JPH01151299A - Preparation of plate shield material - Google Patents

Preparation of plate shield material

Info

Publication number
JPH01151299A
JPH01151299A JP62310709A JP31070987A JPH01151299A JP H01151299 A JPH01151299 A JP H01151299A JP 62310709 A JP62310709 A JP 62310709A JP 31070987 A JP31070987 A JP 31070987A JP H01151299 A JPH01151299 A JP H01151299A
Authority
JP
Japan
Prior art keywords
precursor
oxide superconductor
superconductor
oxygen
shield material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62310709A
Other languages
Japanese (ja)
Other versions
JPH0738512B2 (en
Inventor
Shoji Shiga
志賀 章二
Sukeyuki Kikuchi
菊地 祐行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62310709A priority Critical patent/JPH0738512B2/en
Publication of JPH01151299A publication Critical patent/JPH01151299A/en
Publication of JPH0738512B2 publication Critical patent/JPH0738512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make it possible to easily manufacture a compact and light plate shield material having a high shield efficiency, by combining an oxide superconductor or its precursor in a predetermined quantity and dissolving it in an atmosphere containing oxygen and then specifying the condition of fabrication and heating treatment. CONSTITUTION:An oxide superconductor or its precursor is combined by a predetermined quantity and dissolved in an atmosphere containing oxygen. This dissolved substance is fabricated into a desired configuration while cooled to at least 950 deg.C at a speed of 10 deg.C/sec or more and then subjected heating treatment in the oxygen containing atmosphere at a temperature of 500 deg.C or higher for 10 minutes or more. As a raw material to be dissolved, an oxide superconductor or its precursor such as YBa2Cu3O7 is used, and as the precursor substance, an inorganic compound such as an oxide of an element constituting a superconductor, carbonate or nitrite, an organic compound such as alkoxide or complex salt, metal of a construction element or its alloy is used. As a result, it is possible to manufacture a compact, light and inexpensive plate shield material using the Meissner effect in the oxide superconductor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は板状シールド材の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing a plate-shaped shield material.

〔従来の技術とその問題点〕[Conventional technology and its problems]

モーター、トランス、磁気浮上列車、MRr−CT詰装
置核磁気医療診断装置)、磁気分離機等の強力な電磁気
を利用する機器では、外部に磁束が漏れて他の電気電子
機器の誤動作の原因となり又人体にも有害に作用するこ
とが懸念されている。
In equipment that uses strong electromagnetism, such as motors, transformers, magnetic levitation trains, MRr-CT packing equipment (nuclear magnetic medical diagnostic equipment), and magnetic separators, magnetic flux may leak to the outside and cause malfunctions of other electrical and electronic equipment. There are also concerns that it may have harmful effects on the human body.

このようなことから上記のような機器では、磁束を外部
に出さないように、また精密な磁気測定機器では外部か
らの磁束を遮蔽するために、機器を鉄板等の磁性体で覆
う対策が講じられている。しかしこのために機器全体が
大型化し又重量化して実用上支障を来たしている。
For this reason, in the above-mentioned devices, measures are taken to cover the device with a magnetic material such as an iron plate in order to prevent magnetic flux from being emitted to the outside, and in order to shield magnetic flux from the outside in the case of precision magnetic measurement devices. It is being However, this increases the size and weight of the entire device, which poses a practical problem.

このような問題に対して超電導体のマイスナー効果を利
用したシールド技術が一部の超電導機器に実用されてい
るが、シールド材に金属超電導体を用いているため冷媒
として液体Heが必要で、経済的に利用範囲が制約され
るという欠点がある。
To solve this problem, shielding technology that utilizes the Meissner effect of superconductors has been put into practical use in some superconducting equipment, but since metal superconductors are used as the shielding material, liquid He is required as a coolant, making it economical. The disadvantage is that the scope of use is limited.

