JPH01150842A - Automatic analyzing device - Google Patents

Automatic analyzing device

Info

Publication number
JPH01150842A
JPH01150842A JP30954187A JP30954187A JPH01150842A JP H01150842 A JPH01150842 A JP H01150842A JP 30954187 A JP30954187 A JP 30954187A JP 30954187 A JP30954187 A JP 30954187A JP H01150842 A JPH01150842 A JP H01150842A
Authority
JP
Japan
Prior art keywords
photometry
wavelength
light
reaction
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30954187A
Other languages
Japanese (ja)
Inventor
Sugio Mabe
杉夫 間部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP30954187A priority Critical patent/JPH01150842A/en
Publication of JPH01150842A publication Critical patent/JPH01150842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To execute the two-wavelength photometry with high accuracy by an inexpensive constitution, and also, to process a liquid to be inspected at a high speed by constituting the title device so that the liquid to be inspected which is contained in each reaction vessel is brought to two-wavelength photometry in two photometric positions. CONSTITUTION:First of all, with respect to a reaction vessel 12 opposed to a photodetector 19, a light beam 14 is made incident on a wavelength selecting filter 17 through an optical path switching mirror 15 and a reflecting mirror 16, and a monochromatic light of wavelength corresponding to a measurement item is projected and the photometry is executed. Subsequently, the mirror 15 is retreated from an optical path, and with respect to the reaction vessel 12 opposed to a photodetector 20, the light 14 is made incident on a wavelength selecting filter 18, and a monochromatic light of wavelength corresponding to a measurement item is projected and the photometry is executed. Thereafter, the reaction vessel 12 is brought to one-step transfer by a four-piece portion. As a result, the reaction vessel 12 is transferred to a photometric position of the photodetector 19, therefore, it is brought to photometry by a monochromatic light of different wavelength under a stop state. Next, by repeating said operation, the two-wavelength photometry is executed with high accuracy, and also, a liquid to be inspected can be processed at a high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、エンドレスの反応ラインに沿って搬送され
る反応容器列の各反応容器に収容された被検液を反応容
器を通して測光して分析するようにした自動分析装置に
関する。
Detailed Description of the Invention [Industrial Application Field] This invention analyzes a test liquid contained in each reaction container in a row of reaction containers conveyed along an endless reaction line by photometric measurement through the reaction container. The present invention relates to an automatic analyzer designed to do the following.

〔従来の技術〕[Conventional technology]

従来の自動分析装置として、例えば特開昭56−245
55号公報、同56−24554号公報に開示されたも
のがある。前者のものは、第3図AおよびBに示すよう
に、円状の反応ライン1に沿って間欠的に搬送される反
応容器列2の回転中心軸上に光源3を設け、この光源3
からの光束を反応容器列2とは異なる速度で回転する反
射プリズム4およびこれら反応容器列2、反射プリズム
4とは異なる速度で回転する波長選択フィルタ5を経て
径方向に回転走査し、これにより所定の複数の測光位置
にある反応容器に順次測定項目に応じた波長の光を照射
して、その透過光をそれぞれ受光素子6 1. 6−2
.−−−−6−nで受光するようにしている。
As a conventional automatic analyzer, for example, JP-A-56-245
There are those disclosed in Publication No. 55 and Publication No. 56-24554. In the former case, as shown in FIGS. 3A and 3B, a light source 3 is provided on the central axis of rotation of a reaction container row 2 that is intermittently conveyed along a circular reaction line 1.
The light flux from the reaction vessel array 2 is rotated and scanned in the radial direction through a reflection prism 4 that rotates at a speed different from that of the reaction vessel array 2, and a wavelength selection filter 5 that rotates at a speed different from that of the reaction vessel array 2 and the reflection prism 4. Reaction vessels located at a plurality of predetermined photometry positions are sequentially irradiated with light of a wavelength corresponding to the measurement item, and the transmitted light is transmitted to each of the light receiving elements 6 1. 6-2
.. ---The light is received at 6-n.

