JPH01150798A - Heat transfer pipe support structure - Google Patents

Heat transfer pipe support structure

Info

Publication number
JPH01150798A
JPH01150798A JP31057987A JP31057987A JPH01150798A JP H01150798 A JPH01150798 A JP H01150798A JP 31057987 A JP31057987 A JP 31057987A JP 31057987 A JP31057987 A JP 31057987A JP H01150798 A JPH01150798 A JP H01150798A
Authority
JP
Japan
Prior art keywords
heat transfer
spacer
heat exchanger
fluid
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31057987A
Other languages
Japanese (ja)
Inventor
Koji Shiina
孝次 椎名
Shozo Nakamura
中村 昭三
Yasuo Mizushina
水品 靖男
Seiichi Matsumura
清一 松村
Yuji Sakata
佐方 裕治
Wataru Sagawa
渉 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31057987A priority Critical patent/JPH01150798A/en
Publication of JPH01150798A publication Critical patent/JPH01150798A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0135Auxiliary supports for elements for tubes or tube-assemblies formed by grids having only one tube per closed grid opening
    • F28F9/0136Auxiliary supports for elements for tubes or tube-assemblies formed by grids having only one tube per closed grid opening formed by intersecting strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve heat exchange performance, by a method wherein a spacer is formed by a sheet, heat transfer pipes are supported in linear contact, and at least one of the upper stream side and the downstream side of the sheet is formed in a shape having low fluid resistance against fluid on the drum side. CONSTITUTION:In a heat pipe support material 15, spacers 15a are combined together in the shape of a lattice, and the surroundings thereof are secured to a ring 15b. An inner cylinder 16 is secured to a drum body 2 through inner cylinder support members 17, and heat transfer pipes 3 are extended through the inner cylinder 16 and supported by means of heat transfer pipe support members 15. Fluid flowing in a drum body 2 through an inlet nozzle 6 on the drum side flows, as shown by an arrow mark B, along the heat transfer pipes 3, and flows through an outlet nozzle 7 on the drum side to the outside. In this case, by forming the spacer 15a of the heat transfer pipe support member 15 in a shape, for example, a streamline shape, in which the upper stream side and the downstream side are decreased in fluid resistance against the flow of fluid on the drum side, a compact heat exchanger which extremely sharply reduces incurring of a pressure loss and increases an integrated performance index to a maximum value is provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は伝熱管支持構造に係り、特に、多管式熱交換器
の圧力損失を低減し、かつ伝熱効率を高めることができ
る伝熱管支持構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat exchanger tube support structure, and particularly to a heat exchanger tube support that can reduce pressure loss and increase heat transfer efficiency in a multi-tubular heat exchanger. Regarding structure.

〔従来の技術〕[Conventional technology]

一般に多管式熱交換器1は、第9図に示すように、円筒
状の胴体2内に多数の伝熱管3が配置され、これらの伝
熱管3の両端は管板4に固定され、途中は切欠きバッフ
ル5によって支持されている。
In general, a shell-and-tube heat exchanger 1 has a large number of heat exchanger tubes 3 arranged in a cylindrical body 2, as shown in FIG. is supported by a notch baffle 5.

そして、胴体2の側面には胴側入口ノズル6と胴側出口
ノズル7とが設けられ、胴側入口ノズル6から流入した
流体は図の矢印Aのように流れ、胴側出口ノズル7を介
して外部へ流出するようになっている。また胴体2の両
端には一対の管側ヘッド8,9が配設され、管側ヘッド
8には管側入口ノズル10が、管側ヘッド8には管側出
口ノズル11がそれぞれ設けられている。そして、管側
入口ノズル1oから流入した流体は伝熱管3内を流れた
のち、管優)出口ノズル11を介して外部へ流出するよ
うになっている。
A body-side inlet nozzle 6 and a body-side outlet nozzle 7 are provided on the side surface of the body 2, and the fluid flowing in from the body-side inlet nozzle 6 flows as shown by arrow A in the figure, and flows through the body-side outlet nozzle 7. It is designed to leak out to the outside. Further, a pair of tube-side heads 8 and 9 are provided at both ends of the body 2, and the tube-side head 8 is provided with a tube-side inlet nozzle 10, and the tube-side head 8 is provided with a tube-side outlet nozzle 11, respectively. . The fluid flowing in from the tube-side inlet nozzle 1o flows inside the heat transfer tube 3, and then flows out to the outside via the tube-side outlet nozzle 11.

ところが、上記したような切欠きバッフル5を胴体2内
に設けると、流体は切欠きバッフル5の前後で折流とな
り、伝熱管3に対しては直交して流れる。このために、
胴側と管側との間の伝熱性能は良好であるが、胴側圧力
損失が大きくなる欠点があった。
However, when the above-mentioned notch baffle 5 is provided in the body 2, the fluid is bent before and after the notch baffle 5, and flows perpendicularly to the heat exchanger tube 3. For this,
Although the heat transfer performance between the shell side and the tube side was good, there was a drawback that the pressure loss on the shell side was large.