ところで近年、液体窒素温度(77K)で超電導となる
(Ln+−xs rx)Cuba、(Ln、−、BaX
)、Cub、、LnBa、Cu5Oy、L n B a
 z−xsr、cusOt等(但し、LnはY、Sc又
は希土類元素)の層状ペロブスカイト型構造の酸化物超
電導体が見出されているが、これらの酸化物超電導体は
、脆いため金属材料のように塑性加工ができず、有効な
シールド材を工業的に製造することが困難であった。そ
こでこの酸化物超電導体を例えばスパッタ法等のPVD
法を用いて加工することが試みられているが、これは真
空中で成分元素を飛散させ、これを長時間かけて支持材
上に膜状に析出させる方法であるため生産性に乏しく、
また粉末を成型したり、又はペースト状となしこれを支
持材上に厚膜印刷して焼結する試みもなされているが、
工程が必ずしも単純でないばかりか、シールド効果も十
分なものが得られないという欠点がある。この原因は、
個々の粒子が超電導性を異にしたり又一部は非超電導性
であったり、結晶粒界や空孔などの非超電導部分が多量
に存在したりすることにあると考えられている。
By the way, in recent years, (Ln+-xs rx) Cuba, (Ln,-, BaX) which becomes superconducting at liquid nitrogen temperature (77K)
), Cub, LnBa, Cu5Oy, LnBa
Oxide superconductors with a layered perovskite structure, such as z-xsr and cusOt (where Ln is Y, Sc, or a rare earth element), have been found, but these oxide superconductors are brittle and cannot be used as metal materials. It was difficult to industrially produce an effective shielding material because plastic working could not be performed on the material. Therefore, this oxide superconductor is processed by PV process such as sputtering method.
Attempts have been made to process the material using a method, but this method involves scattering the component elements in a vacuum and precipitating them in the form of a film on a support material over a long period of time, resulting in poor productivity.
Attempts have also been made to mold the powder or make it into a paste, print a thick film on a support material, and sinter it.
Not only is the process not necessarily simple, but it also has the disadvantage that a sufficient shielding effect cannot be obtained. The cause of this is
This is thought to be due to the fact that individual particles have different superconductivity, some of them are non-superconducting, and that there are large amounts of non-superconducting parts such as crystal grain boundaries and vacancies.

〔問題点を解決するための手段及び作用〕本発明はかか
る状況に鑑みなされたもので、その目的とするところは
酸化物超電導体におけるマイスナー効果を利用した小型
、軽量、安価な板状のシールド材の製造方法を提供する
ことにある。
[Means and effects for solving the problems] The present invention was made in view of the above situation, and its purpose is to provide a small, lightweight, and inexpensive plate-shaped shield that utilizes the Meissner effect in oxide superconductors. The object of the present invention is to provide a method for manufacturing materials.

即ち本発明は、酸化物超電導体ヌはその前駆物質を所定
量配合し、これを酸素含有雰囲気中で溶融したのち、こ
の溶融体を10°(:/sec以上の速度で少なくとも
950℃まで冷却しながら所望の形状に成形加工し、次
いでこの成形体を500°C以上の酸素含有雰囲気中で
10分以上加熱処理することを特徴とするものである。
That is, in the present invention, the oxide superconductor is prepared by blending a predetermined amount of its precursor, melting it in an oxygen-containing atmosphere, and then cooling the melt to at least 950°C at a rate of 10° (:/sec or more). The molded product is then molded into a desired shape, and then heat-treated in an oxygen-containing atmosphere at 500° C. or higher for 10 minutes or more.

本発明において、溶融用原料にはYBa、Cu、o、の
ような酸化物超電導体又はその前駆物質が用いられる、
後者の前駆物質には、上記超電導体を構成する元素の酸
化物、炭酸塩、硝酸塩等の無機化合物、アルコキシドや
錯塩等の有機化合物、又は構成元素の金属やその合金等
が用いられる。
In the present invention, an oxide superconductor such as YBa, Cu, O, or a precursor thereof is used as a raw material for melting.
As the latter precursor, inorganic compounds such as oxides, carbonates, and nitrates of the elements constituting the superconductor, organic compounds such as alkoxides and complex salts, metals of the constitutive elements, alloys thereof, and the like are used.

上記の前駆物質を、Y B a z Cu x O?の
超電導体に例をとって具体的に説明すると、YはY2O
3、Y(NOs)s、Y (CHs COO)s、Y単
体、BaはBa(OH)x、Ba (No、) 、Ba
C0,,83石けん、CuはCuzO,CuO1Cu 
(OHh、Cu S Oa、Cu (Now)t、アセ
チルアセテート、Cu粉、Cu−Ba等である。
The above precursor is converted into YB az Cu x O? To give a concrete explanation using the superconductor as an example, Y is Y2O
3, Y(NOs)s, Y (CHs COO)s, Y alone, Ba is Ba(OH)x, Ba (No,), Ba
C0,,83 soap, Cu is CuzO, CuO1Cu
(OHh, CuSOa, Cu(Now)t, acetylacetate, Cu powder, Cu-Ba, etc.

