds of filaments which have mutually significantly different expansion coefficients.
CONSTITUTION: 50-70 vol.% of total filaments obtained by combining yarns, cloths, blends and/or non woven fabrics comprising stretchable filaments having negative expansion coefficient such as polyolefin having enormous molecular weight of weight-average molecular weight of 600 kg/mole or more with yarns, cloths, blends and/or non woven fabrics comprising stretchable filaments having positive expansion coefficient such as glass fiber in amount which makes total expansion coefficient about 0 is kneaded in matrix resins such as epoxy resin, polyester, polyurethane.
COPYRIGHT: (C)1989,JPO

Description

【発明の詳細な説明】 発明の分野 本発明は1つのマトリックスにおける有意に異なる膨張
率を有するフィラメントの組み合わせに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the combination of filaments with significantly different expansion coefficients in one matrix.

発明の背景 殆どの金属は、加熱し、変形すると長さが変化し、温度
勾配があると破壊までも生ずる。カーボイフグーイバー
の組み合わせまたは複合材料の公知であり、それは低膨
張率および高熱伝導率を有し、熱応力下、すなわち加熱
下で損傷を受けない。しかしながら、カーボンファイバ
ーの組み合わせまたは複合材料は非常に高価である。
BACKGROUND OF THE INVENTION Most metals change length when heated and deformed, and can even fracture in the presence of temperature gradients. Carboif gooey bar combination or composite material is known, which has low expansion coefficient and high thermal conductivity and does not suffer damage under thermal stress, that is, under heating. However, carbon fiber combinations or composites are very expensive.

発明の開示 本発明の目的は、その膨張挙動が調整できる複合材料を
提供することである。
DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a composite material whose expansion behavior can be adjusted.

本発明によれば、この目的は1つのマトリックスにおい
て、有意に異なる膨張率を有するフィラメントを組み合
わせることにより達成される。この場合、正の膨張率を
有するフィラメントは負の膨張率を有するフィラメント
と組み合わせられ、所望によりその膨張率がほぼOに等
しくなる複合材料が製造でき、すなわち該複合材料は加
熱により何ら寸法変化を受けない。相異なる膨張率を有
するフィラメントはプラスチック中に埋封され、剪断応
力が吸収されるのを可能にする。エポキシ樹脂、ポリエ
ステル、ビニルエステル、ポリウレタン、低融点の熱可
塑性樹脂等が好ましくは適している。
According to the invention, this objective is achieved by combining filaments with significantly different expansion coefficients in one matrix. In this case, a filament with a positive expansion coefficient is combined with a filament with a negative expansion coefficient, and if desired a composite material whose expansion coefficient is approximately equal to O can be produced, i.e. the composite material does not undergo any dimensional change on heating. I don't accept it. Filaments with different expansion coefficients are embedded in the plastic, allowing shear stresses to be absorbed. Epoxy resins, polyesters, vinyl esters, polyurethanes, low melting point thermoplastic resins, etc. are preferably suitable.

得られる全体の膨張率により、負の膨張率を有するフィ
ラメントの量は正の膨張率を有するフィラメントの量に
ほぼ等しい。好ましくは、複合材料中のフィラメントの
全量は50〜70体積%であり、負の膨張率を有するフ
ィラメントの量は、好ましくは30体積%であり、正の
膨張率を有するフィラメントの量と同じである。
Due to the overall expansion coefficient obtained, the amount of filaments with a negative expansion coefficient is approximately equal to the amount of filaments with a positive expansion coefficient. Preferably, the total amount of filaments in the composite is 50-70% by volume, and the amount of filaments with a negative expansion coefficient is preferably 30% by volume, the same as the amount of filaments with a positive expansion coefficient. be.

負の膨張率を有するフィラメントは、好ましくは高分子
量、高引張強さおよび高モジュラスを有するポリマーの
高延伸フィラメントからなる。このようなフィラメント
は、ゲル化法および次の20以上、特に30以上の高延
伸比での延伸により有利に製造される。500MPa以
上の引張強さおよび40GPa以上のモジュラスを有す
るフィラメントが特に好ましい。
The filaments with negative expansion coefficient preferably consist of highly drawn filaments of polymers with high molecular weight, high tensile strength and high modulus. Such filaments are advantageously produced by a gelling process followed by drawing at high draw ratios of 20 or more, especially 30 or more. Particularly preferred are filaments with a tensile strength of 500 MPa or more and a modulus of 40 GPa or more.

