JPH01150775A - Cryogenic refrigerant feeder - Google Patents

Cryogenic refrigerant feeder

Info

Publication number
JPH01150775A
JPH01150775A JP30754087A JP30754087A JPH01150775A JP H01150775 A JPH01150775 A JP H01150775A JP 30754087 A JP30754087 A JP 30754087A JP 30754087 A JP30754087 A JP 30754087A JP H01150775 A JPH01150775 A JP H01150775A
Authority
JP
Japan
Prior art keywords
cryogenic refrigerant
cooled
cryogenic
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30754087A
Other languages
Japanese (ja)
Inventor
Kozo Matsumoto
松本 孝三
Nobuyuki Takei
武居 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30754087A priority Critical patent/JPH01150775A/en
Publication of JPH01150775A publication Critical patent/JPH01150775A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a highly reliable inexpensive cryogenic refrigerant supplying device which does not cause any failure by providing a control means which switches a flow passage switching means to the atmosphere side when a cryogenic refrigerant flows without being heated to a prescribed temperature after the temperature in a transfer pipe is detected and an object to be cooled is cooled or a power failure occurs. CONSTITUTION: Usually, a cryogenic refrigerant flows to a heater 7 through a three-way valve 10 after cooling an object 3 to be cooled. When the heat load to the object 3 becomes abnormal and such abnormality as the disconnection of the heater 7, etc., occurs, the temperature drop at a normal-temperature pipeline 8 is detected by means of a temperature switch 12 and the cryogenic refrigerant flowing out from the object 3 is made to flow to a cryogenic refrigerant discharge pipe 11 so as to prevent the refrigerant from flowing in the transfer pipeline 8. When a power failure occurs, the temperature switch 12 becomes inoperable, but the three-way valve 10 is always maintained in such a normal state that the valve 10 can be connected to the discharge pipe 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は極低温冷媒装置に係り、特に極低温冷媒供給源
と被冷却体の設置場所が遠く離れており。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cryogenic refrigerant device, and particularly in a case where the cryogenic refrigerant supply source and the object to be cooled are installed far apart.

長い移送配管を必要とする場合に好適な極低温冷媒供給
装置に関するものである。
The present invention relates to a cryogenic refrigerant supply device suitable for cases where long transfer piping is required.

〔従来の技術〕[Conventional technology]

極低温装置においては、極低温冷媒を移送するために高
真空断熱1れた極低温冷媒移送配管を使用する。これは
、移送配管での熱損失を低減すると共に、移送配管の結
霜、結露を防止するためである。このために極低温冷媒
移送配管は冷媒管の外側に外管を設は外管と冷媒管の間
に高真空に保持すると共に、外管と冷媒管の間に積層断
熱材を装着している。また、冷媒管のサポート、冷媒管
の伸縮を吸収するためのベローなどが必要であるなど非
常に複雑な構造となるため高価である。
In cryogenic equipment, cryogenic refrigerant transfer piping with high vacuum insulation is used to transfer the cryogenic refrigerant. This is to reduce heat loss in the transfer piping and to prevent frost formation and dew condensation on the transfer piping. For this reason, the cryogenic refrigerant transfer piping is equipped with an outer pipe on the outside of the refrigerant pipe, which is maintained at a high vacuum between the outer pipe and the refrigerant pipe, and a laminated insulation material is installed between the outer pipe and the refrigerant pipe. . In addition, it is expensive because it requires a support for the refrigerant pipe and a bellows to absorb the expansion and contraction of the refrigerant pipe, resulting in a very complicated structure.

したがりて、極低温冷媒供給装置のシステム設計におい
ては、極力、極低温冷媒移送配管の長さを減らすように
考慮されている。以下、液化ガスとして液体窒素の場合
を例にとり説明する。
Therefore, in the system design of the cryogenic refrigerant supply device, consideration is given to reducing the length of the cryogenic refrigerant transfer piping as much as possible. Hereinafter, a case will be explained using liquid nitrogen as an example of the liquefied gas.