上記のような原料を所定量配合し、この混合物を仮焼成
して酸化物の混合体や超電導体酸化物となし、これを粉
末又は棒状体やブロック等に加工して用いることもでき
る。
It is also possible to mix a predetermined amount of the above-mentioned raw materials, pre-sinter this mixture to form an oxide mixture or superconductor oxide, and process this into powder, rod-shaped bodies, blocks, etc. for use.

本発明において上記の原料をるつぼ等の中で1200℃
以上に加熱し溶融させるが、この際の熱源としては、電
気、赤外線、電子ビーム、レーザー光等が適用される。
In the present invention, the above raw materials are heated to 1200°C in a crucible etc.
The material is heated and melted as described above, and the heat source used at this time may be electricity, infrared rays, electron beams, laser light, or the like.

上記の棒状体等は、これに直接赤外線などのビームをあ
てて融解することも出来る。
The above-mentioned rod-shaped bodies can also be melted by directly exposing them to a beam such as infrared rays.

本発明において原料を溶融して板状に成形する理由は、
配合成分が短時間で均一化し、理論密度に近い均質な緻
密体が得られるためである。溶融を0!含有雰囲気中で
行うと超電導体の02欠損が防止され、後工程の熱処理
条件を低温短時間で行うことができる。雰囲気中の00
分圧は、5気圧以上、特に15〜200気圧にすると0
.の供給が十分になされ、Jc等の特性がより向上する
The reason why raw materials are melted and formed into a plate shape in the present invention is as follows.
This is because the blended components become uniform in a short time, and a homogeneous dense body close to the theoretical density can be obtained. Zero melting! When carried out in a containing atmosphere, O2 defects in the superconductor are prevented, and the post-process heat treatment conditions can be carried out at a low temperature and in a short time. 00 in the atmosphere
When the partial pressure is 5 atm or more, especially 15 to 200 atm, 0
.. is sufficiently supplied, and characteristics such as Jc are further improved.

本発明において成形加工にあたって溶融体を10’(:
/sec以上の冷却速度で少なくとも950’Cまで冷
却する理由は、得られる成形体の結晶&1Ilaを緻密
にし、又YBazCu、O,の超電導体に例をとると上
記超電導体がY2O1、CugO1BaCuO□等に相
分離するのを抑え、たとえ相分離がおきても各相が@細
に分散するので後工程の加熱処理において容易に均質化
することができるためである。溶融体の冷却は溶融体を
鋳型や冷却体に注入又は接触させて行い、これの冷却速
度は、特に50’C/see以上が好ましい。
In the present invention, the melt is heated to 10' (:
The reason for cooling to at least 950'C at a cooling rate of /sec or more is to make the crystal &1Ila of the obtained molded body dense, and to take the example of YBazCu, O, superconductors, the above superconductors are Y2O1, CugO1BaCuO□, etc. This is because it suppresses phase separation, and even if phase separation occurs, each phase is finely dispersed, so it can be easily homogenized in the heat treatment in the subsequent step. The molten material is cooled by injecting or contacting the molten material into a mold or a cooling body, and the cooling rate is particularly preferably 50'C/see or higher.

本発明において、溶融体を冷却して得た成形体を500
℃以上のOx含有雰囲気中で加熱処理する理由は、成形
体中に超電導体相を最大限に生成せしめるとともに冷却
成形時の有害な熱歪を除去するためである。
In the present invention, the molded body obtained by cooling the melt is
The reason for performing the heat treatment in an Ox-containing atmosphere at a temperature of .degree. C. or higher is to maximize the formation of a superconductor phase in the compact and to eliminate harmful thermal strain during cooling molding.

上記において加熱処理は、溶融体を所定速度で冷却させ
た温度から直接所定の加熱処理温度に保持しても、又−
旦室温に冷却後再加熱してもよい。
In the above, the heat treatment may be carried out by directly holding the melt at a predetermined heat treatment temperature from the temperature at which it was cooled at a predetermined rate, or by -
It may be reheated after cooling to room temperature.