そこで、特開昭56−94195号公報で開示されてい
るように、切欠きバッフルの代わりに円形断面のロンド
を伝熱管を横切る方向に多数本設け、これらのロンドに
より伝熱管を支持するようにして、胴側圧力損失の低下
を図った多管式熱交換器が知られている。
Therefore, as disclosed in Japanese Unexamined Patent Publication No. 56-94195, instead of the notched baffle, a large number of ronds with a circular cross section are provided in the direction across the heat exchanger tube, and the heat exchanger tube is supported by these ronds. A shell-and-tube heat exchanger designed to reduce pressure loss on the shell side is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のようなロンドを用いれば、胴側流体は伝熱管に沿
った完全平行流となるから、胴側圧力損失を低下させる
ことは可能であるが、反面、胴側流体に乱れがなくなり
、伝熱管周囲の熱境界Mが厚くなって伝熱性能が悪くな
るという新たな問題が発生した。しかもロッド断面が円
形であるため、胴側圧力損失を十分に低下させるには至
っていなかった。
If the above-mentioned Rondo is used, the shell side fluid becomes a completely parallel flow along the heat transfer tube, so it is possible to reduce the shell side pressure loss, but on the other hand, there is no turbulence in the shell side fluid, and the transfer A new problem occurred in that the thermal boundary M around the heat tube became thicker and the heat transfer performance deteriorated. Moreover, since the rod cross section is circular, the pressure loss on the shell side has not been sufficiently reduced.

本発明の目的は、伝熱性能を低下させずに、胴側圧力損
失を大幅に低下させて、総合的な熱交換性能の向上を図
った伝熱管支持構造を提供することである。
An object of the present invention is to provide a heat exchanger tube support structure that significantly reduces shell-side pressure loss without reducing heat transfer performance and improves overall heat exchange performance.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明の伝熱管支持構造は
、棒状のスペーサが格子状に組立てられた複数個の伝熱
管支持材を、筒状の胴体内に軸線に垂直に設置するとと
もに、前記伝熱管支持材の各格子内に伝熱管を個々に挿
入することにより、該伝熱管を支持する伝熱管支持構造
において、前記スペーサを薄板で構成して、前記伝熱管
を線接触で支持するとともに、前記薄板の胴側流体に対
する上流体および下流側のうち少なくとも一方の側を、
流動抵抗の小さい形状に形成したことを特徴とする。
In order to achieve the above object, the heat exchanger tube support structure of the present invention installs a plurality of heat exchanger tube supports in which rod-shaped spacers are assembled in a lattice shape in a cylindrical body perpendicular to the axis, In the heat exchanger tube support structure that supports the heat exchanger tubes by individually inserting the heat exchanger tubes into each lattice of the heat exchanger tube support material, the spacer is formed of a thin plate to support the heat exchanger tubes in line contact. At least one side of the upper fluid side and the downstream side of the thin plate relative to the body side fluid,
It is characterized by being formed into a shape with low flow resistance.

〔作用〕[Effect]

従来の多管式熱交換器よりも更に胴側性能を向上させる
ためには、熱交換方式は対向流方式として、伝熱管に沿
って胴側流体を平行に流すよう考える。胴側流体が伝熱
管に沿って平行に流れるためには、従来の切欠きバッフ
ルの代わりに、ある伝熱管支持材を設置し、これら伝熱
管支持材と伝熱管の間を胴側流体が平行に流れるように
する。
In order to further improve the performance of the shell side compared to the conventional multi-tube heat exchanger, the heat exchange method should be a counter-flow type, in which the shell side fluid flows in parallel along the heat exchanger tubes. In order for the shell side fluid to flow parallel to the heat exchanger tubes, a certain heat exchanger tube support material is installed instead of the conventional notched baffle, and the shell side fluid flows parallel to the heat exchanger tubes between the heat exchanger tube supports and the heat exchanger tubes. Make it flow.

このように考えれば胴側伝熱係数hsを算出するに当た
り、下記(1)式の平滑円管内の推算式を用い、代表径
として管内径diの代わりに胴側の水力直径deを用い
ることができる。
Considering this, when calculating the shell side heat transfer coefficient hs, it is possible to use the equation (1) below for estimating the inside of a smooth circular pipe, and use the hydraulic diameter de of the shell side instead of the pipe inner diameter di as the representative diameter. can.

a 但し、Ks:胴側流体熱伝導率(W/mK)Cn:熱伝
達性能係数(−) Prs :胴側流体プランl−用数(−)m、n:定数
(−) である。
a However, Ks: body side fluid thermal conductivity (W/mK) Cn: heat transfer performance coefficient (-) Prs: body side fluid plan l-function (-) m, n: constant (-).

ここで、単に胴側流速Vs、換言すれば胴側レイノルズ
数Resを増加させて、みかけ上(運転上)伝熱性能h
s を向上させてもあまり有効な手段とは考えられない
。そこで、胴側総合性能評価をするため、伝熱係数hs
と損失係数fsの比で表わした本来の性能向上法に注目
すれば、伝熱管支持材構造として最適形状が存在するは
ずである。
Here, by simply increasing the shell side flow velocity Vs, in other words, the shell side Reynolds number Res, the apparent (operational) heat transfer performance h
Improving s is not considered to be a very effective means. Therefore, in order to evaluate the overall performance of the shell side, the heat transfer coefficient hs
If we focus on the original performance improvement method expressed as the ratio of the loss coefficient fs and the loss coefficient fs, there should be an optimal shape for the structure of the heat exchanger tube support material.

つまり、胴側流れの中にある形状の伝熱管支持材が設置
されれば、この部分での局所的な流速が高まり、しかも
下流流れを乱すような障害物が存在することとなる。
In other words, if a heat exchanger tube support material having a certain shape is installed in the shell side flow, the local flow velocity in this part will increase, and moreover, there will be an obstacle that will disturb the downstream flow.