第3図は従来の極低温冷媒供給装置の構成の−例を示す
ブロック図である。この第3図において1は極低温冷媒
供給源、例えば液体窒素タンク。
FIG. 3 is a block diagram showing an example of the configuration of a conventional cryogenic refrigerant supply device. In FIG. 3, 1 is a cryogenic refrigerant supply source, such as a liquid nitrogen tank.

2は液体窒素移送用の極低温冷媒移送配管、3は被冷却
体、4は液体窒素供給弁、6はガス窒素移送用の極低温
冷媒移送配管、7は加温手段、例えばヒータ式の加温器
、8は加温ガス窒素移送用の移送配管である。
2 is a cryogenic refrigerant transfer pipe for transferring liquid nitrogen, 3 is an object to be cooled, 4 is a liquid nitrogen supply valve, 6 is a cryogenic refrigerant transfer pipe for transferring gaseous nitrogen, and 7 is a heating means, such as a heater type heating device. The warming device 8 is a transfer pipe for transferring heated gas and nitrogen.

次に、上記のように構成された従来の極低温冷媒供給装
置の動作について述べる。極低温冷媒である液体窒素は
、液体窒素タンク1から極低温冷媒移送配管2を通り、
被冷却体3に供給される。
Next, the operation of the conventional cryogenic refrigerant supply device configured as described above will be described. Liquid nitrogen, which is a cryogenic refrigerant, passes from a liquid nitrogen tank 1 through a cryogenic refrigerant transfer pipe 2,
It is supplied to the object to be cooled 3.

液体窒素量は、液体窒素供給弁4によって調節される。The amount of liquid nitrogen is regulated by a liquid nitrogen supply valve 4.

被冷却体3を冷却した極低温ガス窒素は極低温冷媒移送
配管6を通り、ヒータ式の加温器7で常温まで加温され
た後、移送配管8を通り屋外の大気中に放出される。
The cryogenic nitrogen gas that has cooled the object to be cooled 3 passes through a cryogenic refrigerant transfer pipe 6, is heated to room temperature by a heater-type warmer 7, and then passes through a transfer pipe 8 and is released into the outdoor atmosphere. .

なお、この種の装置として関連するものには例えば特開
昭57−41555号公報等がある。
Note that related devices of this type include, for example, Japanese Unexamined Patent Publication No. 57-41555.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような構成および動作における従来の極低温冷媒
供給装置では、停電、ヒータ断線等の加温装置の異常時
、および被冷却体3側の空気リーク、水リーク等による
熱負荷異常時等には、液体窒素供給弁4で供給を停止さ
せることができるが。
In the conventional cryogenic refrigerant supply device with the above configuration and operation, when there is an abnormality in the heating device such as a power outage or a heater disconnection, or when there is an abnormal heat load due to an air leak or water leak on the side of the object to be cooled 3, etc. However, the supply can be stopped using the liquid nitrogen supply valve 4.

既に被冷却体3内に送り込まれていた分については、移
送配管に極低温冷媒が流入することは避は難い。
Regarding the amount of cryogenic refrigerant that has already been sent into the object to be cooled 3, it is inevitable that the cryogenic refrigerant will flow into the transfer pipe.

移送配管8に極低温冷媒が流入すると、結露。When the cryogenic refrigerant flows into the transfer pipe 8, dew condenses.

結霜はもとより、移送配管の伸縮が生じるために、防露
対策、伸縮吸収対策が必要になるという欠点があった。
In addition to frost formation, the transfer piping also expands and contracts, which has the disadvantage of requiring measures to prevent dew and absorb expansion and contraction.