また、後者のもは、同様に円状の反応ラインに沿って間
欠的に搬送される反応容器列の回転中心軸上に光源を設
け、この光源からの光束を反応容器列とは異なる速度で
回転する第1の反射プリズムにより径方向に回転走査し
、これにより所定の複数の測光位置にある反応容器に順
次光を照射すると共に、各測光位置には反応容器を透過
した光を回転中心に導くための第2の反射プリズムを設
け、これら第2の反射プリズムで順次反射される被検液
の透過光を第1の反射プリズムと一体に回転する第3の
反射プリズムおよび、これら第1゜第3の反射プリズム
とは異なる速度で回転する波長選択フィルタを介して共
通の1個の受光素子で受光するようにしている。
In addition, in the latter case, a light source is provided on the rotation center axis of a row of reaction vessels that are similarly conveyed intermittently along a circular reaction line, and the luminous flux from this light source is transmitted at a speed different from that of the row of reaction vessels. The first rotating reflective prism performs rotational scanning in the radial direction, thereby sequentially irradiating light onto the reaction vessels at a plurality of predetermined photometry positions, and at each photometry position, the light that has passed through the reaction vessel is radially scanned. A third reflecting prism rotates together with the first reflecting prism, and a third reflecting prism rotates together with the first reflecting prism, and a third reflecting prism rotates together with the first reflecting prism, and The light is received by one common light receiving element via a wavelength selection filter that rotates at a speed different from that of the third reflecting prism.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した特開昭56−24555号公報
に開示された自動分析装置にあっては、1つの反応容器
に着目し、反応過程をより精密に観測しようとすると、
多くの受光素子を配置しなければならないと共に、順次
具なる受光素子からの測光データを使用することから、
各受光素子の特性を合わせる必要があり、装置全体が高
価になるという問題がある。
However, in the automatic analyzer disclosed in the above-mentioned Japanese Patent Application Laid-open No. 56-24555, when one attempts to observe the reaction process more precisely by focusing on one reaction vessel,
Since many photodetectors must be arranged and photometric data from each photodetector is sequentially used,
It is necessary to match the characteristics of each light-receiving element, and there is a problem that the entire device becomes expensive.

また、特開昭56−24F154号公報に開示された自
動分析装置にあっては、反応容器透過後の光路が長いた
め、光束の拡がりや被検液に濁りがある場合の光散乱等
の影響を受は易く、測定精度が低下するとい問題がある
In addition, in the automatic analyzer disclosed in JP-A-56-24F154, since the optical path after passing through the reaction vessel is long, the spread of the luminous flux and the influence of light scattering when the sample liquid is turbid, etc. However, there is a problem in that measurement accuracy decreases.

さらに、上述した従来の自動分析装置においては、いず
れも複数の測光位置に光束を走査しながら波長選択フィ
ルタを回転させて、その各測光位置において該測光位置
にある反応容器内の被検液の測定項目に応じた波長を選
択するようにしているため、各測定項目を共存物質によ
る影響を低減するために2波長で測定しようとすると、
全体での波長切換の回数が多くなり、高速処理が困難に
なると共に、このように波長選択フィルタを回転させな
がら測光する場合にあっては干渉フィルタの部分的特性
の差の影響を受は易くなる等の問題がある。
Furthermore, in the above-mentioned conventional automatic analyzers, the wavelength selection filter is rotated while scanning the light beam at a plurality of photometric positions, and at each photometric position, the sample liquid in the reaction container at the photometric position is detected. Since the wavelength is selected according to the measurement item, if you try to measure each measurement item with two wavelengths to reduce the influence of coexisting substances,
The overall number of wavelength switching increases, making high-speed processing difficult, and when photometry is performed while rotating the wavelength selection filter, it is easily affected by differences in local characteristics of the interference filter. There are problems such as:

この発明は、このような従来の問題点に着目してなされ
たもので、安価な構成で、2波長測光を精度良く行うこ
とができると共に、被検液を高速処理することができる
よう適切に構成した自動分析装置を提供することを目的
とする。
This invention has been made by focusing on these conventional problems, and it is possible to perform two-wavelength photometry with high accuracy with an inexpensive configuration, and to properly process the test liquid at high speed. The purpose of the present invention is to provide an automatic analyzer that has been configured.