したがって本発明のような上記構成にすれば、胴側にあ
る間隔で伝熱管支持材を設置することにより、胴側流体
が管側流体とほぼ平行に流れ、胴側流体の圧力損失が小
さくなる。また、この伝熱管支持材を設置することによ
り、特に、胴側流体下流部での乱れ促進が行われ、しか
も局所的に胴側流速の増加が生じ、伝熱管支持材が無い
場合に比べて伝熱係数が20〜50%性能が向上する。
Therefore, with the above structure of the present invention, by installing the heat transfer tube support members at certain intervals on the shell side, the shell side fluid flows almost parallel to the tube side fluid, and the pressure loss of the shell side fluid is reduced. . In addition, by installing this heat exchanger tube support material, turbulence is particularly promoted in the downstream part of the fluid on the shell side, and the flow velocity on the shell side locally increases, compared to the case without the heat exchanger tube support material. Heat transfer coefficient improves performance by 20-50%.

その上、胴側流体は伝熱管支持材を挿入しても平行に流
れる点は変わらないため、伝熱管に生ずる流体連成振動
の面からも有利である。
Furthermore, since the shell-side fluid continues to flow in parallel even if the heat exchanger tube support material is inserted, this is advantageous in terms of fluid-coupled vibrations occurring in the heat exchanger tubes.

〔実施例〕 以下に本発明の一実施例を図面に従って説明する。〔Example〕 An embodiment of the present invention will be described below with reference to the drawings.

本発明に係る伝熱管支持材15は、第1図(a)に示す
ように、棒状のスペーサ15aが格子状またはエラグク
レート状に組合わされ、その周囲がリング15bに固定
されている。実際にこのような伝熱管支持材15を製作
するには、各スペーサ15aに切り溝を付けて互いはめ
込まれたのち溶接される。そして、この伝熱管支持材1
5は胴側流路内にある間隔で複数個設置されている。
As shown in FIG. 1(a), the heat exchanger tube support material 15 according to the present invention has bar-shaped spacers 15a combined in a lattice shape or an elliptical crate shape, and the periphery thereof is fixed to a ring 15b. In order to actually manufacture such a heat exchanger tube support material 15, each spacer 15a is cut into grooves, fitted into each other, and then welded. And this heat exchanger tube support material 1
A plurality of 5 are installed at certain intervals in the body side flow path.

ところで、本発明の特徴はスペーサ15aの横断面の形
状(こあって、その形状は、同図(b)に示すように種
々の種類がある。この図について説明すると、上からN
Sは伝熱管支持材15が無い場合であり、SDは標準タ
イプのスペーサ15aである。以下、最初の記号Rは半
円柱状、Eは鈍いエッヂ状、Fは流線形状、HPは鋭い
エッヂ状のものを表わし、また2番目の記号Uはこれら
形状を流れの上流側に設置した場合、Bは上流及び下流
側の両方に設置した場合、Dは下流側に設置した場合を
示している。尚、CDは従来例に示した円柱棒の場合で
ある。
By the way, the feature of the present invention is the shape of the cross section of the spacer 15a (there are various types of shapes as shown in the same figure (b).
S is the case without the heat exchanger tube support material 15, and SD is the standard type spacer 15a. Below, the first symbol R represents a semi-cylindrical shape, E represents a blunt edge shape, F represents a streamline shape, and HP represents a sharp edge shape, and the second symbol U represents these shapes installed on the upstream side of the flow. In this case, B indicates the case where the device is installed on both the upstream and downstream sides, and D indicates the case where the device is installed on the downstream side. Note that CD is the case of the cylindrical rod shown in the conventional example.

次に、本実施例の伝熱管支持材15を実際に多管式熱交
換器に適用した例を第2図に示す。ここで、従来の技術
と同一の箇所は同一符号が記しである。図において、胴
体2内には内筒16が配設され、この内筒16は内筒支
持部材17を介して胴体2に固定されている。また伝熱
管3は内筒16内を貫通して設けられ、伝熱管の数ケ所
は第1図に示した伝熱支持材15によって支持されてい
る。そして胴側入口ノズルから胴体2内へ流入した流体
は、矢印Bのように伝熱管3に沿って流れ、胴側出口ノ
ズルから外部へ流出する。なお、その他の構成は第9図
で示した従来のものと同一であるから、ここでは説明を
省略する。
Next, FIG. 2 shows an example in which the heat exchanger tube support material 15 of this embodiment is actually applied to a shell-and-tube heat exchanger. Here, the same parts as in the prior art are denoted by the same reference numerals. In the figure, an inner cylinder 16 is disposed within the body 2, and the inner cylinder 16 is fixed to the body 2 via an inner cylinder support member 17. Further, the heat exchanger tube 3 is provided so as to pass through the interior of the inner cylinder 16, and several places of the heat exchanger tube are supported by the heat transfer support member 15 shown in FIG. The fluid flowing into the body 2 from the body side inlet nozzle flows along the heat transfer tube 3 as shown by arrow B, and flows out from the body side outlet nozzle. The rest of the configuration is the same as the conventional one shown in FIG. 9, so the explanation will be omitted here.

ここで、伝熱管支持材15を設置した場合の流れに沿っ
た胴側流体の局所熱伝達率hdxと静圧Pxの変化を第
3図に示す。伝熱管3群の間に伝熱管支持材15が配置
されていると、この部分での局所流速が増加し、その上
下流側、特に下流側での撹拌が生じ、伝熱管3表面から
の熱伝達率hdxは向上する。一方、これらに沿った静
圧分布は伝熱管支持材15の設置により、急激な圧力降
下ΔPsを生じ、伝熱管支持材15を設置したことによ
る圧力損失ΔPsの値は伝熱管表面の摩擦損失ΔPfに
比べ、かなり大きい。
Here, FIG. 3 shows changes in the local heat transfer coefficient hdx and static pressure Px of the shell-side fluid along the flow when the heat exchanger tube support material 15 is installed. When the heat exchanger tube support material 15 is arranged between the three groups of heat exchanger tubes, the local flow velocity in this part increases, stirring occurs upstream and downstream, especially on the downstream side, and heat from the surface of the heat exchanger tubes 3 increases. The transmissibility hdx is improved. On the other hand, the static pressure distribution along these lines causes a sudden pressure drop ΔPs due to the installation of the heat exchanger tube support material 15, and the value of the pressure loss ΔPs due to the installation of the heat exchanger tube support material 15 is the friction loss ΔPf on the surface of the heat exchanger tube. It is quite large compared to .