また、移送配管の構造によっては、伸縮を吸収すること
が困難となり、常温用の移送配管を使用することが不可
能となりて、高価な極低温冷媒移送配管にせざるを得な
いという欠点があった。
Additionally, depending on the structure of the transfer piping, it may be difficult to absorb expansion and contraction, making it impossible to use transfer piping for room temperature use, and having to use expensive cryogenic refrigerant transfer piping. .

本発明の目的は、被冷却体の導出側に分岐点を設は異常
時には前記分岐点の流路を切替えて装置に不具合を生じ
させず、安価で信頼性が高い極低温冷媒供給装置を提供
することにある。
An object of the present invention is to provide an inexpensive and highly reliable cryogenic refrigerant supply device that has a branch point on the outlet side of the object to be cooled and switches the flow path at the branch point in case of an abnormality so as not to cause malfunction of the device. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、極低温冷媒供給源と、被冷却体と、前記極低
温冷媒供給源から前記被冷却体へ極低温冷媒を移送する
極低温冷媒移送配管と、前記被冷却体を冷却した後の極
低温冷媒を加温する加温手段と、該加温手段で加温した
冷媒を移送する移送配管とから成る極低温冷媒供給装置
において、前記被冷却体の導出側に前記移送配管側と大
気側とに分岐させて該分岐の流路を切替える流路切替手
段と、前記移送配管内の温度を検知し前記被冷却体を冷
却した後の極低温冷媒が所定の温度まで加温されずに流
れた場合又は停電時に前記流路切替手段を大気側に切り
替える制御手段とを設けることにより、達成される。
The present invention provides a cryogenic refrigerant supply source, an object to be cooled, a cryogenic refrigerant transfer pipe that transfers the cryogenic refrigerant from the cryogenic refrigerant supply source to the object to be cooled, and a In a cryogenic refrigerant supply device comprising a heating means for heating a cryogenic refrigerant and a transfer pipe for transferring the refrigerant heated by the heating means, the transfer pipe side and the atmosphere are connected to the outlet side of the object to be cooled. a flow path switching means for switching the flow path of the branch by branching to the side; This is achieved by providing a control means for switching the flow path switching means to the atmospheric side when the flow occurs or when there is a power outage.

〔作  用〕[For production]

被冷却体の導出側に分岐点を設け、異常時に分岐点の流
路を自動的に切替えられるので、装置に不具合を生じさ
せず、安価で信頼性を高(できる。
A branch point is provided on the outlet side of the object to be cooled, and the flow path at the branch point can be automatically switched in the event of an abnormality, so there is no problem with the device, and the system is inexpensive and highly reliable.

〔実 施 例〕〔Example〕

以下1本発明の一実施例を第1図と第2図とにより説明
する。第1図において、11前記従来例である第3図と
同符号は同一部材を示す。第1図において、第3図と異
なる点は、流路切替手段例えば三方弁10を極低温冷媒
移送配管6の途中で加温器7の導入部分に設け、三方弁
10の出口側の一方は加湿器7の導入部に継ながり、他
方には極低温冷媒移送管岳が接続されていること、およ
び三方弁10の制御手段である制御器例えば温度スイッ
チ校が加温器7の導出側に設けられて、三方弁1oに継
なげられていることである。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In FIG. 1, 11 indicates the same members as in FIG. 3, which is the conventional example. 1, the difference from FIG. 3 is that a flow path switching means, for example, a three-way valve 10, is provided at the introduction part of the warmer 7 in the middle of the cryogenic refrigerant transfer pipe 6, and one of the outlet sides of the three-way valve 10 is It is connected to the introduction part of the humidifier 7, and a cryogenic refrigerant transfer pipe is connected to the other end, and a controller, such as a temperature switch, which is a control means for the three-way valve 10 is connected to the outlet side of the warmer 7. The three-way valve 1o is connected to the three-way valve 1o.