〔問題点を解決するための手段および作用〕上記目的を
達成するため、この発明ではエンドレスの反応ラインに
沿って搬送される反応容器列の各反応容器に収容された
被検液を反応容器を通して測光して分析するようにした
自動分析装置において、前記反応容器列を1動作周期内
に複数回のステップ送りを含んで1反応容器分搬送する
搬送手段と、それぞれ複数の干渉フィルタを有する2組
の波長選択フィルタおよびこれら波長選択フィルタに対
応する2個の受光素子を有し、反応容器のステップ送り
の停止位置に対応する2つの測光位置において各ステッ
プ送りの停止期間中にそれぞれ被検液を反応容器を通し
て測光する測光手段とを具え、各反応容器に収容された
被検液を2つの測光位置で2波長測光するよう構成した
ことを特徴とするものである。
[Means and effects for solving the problem] In order to achieve the above object, in this invention, the test liquid contained in each reaction container of a row of reaction containers transported along an endless reaction line is passed through the reaction container. In an automatic analyzer configured to perform photometry and analysis, two sets each include a transport means for transporting the reaction container row by one reaction container including step feeding a plurality of times within one operation cycle, and a plurality of interference filters. It has a wavelength selection filter and two light receiving elements corresponding to these wavelength selection filters, and measures the test liquid during the stop period of each step feed at two photometric positions corresponding to the stop positions of the step feed of the reaction vessel. The present invention is characterized in that it includes a photometric means for measuring light through the reaction vessels, and is configured to perform two-wavelength photometry on the test liquid contained in each reaction vessel at two photometric positions.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示すものである。 FIG. 1 shows an embodiment of the present invention.

この実施例では、円状の反応ライン11に多数の反応容
器12を等しいピッチで保持し、これら反応容器12を
4ピツチを1ステツプとして搬送手段13により1動作
周期内すなわち反応容器12が反応ライン11をほぼ1
回転する間に複数のステップ送りを含んで1反応容器分
搬送する。また、各反応容器12に収容された被検液を
2波長測光するため光源14を設け、この光源14がら
の白色光を、その光路に挿脱可能な光路切換ミラー15
により反射させた後、反射ミラー16および複数の干渉
フィノ1夕を同一円周上に配置した回転可能な波長選択
フィルタ17を経て反応容器12の所定の停止位置(測
光位置)に投射するようにすると共に、光路切換ミラー
15を退却させた状態で波長選択フィルタ17と同様の
構成より成る波長選択フィルタ18を経て、反射ミラー
16を介しての反応容器12の測光位置よりも4ピツチ
分、すなわち1ステップ移動分手前の反応容器12の停
止位置(測光位置)に投射するようにし、これら各測光
位置にある反応容器を透過した光束を受光素子19およ
び20でそれぞれ受光するようにする。
In this embodiment, a large number of reaction vessels 12 are held at equal pitches in a circular reaction line 11, and these reaction vessels 12 are moved within one operation cycle, ie, the reaction vessels 12 are moved along the reaction line by means of a conveying means 13, with 4 pitches as one step. 11 almost 1
During rotation, one reaction container is transported, including a plurality of step feeds. In addition, a light source 14 is provided in order to perform two-wavelength photometry of the test liquid contained in each reaction container 12, and a light path switching mirror 15 which can be inserted into and removed from the light path of the light source 14 is provided.
After reflecting the light, the light is projected to a predetermined stopping position (photometering position) of the reaction vessel 12 through a rotatable wavelength selection filter 17 in which a reflection mirror 16 and a plurality of interference filters are arranged on the same circumference. At the same time, with the optical path switching mirror 15 retracted, the light is passed through the wavelength selection filter 18 having the same configuration as the wavelength selection filter 17, and the light is measured by 4 pitches from the photometric position of the reaction vessel 12 via the reflection mirror 16, that is, The light is projected to the stop position (photometering position) of the reaction vessel 12 one step before the movement, and the light beams transmitted through the reaction vessel at each of these photometry positions are received by the light receiving elements 19 and 20, respectively.