第3図は局所熱伝達率分布と静圧分布の概念図を示して
おり、同図から伝熱管支持材15が存在すると、無しの
場合に比べて伝熱促進が図られるが、伝熱管支持材15
のスペーサ15aによる圧力損失が大きいことが顕著に
わかる。
Figure 3 shows a conceptual diagram of the local heat transfer coefficient distribution and static pressure distribution, and from the same figure, it can be seen that when the heat exchanger tube support material 15 is present, heat transfer is promoted compared to the case without the heat exchanger tube support material 15. Material 15
It can be clearly seen that the pressure loss caused by the spacer 15a is large.

そこで、上記の概念モデルを検証するため、空気を流体
として用いた模擬試験を行い、その結果を第4図に示す
。同図(a)は局所熱伝達率分布を、同図(b)は静圧
分布をそれぞれ示している。
Therefore, in order to verify the above conceptual model, a simulation test was conducted using air as the fluid, and the results are shown in FIG. Figure (a) shows the local heat transfer coefficient distribution, and Figure (b) shows the static pressure distribution.

この場合の条件として、プロツケージ比ε=0.5゜伝
熱面とスペーサのすきま比α=0.25  、スペーサ
長さ比(スペーサ長さ/等価直径)β=1.56゜−様
に伝達した乱流範囲(10’<Re)である胴側流体レ
イノルズ教Re=2.7X10’、胴側流体プラントル
数P r=0.72 である。またパラメータとして、
第1図(b)の標準スペーサ(SD)、上流側が半円柱
状スペーサ(RU) 、上流及び下流側が半円柱状スペ
ーサ(RB)、下流側が半円柱状スペーサ(RD)と従
来例である円柱状スペーサ(ロンド・バッフルタイプ)
(CD)を用いた。尚、実験に当たり、温度場及び速度
場の相似性を成立させるため、十分な温度助走区間をと
り、スペーサ設置による伝熱・圧損効果を調べる領域は
一様に発達した流れの領域とした。
In this case, the conditions are as follows: protrusion ratio ε = 0.5°, clearance ratio between heat transfer surface and spacer α = 0.25, spacer length ratio (spacer length/equivalent diameter) β = 1.56°. The turbulent flow range (10'<Re), the Reynolds coefficient Re of the shell side fluid, is 2.7×10', and the Prandtl number P r of the shell side fluid is 0.72. Also, as a parameter,
The standard spacer (SD) in Fig. 1(b), the semi-cylindrical spacer (RU) on the upstream side, the semi-cylindrical spacer (RB) on the upstream and downstream sides, the semi-cylindrical spacer (RD) on the downstream side, and the conventional example Column spacer (rondo baffle type)
(CD) was used. In the experiment, in order to establish similarity between the temperature field and the velocity field, a sufficient temperature run-up section was taken, and the region in which the heat transfer and pressure drop effects due to spacer installation were investigated was a region of uniformly developed flow.

第4図の局所熱伝達率分布を見ると、スペーサを設置す
ることにより、スペーサ領域内の増速効果、さらにはス
ペーサ下流側における乱れによる伝熱促進が生じ、スペ
ーサ無しの場合に対し急激な熱伝達率の上昇が得られて
いる。スペーサのタイプ別に検討すると、CD、SD、
RU、RB。
Looking at the local heat transfer coefficient distribution in Figure 4, the installation of the spacer causes a speed-increasing effect within the spacer region and further heat transfer promotion due to turbulence on the downstream side of the spacer, resulting in a sudden increase in heat transfer compared to the case without a spacer. An increase in heat transfer coefficient has been obtained. Considering each type of spacer, CD, SD,
R.U., R.B.

RDの順番で性能が低下している。但し、平均熱伝達率
で比べると、これらの間の差違はあまり大きくない。一
方、同図(b)の静圧分布を見ると、スペーサの上流側
と下流側の間で急激な圧力降下を生じている。この原因
はスペーサを流路の途中に設置することにより、流れの
急拡大及び急縮少が生じているためである。この場合、
スペーサ損失ΔPsの大小を比較すると、CD、RD、
RU。
Performance decreases in RD order. However, when comparing the average heat transfer coefficients, the difference between them is not very large. On the other hand, when looking at the static pressure distribution shown in FIG. 6(b), a rapid pressure drop occurs between the upstream side and the downstream side of the spacer. This is because the spacer is installed in the middle of the flow path, which causes the flow to suddenly expand and contract. in this case,
Comparing the size of spacer loss ΔPs, CD, RD,
R.U.

RBの順で圧力損失ΔPsが小さくなる。この結果から
、スペーサの上流側を滑らかな形状にすると、圧力損失
の低減が顕著であることがわかる。
The pressure loss ΔPs becomes smaller in the order of RB. This result shows that when the upstream side of the spacer has a smooth shape, the pressure loss is significantly reduced.