該ゲル化法は、例えば英国特許GB−A−2,042,
414号および2.ost、g67号ならびに西独特許
第3,724,434号に詳しく開示されている。それ
らは溶媒中にフィラメント製造に用いられる特定のポリ
マーを溶解し、該ポリマーの溶解温度以上の温度で溶液
を成形してフィラメントを得、ゲリ化のために溶解温度
以下に該フィラメントを冷却し、次いで溶媒を除去する
とともにフィラメントを延伸することからなる。複合の
膨張率を有するフィラメントを製造するためのポリマー
として用いることができる任意の所望のポリマーは、例
えばナイロンまたはアラミドのようなポリオレフィン、
ポリエステル、ポリビニルアルコール、ポリ塩化ビニル
等である。
The gelation method is described, for example, in British patent GB-A-2,042,
No. 414 and 2. ost, g67 and West German Patent No. 3,724,434. They dissolve a particular polymer used for filament production in a solvent, form the solution at a temperature above the melting temperature of the polymer to obtain a filament, and cool the filament below the melting temperature for gelling; It then consists of removing the solvent and drawing the filament. Any desired polymer that can be used as a polymer to produce filaments with composite expansion coefficients may include, for example, polyolefins such as nylon or aramids,
These include polyester, polyvinyl alcohol, polyvinyl chloride, etc.

好ましくは、負の膨張率を有するフィラメントは600
. OOOg1モル以上の超高分子量のポリマー、特に
ポリオレフィンからなり、2GPa以上の強度および6
0GPa以上のモジュラスを有するポリエチレン、特に
線状ポリエチレンが特に好ましい。これらのポリエチレ
ニンはこれと共重合可能なプロピレン、ブチレン、ペン
テン、ヘキサン、4−メチルペンテン、オクテン等のよ
うな1つ以上のアルケンを少量、好ましくは多くて5モ
ル%含有でき、1000個の炭素原子当たり1〜10、
特に2〜6のメチル基またはエチル基を担持てきる。他
のポリオレフィン、例えばポリプロピレンホモポリマー
およびコポリマーも、勿論、使用できる。さらに、用い
るポリオレフィンは少量の1つ以上の他のポリマー、特
に1−アルケンポリマーも含有できる。
Preferably, the filament with a negative expansion coefficient is 600
.. It consists of an ultra-high molecular weight polymer of 1 mol or more of OOOg, especially polyolefin, and has a strength of 2 GPa or more and 6
Particularly preferred is polyethylene, especially linear polyethylene, having a modulus of 0 GPa or more. These polyethylenenes can contain small amounts, preferably at most 5 mol %, of one or more alkenes copolymerizable therewith, such as propylene, butylene, pentene, hexane, 4-methylpentene, octene, etc. 1 to 10 per carbon atom,
In particular, it can carry 2 to 6 methyl or ethyl groups. Other polyolefins, such as polypropylene homopolymers and copolymers, can of course also be used. Furthermore, the polyolefin used can also contain small amounts of one or more other polymers, especially 1-alkene polymers.

超高分子量および高延伸比のフィラメントは約−1OX
 10−”1/’にの膨張率を有する。グラスファイバ
ーは、正の膨張率を有するフィラメントとして特に適当
であり、約10X 10−’1/’にの膨張率を有する
。等量の超高分子量のポリエチレンフィラメントおよび
グラスファイバーがマトリックス中に埋封されると、そ
の膨張率が0に等しい複合材料が製造される。
Ultra-high molecular weight and high draw ratio filaments are approximately -1OX
Glass fibers are particularly suitable as positive expansion filaments and have an expansion coefficient of about 10X 10-'1/'. When molecular weight polyethylene filaments and glass fibers are embedded in a matrix, a composite material whose expansion coefficient is equal to zero is produced.