成形体を所望寸法に仕上げたのち加熱処理すると加工歪
が除去される等の付加的効果が得られる。
When the molded body is finished to desired dimensions and then subjected to heat treatment, additional effects such as removal of processing strain can be obtained.

本発明において上述の加熱処理は、500°C以上好ま
しくは500〜950°Cの温度範囲で、10分以上好
ましくは1〜24Hの時間、0:分圧が0.2気圧以上
特に好ましくは1〜5気圧の雰囲気中で施されるのが実
用的である。上記において雰囲気中の08分圧が0.2
気圧未満では、十分なシールド効果を発揮するものが得
られない。
In the present invention, the above-mentioned heat treatment is carried out at a temperature range of 500°C or more, preferably 500 to 950°C, for 10 minutes or more, preferably for 1 to 24 hours, at a partial pressure of 0.2 atm or more, particularly preferably 1 It is practical to perform the treatment in an atmosphere of ~5 atmospheres. In the above, the 08 partial pressure in the atmosphere is 0.2
If the pressure is less than atmospheric pressure, it will not be possible to obtain a material that exhibits a sufficient shielding effect.

本発明のシールド材は所定形状の鋳型を用いて一挙に成
形することができるが、大型成形体から所望形状に切り
出してもよい、又超電導体をタイル状の成形体として、
これを金属板、セラミックス板、プラスチック板等に接
合して用いることができる。金属板としてFe以外のA
l、Cu、、Ni又はこれらの合金を用いると、電磁シ
ールド効果を同時にもたらせることができる。金属板と
の接合には、半田等の金属ろう材を用いて電気的及び熱
的導通をもたせることが望ましい。
The shielding material of the present invention can be molded all at once using a mold of a predetermined shape, but it may also be cut into a desired shape from a large molded body, or the superconductor can be formed into a tile-shaped molded body.
This can be used by bonding to a metal plate, ceramic plate, plastic plate, etc. A other than Fe as a metal plate
By using L, Cu, Ni, or an alloy thereof, an electromagnetic shielding effect can be provided at the same time. For bonding to the metal plate, it is desirable to use a metal brazing material such as solder to provide electrical and thermal continuity.

本発明のシールド材は上記のような成形体にして、マグ
ネットや電気電子機器を包囲して用いるが、これにシー
ルド効果をもたせるには、成形体をその固有の臨界温度
(T、)以下に冷却しなければならず、従ってT、が室
温以下の場合は、成形体は、冷却媒体の流路内や冷却管
体の内外表面に配設して用いられる。
The shielding material of the present invention is made into a molded body as described above and used to surround magnets and electrical and electronic equipment.In order to provide this with a shielding effect, the molded body must be heated to below its own critical temperature (T). If cooling is required and therefore T is below room temperature, the molded body is used by being disposed within the cooling medium flow path or on the inner and outer surfaces of the cooling tube body.

〔実施例〕〔Example〕

次に本発明を実施例により詳細に説明する。 Next, the present invention will be explained in detail with reference to examples.

実施例1 Erg’s、Y2O2、BaC0,、CuOをE「+Y
:Ba:Cuが原子比で1:2:3(但しEr:Y−1
:4)になるように配合しこれを白金るつぼに入れて大
気中で1 、360℃に加熱溶融し、次いでこれを10
0閣’X3m’の鉄鋳型中に注入してタイル状に成形し
、次いでこれに種々条件で加熱処理を施した。溶融冷却
時の冷却速度は、鋳型に冷却媒体を併用して種々速度に
調整した。
Example 1 Erg's, Y2O2, BaC0, CuO
:Ba:Cu in atomic ratio 1:2:3 (however, Er:Y-1
:4), put it in a platinum crucible, heated and melted it in the atmosphere at 1.360°C, and then melted it at 10.
The mixture was poured into a 3 m x 3 m iron mold and formed into a tile shape, which was then subjected to heat treatment under various conditions. The cooling rate during melt cooling was adjusted to various rates by using a cooling medium in the mold.