以上のデータは流れ方向に沿った局所的な変化を示すグ
ラフである。そこで、これらのデータを用いて、以下平
均的かつ実用的な伝熱・圧損特性を定義した。
The above data are graphs showing local changes along the flow direction. Therefore, using these data, we defined the average and practical heat transfer and pressure drop characteristics below.

伝熱特性として、上で得られた局所熱伝達率hdxのデ
ータを用いて、平均熱伝達率hdmを次の(2)式より
求められた。
As a heat transfer characteristic, the average heat transfer coefficient hdm was determined from the following equation (2) using the data of the local heat transfer coefficient hdx obtained above.

但し、L e (=XIXs )  :熱伝達向上範囲
(m)である。
However, L e (=XIXs) is the heat transfer improvement range (m).

また、圧損特性として、スペーサ損失ΔPs と管摩擦
損失ΔPiを含めた1ピッチ間全体圧力損失APLに対
する等価摩擦損失係数feを次の(3)式により求めた
Further, as a pressure loss characteristic, the equivalent friction loss coefficient fe for the entire pressure loss APL between one pitch including the spacer loss ΔPs and the pipe friction loss ΔPi was determined using the following equation (3).

ΔPt、 =ΔPs+ΔPf (2)、(3)式より求めた数値をプロットするとは、
hdmを一般的な定義に従い無次元で表わしたときに、
hdmとN u d mが比例関係となることから算出
した。
ΔPt, =ΔPs+ΔPf Plotting the values obtained from equations (2) and (3) means:
When hdm is expressed dimensionless according to the general definition,
It was calculated based on the fact that hdm and N u d m are in a proportional relationship.

次に第5図を用いて伝熱・圧損特性について説明する。Next, heat transfer and pressure loss characteristics will be explained using FIG. 5.

まず、同図(a’)の伝熱特性をみると、本実施例のス
ペーサは、従来の平滑円管の熱伝達相関式であるDit
tus Boelterの式を管外に適用した場合の次
の(4)式より求めたものよりも、約2倍の伝熱性能の
向上が図れることが判がる。
First, looking at the heat transfer characteristics shown in FIG.
It can be seen that the heat transfer performance can be improved approximately twice as much as that obtained from the following equation (4) when the Boelter equation is applied outside the tube.

Nus=0.023ResO・8P rso、4−(4
)vs evs Re=− である。
Nus=0.023ResO・8Prso, 4-(4
) vs evs Re=-.

ここで等価直径deは正三角形配列のため、次式のよう
になる。
Here, since the equivalent diameter de is an equilateral triangle, the equivalent diameter de is as follows.

π dO なお、(3)〜(5)式で用いた記号は次のとおりであ
る。
π dO Note that the symbols used in formulas (3) to (5) are as follows.

h s CJllii側熱伝達率(W/mK)ks:胴
側流体熱伝導率(W/mK) vs:胴側流体動粘性係数(イ/ s )vs:胴側流
体流速(m/5) Pt:管ピッチ(m) dO:管外径(m) また、スペーサ無しの場合と比べても約30%の伝熱促
進が図られている。但し、各種スペーサ形状による伝熱
係数の差違は顕著ではない。これは、スペーサを設置す
ることにより、この部分における局所流速が増加し、し
かもこのスペーサを流れの中に障害物として挿入したこ
とにより乱れ促進効果が下流部に残るためと考えられる
h s CJllii side heat transfer coefficient (W/mK) ks: Shell side fluid thermal conductivity (W/mK) vs: Shell side fluid dynamic viscosity coefficient (I/s) vs: Shell side fluid flow velocity (m/5) Pt : Pipe pitch (m) dO: Pipe outer diameter (m) Furthermore, heat transfer is promoted by about 30% compared to the case without a spacer. However, the difference in heat transfer coefficient between various spacer shapes is not significant. This is thought to be because the local flow velocity in this part increases by installing the spacer, and because the spacer is inserted as an obstacle into the flow, a turbulence promoting effect remains in the downstream part.

一方、圧損特性は、同図(b)に示すように、(6)式
に示す従来の管摩擦損失(Blasiusの式)に比べ
て約4〜8倍近くの圧力損失がある。
On the other hand, as for the pressure loss characteristics, as shown in FIG. 2(b), the pressure loss is about 4 to 8 times as much as the conventional pipe friction loss (Blasius equation) shown in equation (6).

fs”0.3164Re5−0−25    −(6)
これは、スペーサ外表面に沿った摩擦損失とスペーサを
挿入したことによる胴体流体の縮少、拡大損失及びスペ
ーサ下流側の混合損失の総和であると考えられる。
fs”0.3164Re5-0-25-(6)
This is considered to be the sum of the friction loss along the outer surface of the spacer, the contraction and expansion loss of the body fluid due to the insertion of the spacer, and the mixing loss on the downstream side of the spacer.

この結果から、第一4図と同様にスペーサ上流側を滑ら
かにすると等価摩擦損失係数feの低下が顕著となる。
From this result, as in FIG. 14, if the upstream side of the spacer is made smooth, the equivalent friction loss coefficient fe decreases significantly.

例えばスペーサ無しの場合に対し標準スペーサ(S D
)はfeが約7.5倍と太きい、ともに上流側が半円柱
状スペーサであるRU。
For example, if you use a standard spacer (S D
) has a thicker FE of approximately 7.5 times, and both have a semi-cylindrical spacer on the upstream side.

RBはfeが約4.5倍と急激な損失係数の低下が見ら
れる。
In RB, fe is approximately 4.5 times, and a sharp drop in loss coefficient can be seen.

以上、標準スペーサ(S D)に対するスペーサ形状の
配置方向による伝熱・圧損特性の変化を第6図に示す。
FIG. 6 shows changes in heat transfer and pressure loss characteristics depending on the arrangement direction of the spacer shape with respect to the standard spacer (SD).