本発明の組み合わせの利点は、膨張率が与えられた材料
に適することである。本発明によれば、カーボンファイ
バーを含有する複合材料よりさらに経済的に製造し得る
複合材料が提供できる。本発明の組み合わせを用いて製
造された複合材料は、熱応力にあっても損傷および破壊
を受けにくい。
An advantage of the combination of the invention is that it is suitable for materials with a given expansion coefficient. According to the present invention, it is possible to provide a composite material that can be manufactured more economically than composite materials containing carbon fibers. Composite materials produced using the combination of the invention are less susceptible to damage and fracture under thermal stress.

本発明の組み合わせを用いて作製された複合材料は、分
数馬力モータのベアリングハウジング、パラボラアンテ
ナ、時計の振り子用に特に適する。
Composite materials made using the combination of the invention are particularly suitable for bearing housings of fractional horsepower motors, parabolic antennas, and clock pendulums.

有意に異なる膨張率を有するフィラメントからなり、そ
の膨張率がほぼ0に等しい複合材料の必須要件は、相異
なる膨張率を有するフィラメントが均質に分散されてい
ることである。不均質構造の場合、すなわち、もし正の
膨張率を有するフィラメントが一方の側のマトリックス
中に埋封され、負の膨張率を有するフィラメントが他の
側のマトリックス中に埋封されると、バイメタルストリ
ップのような挙動をする複合材料が得られる。このよう
な複合材料の利点は電流を伝えないことである。
An essential requirement for a composite material consisting of filaments with significantly different expansion coefficients, the expansion coefficient of which is approximately equal to zero, is that the filaments with different expansion coefficients are homogeneously distributed. In the case of a heterogeneous structure, i.e. if a filament with a positive expansion coefficient is embedded in the matrix on one side and a filament with a negative expansion coefficient in the matrix on the other side, the bimetallic A composite material is obtained that behaves like a strip. The advantage of such composite materials is that they do not conduct electrical current.

第1図は、得られた膨張率が5.94X10−”である
グラスファイバーの加熱曲線を示す。
FIG. 1 shows the heating curve of a glass fiber with a resulting expansion coefficient of 5.94 x 10-''.

第2図は、得られた膨張率が−4,2X10−’である
超高分子量、高延伸比のポリエチレンファイバーの加熱
曲線を示す。
FIG. 2 shows the heating curve of an ultra-high molecular weight, high draw ratio polyethylene fiber with an obtained expansion coefficient of -4.2X10-'.

第3図は、30体積%の超高分子量のポリエチレニンの
ファイバー、30体積%のグラスファイバーおよび40
体積%に等しいエポキシマトリックスからなる組み合わ
せの加熱曲線を示す。これらの組み合わせにおいて、得
られた膨張率は3×101以下であり、正であっても、
グラスファイバーのみの膨張率よりも非常に小さく、入
手可能な装置によりもはや測定できない。
Figure 3 shows 30% by volume ultra-high molecular weight polyethylene fibers, 30% by volume glass fibers and 40% by volume fibers of ultra-high molecular weight polyethylene.
Figure 2 shows heating curves for combinations of epoxy matrices equal to volume %. In these combinations, the obtained expansion coefficient is less than 3 × 101, and even if it is positive,
It is much smaller than the expansion coefficient of glass fiber alone and can no longer be measured with available equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、得られた膨張率が5.94X10−”である
グラスファイバーの加熱曲線、 第2図は、得られた膨張率が−4,2X10−”である
超高分子量、高延伸比のポリエチレンファイバーの加熱
曲線、 第3図は、30体積%の超高分子量のポリエチレニンの
ファイバー、30体積%のグラスファイバーおよび40
体積%に等しいエポキシマド1ルツクスからなる組み合
わせの加熱曲線を示す。 特許出願人 スタミカーボン・ビー・べ一代理 人弁理
士青山 葆 ほか1名
Fig. 1 shows the heating curve of glass fiber with an obtained expansion coefficient of 5.94X10-''. Fig. 2 shows an ultra-high molecular weight, high drawing ratio, with an obtained expansion coefficient of -4.2X10-''. Figure 3 shows the heating curves of polyethylene fibers of 30% by volume ultra-high molecular weight polyethylene fiber, 30% by volume glass fiber and 40% by volume polyethylene fiber.
Figure 2 shows a heating curve for a combination consisting of 1 lux of epoxide equal to volume %. Patent applicant Stamicarbon B.V. Representative Patent attorney Aoyama Aoyama and 1 other person