従来例1 実施例1で用いたのと同じ原料を大気中で900”C6
H仮焼成し、次いでこれを粉砕して得た粉末をプレス成
形し、この成形体を0.気流中で950’C2H及び7
00℃24H加熱焼結した。
Conventional Example 1 The same raw material used in Example 1 was heated to 900"C6 in the air.
The powder obtained by pulverizing the calcined product is press-molded, and this molded body is made into a 0. 950'C2H and 7 in air flow
It was heated and sintered at 00°C for 24 hours.

斯くの如くして得た各々のサンプルについて相対密度及
び液体窒素中77にでの磁束密度を測定し、次式により
シールド効率を算出した。
For each sample thus obtained, the relative density and magnetic flux density in liquid nitrogen were measured, and the shielding efficiency was calculated using the following formula.

s X :電磁石とガラスメーターの間にサンプルを挟んだ
ときの磁束密度。
sX: Magnetic flux density when a sample is sandwiched between an electromagnet and a glass meter.

Xo :サンプルを挟まないときの磁束密度(750ガ
ウス)。
Xo: Magnetic flux density (750 Gauss) when no sample is sandwiched.

得られた結果は製造条件を併設して第1表に示した。The results obtained are shown in Table 1 along with the manufacturing conditions.

第1表より明らかなように、本発明方法品(1〜4)は
従来方法品8に較べて相対密度及びシールド効率とも高
い値を示している。
As is clear from Table 1, the products manufactured by the present invention (1 to 4) exhibit higher values in both relative density and shielding efficiency than product 8 produced by the conventional method.

比較方法品のうち溶融冷却速度が遅いもの(5)、加熱
処理時間が短いもの(6)、及び加熱処理温度が低いも
の(7)は、いずれもシールド効率が低い値を示してい
る。
Among the comparison method products, the one with a slow melting and cooling rate (5), the one with a short heat treatment time (6), and the one with a low heat treatment temperature (7) all have low shielding efficiency values.

実施例2 Y2O2、B a CO2、S r COz、CuOを
Y:(Ba+Sr):Cu (但しBa : 5r=4
 : l)が原子比で1:2:3になるように配合し、
次いでこれを大気中で920°Cで6H仮焼成し、これ
を粉砕して棒状に成型したのち、800°C6H加熱焼
結し、次いでこの焼結体を加圧容器内に懸垂し、この焼
結体の下端に赤外線をあてて下端から徐々に溶融させ、
この溶融体を900°Cに加熱した100mm’X3m
mゝの鉄鋳型内に滴下せしめた。滴下終了後鋳型を冷却
し得られた成形体を500°Cに冷却し、次いでこの凝
固体を2気圧のOt雰囲気中で800°CO,5H加熱
処理した。加圧容器内の雰囲気及び成形体の冷却速度は
種々に変化させた。
Example 2 Y2O2, B a CO2, S r COz, CuO Y: (Ba + Sr): Cu (However, Ba: 5r = 4
: l) are blended in an atomic ratio of 1:2:3,
Next, this was calcined for 6 hours at 920°C in the atmosphere, crushed and formed into a rod shape, and then heated and sintered at 800°C for 6 hours. Apply infrared rays to the lower end of the solid to gradually melt it from the lower end.
This melt was heated to 900°C to create a 100mm x 3m
It was dropped into an iron mold with a diameter of 1.2 m. After the dropping was completed, the mold was cooled and the resulting molded body was cooled to 500°C, and then this solidified body was heat-treated at 800°C for 5 hours in an Ot atmosphere at 2 atm. The atmosphere in the pressurized container and the cooling rate of the molded body were varied variously.

結果は製造条件を併記して第2表に示した。The results are shown in Table 2 together with the manufacturing conditions.

第2表より明らかなように本発明方法品(9〜12)は
、従来方法品(第1表の8)に較べて相対密度、シール
ド効率とも高い値を示している。
As is clear from Table 2, the products manufactured by the present invention (9 to 12) exhibit higher values in both relative density and shielding efficiency than the products produced by the conventional method (8 in Table 1).

比較方法品のうち加熱処理を省略したもの0り及び加熱
処理の雰囲気中に02ガスが存在しなかったちのOaは
いずれもシールド効率が著しく低下している。
Among the comparison method products, the shielding efficiency of both Oa, which omitted the heat treatment, and Oa, which did not include O2 gas in the atmosphere of the heat treatment, was significantly reduced.