同図(a)は標準スペーサ(S D)に対する各種スペ
ーサの平均熱伝達率の変化N u d m/ N u 
d m *を示し、同図(b)はt!準ススペーサS 
D)に対する各種スペーサの等価Ila擦損失係数の変
化f e / f e *を示す。ともに*印は標準ス
ペーサの場合がある。また、レイノルズ数Reの範囲は
1.80 X 10’<Re <4.60X 10’の
発達した乱流の場合である。
Figure (a) shows the change in average heat transfer coefficient of various spacers with respect to the standard spacer (SD).
d m *, and (b) of the same figure shows t! Semi-spacer S
D) shows the change in the equivalent Ila friction loss coefficient of various spacers f e / f e *. In both cases, the * mark may be a standard spacer. Further, the range of Reynolds number Re is 1.80 x 10'<Re <4.60 x 10' in the case of a highly turbulent flow.

まず、第6図(a)の平均熱伝達率の変化を見ると、標
準スペーサ(S D)の場合を基準とすると、スペーサ
形状及び配置方向によらず、はぼ90%程度の値となり
、約10%の伝熱係数低下が見られる。ところが同図(
b)の等偏摩擦損失係数の変化を見ると、標準スペーサ
(SD)の場合の基i%I′値f e/f e本=1.
0に対し、上流側が半円柱状スペーサの場合は約45%
、上流及び下流側が半円柱状スペーサの場合は約40%
、下流側が半円柱スペーサの場合は約80%程度の値と
なり、これらの結果から少なくとも上流側を半円柱スペ
ーサとすれば、標準スペーサよりも約55〜60%の圧
力損失低減が図られる。
First, looking at the change in the average heat transfer coefficient in Fig. 6(a), when using the standard spacer (SD) as a reference, the value is approximately 90% regardless of the spacer shape and arrangement direction. A decrease in heat transfer coefficient of about 10% is observed. However, the same figure (
Looking at the change in the uniform friction loss coefficient in b), the basic i%I' value f e/f e = 1.
0, approximately 45% if the upstream side is a semi-cylindrical spacer.
, approximately 40% if the upstream and downstream sides are semi-cylindrical spacers.
When the downstream side is a semi-cylindrical spacer, the value is about 80%. From these results, if at least the upstream side is a semi-cylindrical spacer, the pressure loss can be reduced by about 55 to 60% compared to a standard spacer.

次に、第7図にスペーサ廻りの流れ模式図を示す。この
図に示すように、スペーサの形状をU。
Next, FIG. 7 shows a schematic diagram of the flow around the spacer. As shown in this figure, the shape of the spacer is U.

P、Dの3領域に分けて、各々の役割を考察する。We will divide it into three areas, P and D, and consider the role of each.

スペーサ上流側のUは流動抵抗低減部としての働きが重
要であり、スペーサ下流部のDは下流側の乱れ生成のた
めの伝熱促進部となり、これらの間のPが本来の伝熱管
支持部となる。したがって、第7図に示すスペーサ15
aを見本として、これらの変形版として下流側をややカ
ットしたようなタイプも考えられる。
U on the upstream side of the spacer is important to function as a flow resistance reducing part, D on the downstream side of the spacer becomes a heat transfer promoting part to generate turbulence on the downstream side, and P between these is the original heat exchanger tube support part. becomes. Therefore, the spacer 15 shown in FIG.
Using sample a as a sample, a modified version of these with the downstream side slightly cut may also be considered.

以上で求めた半円柱状スペーサの場合を拡張して、第1
図(b)の各種スペーサについて総合性能評価を行う。
Expanding the case of the semi-cylindrical spacer obtained above, the first
Comprehensive performance evaluation is performed for the various spacers shown in Figure (b).

まず、胴側の総合性能評価を行うに当たり、胴側流体の
伝熱係数hsと損失係数feを考慮した次式を定義する
First, in evaluating the overall performance of the shell side, the following equation is defined in consideration of the heat transfer coefficient hs and the loss coefficient fe of the shell side fluid.

である。It is.

そこで、第1図(b)に示す各種スペーサ形状及び配置
・方向により、標準スペーサ(S D)の総合性能評価
指数η本に対するηの変化を求めたので、第8図により
説明する。ここで、縦軸のη/η*の値が大きい程、伝
熱・圧損特性を含めた総合性能が大きいことを示し、η
/ηネの大きさは熱交換器のコンパクトさを表わしてい
る。この結果を整理すると次に示すようになる。
Therefore, the changes in η for the overall performance evaluation index η of the standard spacer (SD) were determined using the various spacer shapes, arrangements, and directions shown in FIG. 1(b), and will be explained with reference to FIG. 8. Here, the larger the value of η/η* on the vertical axis, the greater the overall performance including heat transfer and pressure drop characteristics, and η
The size of /η represents the compactness of the heat exchanger. The results are summarized as follows.

1)上流及び下流側ともに流線形状スペーサ(FB)の
場合、極めて顕著な圧力損失低下が図れるため、総合性
能指標が最も大きく、コンパクトな熱交換器が得られる
1) In the case of streamlined spacers (FB) on both the upstream and downstream sides, a very significant reduction in pressure loss can be achieved, so a compact heat exchanger with the highest overall performance index can be obtained.