Claims (11)

【特許請求の範囲】[Claims] (1)1つのマトリックスでの有意に異なる膨張率を有
するフィラメントの組み合わせ。
(1) Combination of filaments with significantly different expansion coefficients in one matrix.
(2)フィラメントがヤーン、布、ブレンドおよび/ま
たは不織布の形態である特許請求の範囲第(1)項記載
の組み合わせ。
(2) The combination according to claim (1), wherein the filaments are in the form of yarns, fabrics, blends and/or non-woven fabrics.
(3)負の膨張率を有するフィラメントの量および正の
膨張率を有するフィラメントの量が、全体の膨張率がほ
ぼ0に等しいように選択される特許請求の範囲第(1)
または(2)項記載の組み合わせ。
(3) The amount of filaments with a negative expansion coefficient and the amount of filaments with a positive expansion coefficient are selected such that the overall expansion coefficient is approximately equal to zero.
Or the combination described in (2).
(4)フィラメントの全量が50〜70体積%である特
許請求の範囲第(3)項記載の組み合わせ
(4) The combination according to claim (3), wherein the total amount of filaments is 50 to 70% by volume.
(5)負の膨張率を有するフィラメエントが高分子量の
ポリマーの高延伸フィラメントからなる特許請求の範囲
第(1)〜(4)項いずれか1項記載の組み合わせ。
(5) The combination according to any one of claims (1) to (4), wherein the filament having a negative expansion coefficient is a highly drawn filament of a high molecular weight polymer.
(6)フィラメントがゲル化法および次の高延伸比での
延伸により製造された特許請求の範囲第(5)項記載の
組み合わせ。
(6) The combination according to claim (5), wherein the filament is produced by a gelling method followed by drawing at a high drawing ratio.
(7)負の膨張率を有するフィラメントが600,00
0g/モル(重量平均分子量)以上の超高分子量のポリ
マー、特にポリオレフィンからなる特許請求の範囲第(
1)〜(6)項いずれか1項記載の組み合わせ。
(7) Filament with negative expansion coefficient is 600,000
Claim No. 1 (2012) consisting of an ultra-high molecular weight polymer of 0 g/mol (weight average molecular weight) or more, especially a polyolefin.
The combination described in any one of items 1) to (6).
(8)正の膨張率を有するフィラメントがグラスファイ
バーである特許請求の範囲第(1)〜(7)項いずれか
1項記載の組み合わせ。
(8) The combination according to any one of claims (1) to (7), wherein the filament having a positive expansion coefficient is a glass fiber.
(9)負の膨張率を有するフィラメント量が30体積%
であり、正の膨張率を有するフィラメントが30体積%
である特許請求の範囲第(7)および(8)項記載の組
み合わせ。
(9) The amount of filament with negative expansion coefficient is 30% by volume
, and the filament with a positive expansion coefficient is 30% by volume.
The combination according to claims (7) and (8).
(10)マトリックスがエポキシ樹脂またはポリエステ
ルからなる特許請求の範囲第(1)〜(9)項いずれか
1項記載の組み合わせ。
(10) The combination according to any one of claims (1) to (9), wherein the matrix is made of an epoxy resin or polyester.
(11)分数馬力モータのベアリングハウジング、パラ
ボラアンテナ、時計の振り子等用の特許請求の範囲第(
1)〜(10)項いずれか1項記載の組み合わせの使用
(11) Claim No. 1 for bearing housings of fractional horsepower motors, parabolic antennas, clock pendulums, etc.
Use of the combination described in any one of items 1) to (10).
JP24889288A 1987-10-02 1988-09-30 Bination of filaments different in coefficients of expansion significantly in one matrix Pending JPH01152135A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873733446 DE3733446A1 (en) 1987-10-02 1987-10-02 Combination of threads having markedly different coefficients of expansion in a matrix and its use
DE3733446.8 1987-10-02

Publications (1)

Publication Number Publication Date
JPH01152135A true JPH01152135A (en) 1989-06-14