〔効果〕〔effect〕

以上述べたように本発明によれば液体窒素温度で有効に
作動する小型、軽量の高いシールド効率をもった板状シ
ールド材が容易に製造し得るので、工業上顕著な効果を
奏する。
As described above, according to the present invention, it is possible to easily produce a plate-shaped shielding material that is small, lightweight, and has high shielding efficiency that operates effectively at liquid nitrogen temperature, and therefore has a significant industrial effect.

Claims (2)

【特許請求の範囲】[Claims]  (1)酸化物超電導体又はその前駆物質を所定量配合
し、これを酸素含有雰囲気中で溶融したのち、この溶融
体を10℃/sec以上の速度で少なくとも950℃ま
で冷却しながら所望の形状に成形加工し、次いでこの成
形体を500℃以上の酸素含有雰囲気中で10分以上加
熱処理することを特徴とする板状シールド材の製造方法
(1) After blending a predetermined amount of an oxide superconductor or its precursor and melting it in an oxygen-containing atmosphere, the melt is cooled to at least 950°C at a rate of 10°C/sec or more and shaped into a desired shape. 1. A method for manufacturing a plate-shaped shield material, which comprises molding the molded product into a material, and then heat-treating the molded product in an oxygen-containing atmosphere at 500° C. or higher for 10 minutes or more.
 (2)酸素含有雰囲気中の酸素分圧が、溶融冷却時に
5気圧以上、加熱処理時に0.2気圧以上であることを
特徴とする特許請求の範囲第1項記載の板状シールド材
の製造方法。
(2) Production of a plate-shaped shield material according to claim 1, wherein the oxygen partial pressure in the oxygen-containing atmosphere is 5 atm or more during melting and cooling, and 0.2 atm or more during heat treatment. Method.
JP62310709A 1987-12-08 1987-12-08 Method for manufacturing plate-shaped shield material Expired - Lifetime JPH0738512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62310709A JPH0738512B2 (en) 1987-12-08 1987-12-08 Method for manufacturing plate-shaped shield material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62310709A JPH0738512B2 (en) 1987-12-08 1987-12-08 Method for manufacturing plate-shaped shield material

Publications (2)

Publication Number Publication Date
JPH01151299A true JPH01151299A (en) 1989-06-14
JPH0738512B2 JPH0738512B2 (en) 1995-04-26

Family

ID=18008524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62310709A Expired - Lifetime JPH0738512B2 (en) 1987-12-08 1987-12-08 Method for manufacturing plate-shaped shield material

Country Status (1)

Country Link
JP (1) JPH0738512B2 (en)

Also Published As

Publication number Publication date
JPH0738512B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
JP3110451B2 (en) High critical current orientated grained Y-Ba-Cu-O superconductor and method for producing the same
US5306700A (en) Dense melt-based ceramic superconductors
EP0764991A1 (en) Oxide superconductor and method of producing the same
JPH06511551A (en) Method for manufacturing a molded body of high temperature superconductor with high critical current
US5084439A (en) Meltable high temperature Tb-R-Ba-Cu-O superconductor
JPH01151299A (en) Preparation of plate shield material
JPH06219736A (en) Superconductor
JP2609460B2 (en) Method for manufacturing molded body of ceramic oxide superconducting material
JPH04132611A (en) Superconductor
US5244868A (en) Method of making high Tc superconductor material, and article produced by the method
EP0430568B1 (en) Method of making high Tc superconductor material, and article produced by the method
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JPH0354103A (en) Production of oxide superconductor
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JP2597578B2 (en) Superconductor manufacturing method
JPH01153566A (en) Production of pvd raw material for oxide superconductor
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
JPH01203257A (en) Production of superconductor
JPH0613429B2 (en) Method for manufacturing oxide superconductor
JPH07187671A (en) Oxide superconductor and its production
JOINT PUBLICATIONS RESEARCH SERVICE ARLINGTON VA JPRS Report, Science & Technology, Japan, Powder Metallurgy Technology
JPH01163922A (en) Manufacture of linear superconductive material
JPH0816026B2 (en) Manufacturing method of superconducting material
JPH02189817A (en) Manufacture of wire rod of oxide superconductive tape state
JPH03137020A (en) Superconductor