2)上流側のみ、あるいは上流及び下流側に半円柱状、
鋭いエッチ状、鈍いエッチ状、流線形状スペーサを採用
すると、標準スペーサ(SD)に対し約70〜130%
の総合性能向上が図られる。但し、上流側のみの場合と
上流側及び下流側両者の場合とでは顕著な差違は得られ
ないため、製作コス1〜の点から考えると、上流側のみ
の場合で十分である。なお、これらの内で最も総合性能
が高いスペーサ形状はHPU、FU等の様に鋭いエッチ
状、あるいは流線形が良い。
2) Semi-cylindrical shape only on the upstream side or on the upstream and downstream sides,
When using sharp etch, dull etch, or streamlined spacers, the spacer is approximately 70 to 130% smaller than standard spacers (SD).
This will improve the overall performance of the system. However, since there is no significant difference between the case of only the upstream side and the case of both the upstream and downstream sides, the case of only the upstream side is sufficient from the viewpoint of manufacturing cost 1~. Note that among these, the spacer shape with the highest overall performance is preferably a sharp etch shape such as HPU or FU, or a streamlined shape.

3)下流側のみに半円柱状、流線形状、鋭いあるいは鈍
いエッチ状スペーサを採用すると、顕著な圧力損失低下
が図れず、標準スペーサ(S D)に対し、約10〜5
0%の総合性能向上が図れるだけである。
3) If a semi-cylindrical, streamlined, sharp or blunt etched spacer is used only on the downstream side, it will not be possible to achieve a significant pressure loss reduction, and the pressure loss will be approximately 10 to 5
Only a 0% overall performance improvement can be achieved.

4)従来例の円柱棒状スペーサ(CD)の場合、下流側
のみの場合よりは良いが、上流側のみ、あるいは上流及
び下流側両者の場合に比べると総合性能は最も悪い部類
となり、本実施例のスペーサ形状の方がすぐれているこ
とがわかる。
4) In the case of the conventional cylindrical bar-shaped spacer (CD), the overall performance is better than the case of only the downstream side, but compared to the case of only the upstream side or both the upstream and downstream sides, the overall performance is the worst. It can be seen that the spacer shape is better.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、伝熱管支持材の
スペーサ断面形状を胴側流体の流れに対し上流側および
下流側の少なくとも一方の側を流動抵抗の小さい形状に
形成することにより、管支持材前後における胴側流体の
圧力損失を小さくし、それにより胴側流速を増加させる
と同時に乱れ促進を図ることができ、胴側総合性能を胴
側伝熱係数と圧力損失の比で評価すれば、本来の意味で
の伝熱促進が図れる。しかも、以」二のように円側の総
合性能が向上すれば、もともと平滑管を用いた管側の総
合性能は大きいので、全体として熱交換器の総括伝熱係
数は大きくなり、高性能及び小型化が図られる。
As explained above, according to the present invention, the cross-sectional shape of the spacer of the heat exchanger tube support material is formed to have a shape with small flow resistance on at least one of the upstream side and the downstream side with respect to the flow of the body side fluid. It is possible to reduce the pressure loss of the shell side fluid before and after the pipe support material, thereby increasing the flow velocity on the shell side and promoting turbulence.The overall performance of the shell side can be evaluated by the ratio of the shell side heat transfer coefficient and pressure loss. By doing so, heat transfer can be promoted in the original sense. Moreover, if the overall performance of the circular side improves as shown in 2 below, since the overall performance of the pipe side using smooth tubes is originally high, the overall heat transfer coefficient of the heat exchanger as a whole will increase, resulting in high performance and Miniaturization is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明に係る伝熱管支持材の斜視図、第
1図(b)は伝熱管支持材のスペーサの横断面図、第2
図(a)は本発明を多管式熱交換器に適用した場合の縦
断面図、第2図(b)は同図(a)の■−■線に沿った
断面図、第3図は胴側流体流れ方向に沿った位置に対す
る局所熱伝達率及び静圧分布の説明図、第4図は本発明
による局所熱伝達率及び静圧分布の挙動を示すグラフ、
第5図は本発明による伝熱・圧損特性の挙動を示すグラ
フ、第6図は伝熱管支持材の設置方向に関し、標準形状
に対する伝熱・圧損特性の変化を示すグラフ、第7図は
伝熱管支持材廻りの流れの模式図、第8図は伝熱管支持
材構造に対する総合性態評価のグラフ、第9図は従来例
の多管式熱交換器の縦断面図である。 1・・多管式熱交換器、2・・・胴体、3・・・伝熱管
、4・・・管板、6・・・胴側ノズル、7・・・胴側出
口ノズル、8.9・・・管側ヘッド、10・・管側入口
ノズル、11・・・管側出口ノズル、15・・伝熱管支
持材、15a・・・スペーサ、15b・・・リンク、1
6・・・内筒、17・・内筒支持部材。
FIG. 1(a) is a perspective view of a heat exchanger tube support material according to the present invention, FIG. 1(b) is a cross-sectional view of a spacer of the heat exchanger tube support material, and FIG.
Figure (a) is a longitudinal sectional view when the present invention is applied to a shell-and-tube heat exchanger, Figure 2 (b) is a sectional view taken along the line ■-■ in Figure (a), and Figure 3 is An explanatory diagram of the local heat transfer coefficient and static pressure distribution with respect to the position along the fluid flow direction on the shell side, FIG. 4 is a graph showing the behavior of the local heat transfer coefficient and static pressure distribution according to the present invention,
Fig. 5 is a graph showing the behavior of heat transfer/pressure drop characteristics according to the present invention, Fig. 6 is a graph showing changes in heat transfer/pressure drop characteristics with respect to the standard shape with respect to the installation direction of the heat transfer tube support material, and Fig. 7 is a graph showing the behavior of heat transfer/pressure drop characteristics according to the present invention. A schematic diagram of the flow around the heat tube support material, FIG. 8 is a graph of comprehensive property evaluation for the structure of the heat transfer tube support material, and FIG. 9 is a vertical cross-sectional view of a conventional multi-tube heat exchanger. 1...Multi-tube heat exchanger, 2...Body, 3...Heat transfer tube, 4...Tube plate, 6...Body side nozzle, 7...Body side outlet nozzle, 8.9 ...Tube side head, 10...Tube side inlet nozzle, 11...Tube side outlet nozzle, 15...Heat exchange tube support material, 15a...Spacer, 15b...Link, 1
6... Inner cylinder, 17... Inner cylinder support member.