Family

ID=6337537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24889288A Pending JPH01152135A (en) 1987-10-02 1988-09-30 Bination of filaments different in coefficients of expansion significantly in one matrix

Country Status (3)

Country Link
JP (1) JPH01152135A (en)
DE (1) DE3733446A1 (en)
NL (1) NL8802411A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8902194A (en) * 1989-08-31 1991-03-18 Stamicarbon FABRIC OF THERMOPLASTIC AND CONTINUOUS REINFORCEMENT FIBER.
JPH05329946A (en) * 1991-02-13 1993-12-14 Toshiba Corp Fiber reinforced plastic material
DE4200251A1 (en) * 1992-01-08 1993-07-15 Kabelmetal Electro Gmbh High tear strength heat-shrink material with high flame resistance - consists of main crosslinked e.g. polyethylene@ reinforced with incorporated non stretch of glass warp threads and elastomer weft filaments
DE4429805C1 (en) * 1994-08-23 1995-10-26 Karlsruhe Forschzent Support element for compensation of thermal expansion
FR2744785B1 (en) * 1996-02-09 1998-04-24 Bertin & Cie RIGID TUBULAR BAR, ESPECIALLY FOR SPATIAL APPLICATIONS
WO2000064668A1 (en) * 1999-04-23 2000-11-02 Sakase Adtech Co., Ltd. Fiber-reinforced resin composite material having reduced coefficient of linear expansion

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL177840C (en) * 1979-02-08 1989-10-16 Stamicarbon METHOD FOR MANUFACTURING A POLYTHENE THREAD
NL177759B (en) * 1979-06-27 1985-06-17 Stamicarbon METHOD OF MANUFACTURING A POLYTHYTHREAD, AND POLYTHYTHREAD THEREFORE OBTAINED
JPS5777336A (en) * 1980-10-27 1982-05-14 Hitachi Ltd Composite fiber product

Also Published As

Publication number Publication date
NL8802411A (en) 1989-05-01
DE3733446C2 (en) 1990-08-30
DE3733446A1 (en) 1989-04-20

Similar Documents

Publication Publication Date Title
Ito et al. Effects of crystalline forms on the deformation behaviour of nylon-6
Ward et al. Novel composites by hot compaction of fibers
TWI311593B (en) Porous polymeric membrane toughened composites
Cabrera et al. Processing of all-polypropylene composites for ultimate recyclability
EP0531473B1 (en) Polymeric materials
JP2597966B2 (en) Nonporous film-shaped polyethylene molded article and method for producing the same
Bigg A review of techniques for processing ultra‐high modulus polymers
Choy et al. Elastic moduli of ultradrawn polyethylene
CA2071918A1 (en) Thermally bondable fabrics, preparation and use
JP3305463B2 (en) Multiaxially reinforced liquid crystal polymer articles
JPH01152135A (en) Bination of filaments different in coefficients of expansion significantly in one matrix
Campbell et al. Enhanced fracture strain of polypropylene by incorporation of thermoplastic fibres
Kardos Regulating the interface in graphite/thermoplastic composites
JPS57167418A (en) Heat bonding composite spun fiber
JP4726319B2 (en) Method for producing polypropylene fiber reinforced polypropylene resin molding
EP0310200A2 (en) Combinations of filaments having substantially different melting or decomposition points, and use thereof
Endo et al. Uniaxial drawing of polytetrafluoroethylene virgin powder by extrusion plus cold tensile draw
Liu et al. Facile design of heat-triggered shape-memory ethylene-acrylic acid copolymer/chloroprene rubber thermoplastic vulcanizates
EP0301624B1 (en) Multi-ply films of high impact strength and tear strength, process for their production and their use
US20130102706A1 (en) Efficient polymer composites based on natural wool
EP0310203A1 (en) Combination of filaments having substantially different damping responses to mechanical vibrations in a matrix, and use thereof
JPS62156928A (en) Manufacture of polyethylene film
JP2521696B2 (en) Method for producing polyolefin molded article with improved adhesion
Ward Processing, structure and properties of oriented polymers
JPH0578943A (en) Thermoplastic composite stock and thermoplastic composite material