以下、この実施例の動作を第2図に示すタイミングチャ
ートを参照しながら説明する。この実施例では、反応容
器12を4ピツチを1ステツプとして搬送手段13によ
り矢印方向にステップ送りし、その各ステップ送りの停
止状態下で受光素子19.20と対向する各測光位置に
ある反応容器12を測光する。この測光においては、先
ず受光素子19と対向する測光位置にある反応容器12
に、光源14からの光を光路切換ミラー15および反射
ミラー16を経て波長選択フィルタ17に入射させてそ
の測定項目に応じた波長の単色光を投射して測光する。
The operation of this embodiment will be explained below with reference to the timing chart shown in FIG. In this embodiment, the reaction vessels 12 are fed step by step in the direction of the arrow by the conveying means 13 with 4 pitches as one step, and when each step is stopped, the reaction vessels are placed at each photometric position facing the light receiving element 19, 20. Measure 12. In this photometry, first, the reaction vessel 12 is placed at a photometry position facing the light receiving element 19.
Next, the light from the light source 14 is made incident on the wavelength selection filter 17 via the optical path switching mirror 15 and the reflection mirror 16, and monochromatic light having a wavelength corresponding to the measurement item is projected for photometry.

次に、光路切換ミラー15を光路から退却させ、受光素
子20と対向する測光位置にある反応容器12に、光源
14からの光を波長選択フィルタ18に入射させてその
測定項目に応じた波長の単色光を投射して測光する。そ
の後、反応容器12を4個分1ステツプ移送する。
Next, the optical path switching mirror 15 is retreated from the optical path, and the light from the light source 14 is made to enter the wavelength selection filter 18 into the reaction vessel 12 located at the photometry position facing the light receiving element 20, and the wavelength corresponding to the measurement item is selected. Measures light by projecting monochromatic light. Thereafter, four reaction vessels 12 are transferred one step.

このlステップの移送期間中においては、波長選択フィ
ルタ17.18を回転させて次に受光素子19.20と
対向する各測光位置に来る反応容器12内の被検液の測
定項目に対応する波長のフィルタを選択すると共に、光
路切換ミラー15を光路中に挿入する。このように、反
応容器12が1ステツプ移送されると、受光素子20の
測光位置にあった反応容器12が受光素子19の測光位
置に移送されるので、これを停止状態下で前の測光にお
ける波長とは異なる波長の単色光で測光する。
During the transfer period of this l step, the wavelength selection filters 17 and 18 are rotated, and the wavelengths corresponding to the measurement items of the test liquid in the reaction container 12 come to each photometry position facing the light receiving element 19 and 20. At the same time, the optical path switching mirror 15 is inserted into the optical path. In this way, when the reaction vessel 12 is moved one step, the reaction vessel 12 that was at the photometry position of the light receiving element 20 is transferred to the photometry position of the light receiving element 19. Photometry is performed using monochromatic light of a different wavelength.

以上の動作を繰り返すことにより、1動作周期で所要の
数の反応容器内の被検液を2波長測光し、その後の順次
の動作周期でそれぞれ他の反応容器群内の被検液を同様
に2波長測光する。
By repeating the above operation, the required number of test liquids in the reaction containers are photometered at two wavelengths in one operation cycle, and the test liquids in other reaction container groups are similarly measured in subsequent operation cycles. Performs two-wavelength photometry.