Claims (1)

【特許請求の範囲】[Claims] 1、棒状のスペーサが格子状に組立てられた複数個の伝
熱管支持材を、筒状の胴体内に軸線に垂直に設置すると
ともに、前記伝熱管支持材の各格子内に伝熱管を個々に
挿入することにより、該伝熱管を支持する伝熱管支持構
造において、前記スペーサを薄板で構成して、前記伝熱
管を線接触で支持するとともに、前記薄板の胴側流体に
対する上流体および下流側のうち少なくとも一方の側を
、流動抵抗の小さい形状に形成したことを特徴とする伝
熱管支持構造。
1. A plurality of heat exchanger tube supports in which bar-shaped spacers are assembled in a lattice shape are installed in a cylindrical body perpendicular to the axis, and heat exchanger tubes are individually placed in each lattice of the heat exchanger tube support members. In the heat exchanger tube support structure that supports the heat exchanger tube by inserting the spacer, the spacer is formed of a thin plate, supports the heat exchanger tube in line contact, and provides an upper fluid and a downstream side for the body side fluid of the thin plate. A heat exchanger tube support structure characterized in that at least one side thereof is formed into a shape with low flow resistance.
JP31057987A 1987-12-08 1987-12-08 Heat transfer pipe support structure Pending JPH01150798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31057987A JPH01150798A (en) 1987-12-08 1987-12-08 Heat transfer pipe support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31057987A JPH01150798A (en) 1987-12-08 1987-12-08 Heat transfer pipe support structure

Publications (1)

Publication Number Publication Date
JPH01150798A true JPH01150798A (en) 1989-06-13

Family

ID=18006936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31057987A Pending JPH01150798A (en) 1987-12-08 1987-12-08 Heat transfer pipe support structure

Country Status (1)

Country Link
JP (1) JPH01150798A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630822A1 (en) * 2004-08-31 2006-03-01 General Electric Company Arrangement for mitigating pressure loss in a steam tunnel of a boiling water reactor
JP2009243924A (en) * 2008-03-28 2009-10-22 Hitachi-Ge Nuclear Energy Ltd Fast breeder reactor type nuclear power generation system
CN102147207A (en) * 2011-03-15 2011-08-10 天津大学 Conical tube bundle support member and shell-and-tube heat exchanger adopting same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587091B2 (en) * 1977-04-06 1983-02-08 富士通株式会社 Subscriber line monitoring method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587091B2 (en) * 1977-04-06 1983-02-08 富士通株式会社 Subscriber line monitoring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630822A1 (en) * 2004-08-31 2006-03-01 General Electric Company Arrangement for mitigating pressure loss in a steam tunnel of a boiling water reactor
JP2009243924A (en) * 2008-03-28 2009-10-22 Hitachi-Ge Nuclear Energy Ltd Fast breeder reactor type nuclear power generation system
CN102147207A (en) * 2011-03-15 2011-08-10 天津大学 Conical tube bundle support member and shell-and-tube heat exchanger adopting same

Similar Documents

Publication Publication Date Title
US6378605B1 (en) Heat exchanger with transpired, highly porous fins
US3265127A (en) Heat exchange element
US3993125A (en) Heat exchange device
JP5453797B2 (en) Heat exchanger
US20080190588A1 (en) Fin structure for heat exchanger
mohammed Hussein et al. Structure parameters and designs and their impact on performance of different heat exchangers: A review
US20160273840A1 (en) Tube heat exchanger with optimized thermo-hydraulic characteristics
Wang et al. Some aspects of plate fin-and-tube heat exchangers: with and without louvers
Saboya et al. Experiments on a three-row fin and tube heat exchanger
JP2008014566A (en) Flat heat transfer tube for heat exchanger, and multitubular heat exchanger and egr gas cooling apparatus incorporating the heat transfer tube
US20060169019A1 (en) Tabbed transfer fins for air-cooled heat exchanger
Soltani et al. Heat transfer augmentation in a double-pipe heat exchanger with dimpled twisted tape inserts: an experimental study
JPH01150798A (en) Heat transfer pipe support structure
US20070113609A1 (en) High-performance and high-efficiency rolled fin tube and forming disk therefor
JPH10176892A (en) Noded plate fin type heat exchanger
JP6991567B2 (en) Double tube heat exchanger
JP2002350071A (en) Double pipe heat exchanger
JPS6115092A (en) Heat transfer tube for use in heat exchanger
EP2147274B1 (en) Indirect heat exchange device and method of exchanging heat
CN110849180A (en) Heat exchanger with non-circular cross section of heat exchange tube and heat exchange method thereof
CN100491543C (en) Method for fastening a turbulator insert within a conduit
JP2001041671A (en) Heat exchanger for air conditioning
JPS63197887A (en) Heat exchanger
WO2022049886A1 (en) Corrugated fin-type heat exchanger
Afandi et al. Airside Heat Transfer and Pressure Drop on the Spiral Finned-Tube Compact Heat Exchanger with Sharp Turns