この実施例によれば、2個の波長選択フィルタ17.1
8を設けるようにしたので、測定に必要な波長数をこれ
ら2個の波長選択フィルタ17゜18に分割することが
でき、したがって各波長選択フィルタ17.18を小型
にできる。また、これら波長選択フィルタ17.18に
おけるフィルタの選択や光路切換ミラー15の復帰動作
を、反応容器12のステップ移動中に行うようにしたの
で、それらが安定するまでの時間をステップ送りの動作
期間中に吸収することができ、したがって停止時に実際
に測定する時間を有効に使用でき、処理スピードを上げ
ることができると共に精度の高い測定を行うことができ
る。更に、受光素子は2個で済むので安価にできると共
に、反応過程をモニタする場合でも各被検液に対する2
波長を、一方の波長の光は一方の受光素子19で、他方
の波長の光は他方の受光素子20で常に受光することが
できるので、2個の受光素子19.20の特性を揃える
必要もない。
According to this embodiment, two wavelength selective filters 17.1
8, the number of wavelengths required for measurement can be divided into these two wavelength selection filters 17 and 18, and each wavelength selection filter 17 and 18 can therefore be made smaller. In addition, since the selection of the wavelength selection filters 17 and 18 and the return operation of the optical path switching mirror 15 are performed during the step movement of the reaction vessel 12, the time required for these to stabilize is the operation period of the step feed. Therefore, the time for actually measuring when stopped can be used effectively, processing speed can be increased, and highly accurate measurements can be performed. Furthermore, since only two light-receiving elements are required, the cost can be reduced, and even when monitoring the reaction process, two light-receiving elements are required for each test liquid.
Since light of one wavelength can always be received by one light-receiving element 19 and light of the other wavelength can be always received by the other light-receiving element 20, it is also necessary to make the characteristics of the two light-receiving elements 19 and 20 the same. do not have.

なお、この発明は上述した実施例にのみ限定されるもの
ではなく、幾多の変形または変更が可能である。例えば
上述した実施例では、4個分の反応容器12を1ステツ
プとして移送するようにしたが、1ステツプで移送する
反応容器数は任意の複数個とすることができ、それに応
じて反応ライン11上の反応容器数を設定することがで
きる。
Note that this invention is not limited only to the embodiments described above, and numerous modifications and changes are possible. For example, in the above-described embodiment, four reaction vessels 12 were transferred in one step, but the number of reaction vessels 12 to be transferred in one step may be any number, and the reaction line 11 may be transferred accordingly. The number of reaction vessels above can be set.

また、上述した実施例では光路切換ミラー15により2
つの測光位置に光束を選択的に導くようにしたが、光路
切換ミラー15に代えてハーフミラ−を用いて2つの測
光位置に測光光束を同時に導くよう構成することもでき
る。更に、波長選択フィルタ17.18は回転式に限ら
ず、スライド式のものを用いることもできると共に、こ
れらを反応ライン11と受光素子19.20との間に配
置することもできる。また、受光素子19.20を配置
する測光位置は、順次のステップ送りの停止位置に限ら
ず、任意のステップ送りの停止位置に設けることができ
る。
Further, in the embodiment described above, the optical path switching mirror 15
Although the light beam is selectively guided to two photometry positions, it is also possible to use a half mirror instead of the optical path switching mirror 15 to simultaneously guide the photometry light beam to two photometry positions. Further, the wavelength selection filters 17 and 18 are not limited to rotary types, but sliding types can also be used, and these can also be arranged between the reaction line 11 and the light receiving elements 19 and 20. Further, the photometric positions where the light receiving elements 19 and 20 are arranged are not limited to the stop positions of sequential step feed, but can be provided at any stop position of step feed.

〔発明の効果] 以上述べたように、この発明によればエンドレスの反応
ラインに沿って、反応容器列を1動作周期内に複数回の
ステップ送りを含んで1反応容器分搬送すると共に、各
ステップ送りの停止期間中に反応容器のステップ送りの
停止位置に対応して設けたそれぞれ波長選択フィルタお
よび受光素子を有する2つの測光位置で測光して被検液
を2波長測光するようにしたので、安価な構成で、2波
長測光を精度良(行うことができると共に、被検液を高
速処理することができる。
[Effects of the Invention] As described above, according to the present invention, a row of reaction containers is transported by one reaction container along an endless reaction line including multiple step feedings within one operation cycle, and each During the stop period of step feed, the test liquid was photometered at two wavelengths by photometry at two photometry positions each having a wavelength selection filter and a light receiving element, which were provided corresponding to the stop position of step feed of the reaction container. With an inexpensive configuration, two-wavelength photometry can be performed with high accuracy, and the test liquid can be processed at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す図、第2図はその動
作を説明するためのタイムチャート、 第3図AおよびBは従来の技術を示す図である。 11・・・反応ライン   12・・・反応容器13・
・・搬送手段    工4・・・光源15・・・光路切
換ミラー 16・・・反射ミラー17.18・・・波長
選択フィルタ 19.20・・・受光素子 第3図
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a time chart for explaining its operation, and FIGS. 3A and 3B are diagrams showing a conventional technique. 11... Reaction line 12... Reaction container 13.
...Transportation means Part 4...Light source 15...Optical path switching mirror 16...Reflection mirror 17.18...Wavelength selection filter 19.20...Photodetector element Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 1、エンドレスの反応ラインに沿って搬送される反応容
器列の各反応容器に収容された被検液を反応容器を通し
て測光して分析するようにした自動分析装置において、
前記反応容器列を1動作周期内に複数回のステップ送り
を含んで1反応容器分搬送する搬送手段と、それぞれ複
数の干渉フィルタを有する2組の波長選択フィルタおよ
びこれら波長選択フィルタに対応する2個の受光素子を
有し、反応容器のステップ送りの停止位置に対応する2
つの測光位置において各ステップ送りの停止期間中にそ
れぞれ被検液を反応容器を通して測光する測光手段とを
具え、各反応容器に収容された被検液を2つの測光位置
で2波長測光するよう構成したことを特徴とする自動分
析装置。
1. In an automatic analyzer that analyzes the test liquid contained in each reaction container of a row of reaction containers conveyed along an endless reaction line by photometry through the reaction container,
a conveying means for transporting the reaction container row by one reaction container including step feeding a plurality of times within one operation cycle; two sets of wavelength selection filters each having a plurality of interference filters; and two sets of wavelength selection filters corresponding to these wavelength selection filters. It has two light receiving elements corresponding to the stop position of step feeding of the reaction vessel.
and a photometric means for measuring the light of the test liquid through the reaction container during the stop period of each step feeding at the two photometry positions, and configured to perform two-wavelength photometry of the test liquid contained in each reaction container at the two photometry positions. An automatic analyzer characterized by:
JP30954187A 1987-12-09 1987-12-09 Automatic analyzing device Pending JPH01150842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30954187A JPH01150842A (en) 1987-12-09 1987-12-09 Automatic analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30954187A JPH01150842A (en) 1987-12-09 1987-12-09 Automatic analyzing device

Publications (1)

Publication Number Publication Date
JPH01150842A true JPH01150842A (en) 1989-06-13

Family

ID=17994257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30954187A Pending JPH01150842A (en) 1987-12-09 1987-12-09 Automatic analyzing device

Country Status (1)

Country Link
JP (1) JPH01150842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135923A1 (en) * 2006-05-23 2007-11-29 Olympus Corporation Automatic analyzing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135923A1 (en) * 2006-05-23 2007-11-29 Olympus Corporation Automatic analyzing apparatus

Similar Documents

Publication Publication Date Title
US4329061A (en) Turntable device for analyzing chemical substances
JP2731229B2 (en) Automatic analyzer
US4762420A (en) Photometric reading device for serological analysis
JPS6126623B2 (en)
JPH01145552A (en) Automatic apparatus for analysis
EP0160458B1 (en) An automatic chemical analyzing apparatus
JPS5855448B2 (en) Sample testing method and equipment
JP7206776B2 (en) Tablet inspection device and tablet inspection method
KR20100017097A (en) Photometric device and automatic analyzer
EP0049561B1 (en) Method and apparatus for repeated monitoring of optical absorption by a plurality of specimens
US4067694A (en) Loading and unloading mechanism for continuously rotating container
JP2000258341A (en) Measuring apparatus for absorbance
US7910061B2 (en) Colorimetric absorbance measurement apparatus
JPH0723896B2 (en) Chemical analyzer
AU605840B2 (en) Optical measurement method and apparatus therefor in automatic analyzer
JPH01150842A (en) Automatic analyzing device
JPS63122958A (en) Automatic chemical analyzer
US5292482A (en) Automatic analyzing apparatus and automatic analyzing method
JPH01321324A (en) Spectrophotometer capable of measuring two or more samples
JPS62228935A (en) Automatic chemical analyzing instrument
JPH01134234A (en) Automatic chemical analyzer
JPH0114932Y2 (en)
JPS6135506B2 (en)
JP2005049109A (en) Chemical analysis equipment
JPS63205546A (en) Automatic analysis instrument