上記構成において、通常の場合は、被冷却体3を冷却し
たゆ低温冷媒は三方弁1oを通り加温器7へ流れる。被
冷却体3の異常熱負荷およびヒータ断線等の異常時には
、常海配管8の濃度低下を温度スイッチLで検知し、三
方弁10を切り替えることによって、被冷却体3から流
出する極低温冷媒を極低温冷媒放出管11に流し、移送
配管8に極低温冷媒が流入しないようにする。停電時に
は温度スイッチ12が動作しなくなり、三方弁1oへの
切替え指令が出なくなるが、三方弁10はノーマルな状
態で常に極低温冷媒放出管11に継ながるようにしてお
く。
In the above configuration, normally, the low-temperature refrigerant that has cooled the object 3 to be cooled flows to the warmer 7 through the three-way valve 1o. In the event of an abnormality such as an abnormal heat load on the object to be cooled 3 or a disconnection of the heater, the temperature switch L detects a decrease in the concentration in the Jokai piping 8, and the three-way valve 10 is switched to stop the cryogenic refrigerant flowing out from the object to be cooled 3. The cryogenic refrigerant is flowed through the cryogenic refrigerant discharge pipe 11 to prevent the cryogenic refrigerant from flowing into the transfer pipe 8. During a power outage, the temperature switch 12 will not operate and a switching command to the three-way valve 1o will not be issued, but the three-way valve 10 is always connected to the cryogenic refrigerant discharge pipe 11 in a normal state.

第2図は、三方弁の一例を示した構造図である。FIG. 2 is a structural diagram showing an example of a three-way valve.

第2図において、■は弁箱、nは弁棒、乙は上部弁座、
冴は下部弁座、5は上部弁体、3は下部弁体である。第
2図のように、弁pj22が下にきている場合には、流
体はaから流入し、bへ流出する。
In Figure 2, ■ is the valve box, n is the valve stem, O is the upper valve seat,
Sae is the lower valve seat, 5 is the upper valve body, and 3 is the lower valve body. As shown in FIG. 2, when the valve pj22 is in the lower position, fluid flows in from a and flows out to b.

弁棒nが上に動くと流体はaから流入してCに流出する
。例えばbは極低温冷媒放出管11に継なぎ、Cは加温
器7に継ないで、海度スイッチ12の電気信号で三方弁
10の操作部に、エヤー供給源(図示省略)によりエヤ
ーを送って弁棒nを上下動させて三方弁lOを切替える
。極低温冷媒放出管11内の温度が所定の温度以上であ
れば、潤度スイッチが働いてエヤーを三方弁10に送り
、弁棒ρを上げてCを開にし、加温器7側に極低温冷媒
が流れるようにする。エヤーが止まれば弁棒nは下がり
bが敏 開になって極低温冷媒放出管11側に継ながる。第2図
に示すような三方弁を使用することによって。
When valve stem n moves upward, fluid flows in from a and flows out to C. For example, b is connected to the cryogenic refrigerant discharge pipe 11, and C is connected to the warmer 7, and air is supplied from an air supply source (not shown) to the operation part of the three-way valve 10 using an electric signal from the sea level switch 12. and move the valve stem n up and down to switch the three-way valve lO. If the temperature inside the cryogenic refrigerant discharge pipe 11 is above a predetermined temperature, the moisture switch operates to send air to the three-way valve 10, raise the valve stem ρ to open C, and release the cryogen to the warmer 7 side. Allow low temperature refrigerant to flow. When the air stops, the valve stem n lowers and b opens quickly and connects to the cryogenic refrigerant discharge pipe 11 side. By using a three-way valve as shown in FIG.

b又はCのどちらかは必ず開状態にあり、液体窒素供給
弁4以降は逆に開放状態に保持することができるため、
被冷却体3内の極低温冷媒はb又Cのいずれかを通って
抜けることができ、システムの信頼性を確保することが
できる。
Either b or c is always in the open state, and conversely, the liquid nitrogen supply valve 4 and subsequent ones can be kept in the open state.
The cryogenic refrigerant in the object to be cooled 3 can escape through either b or c, ensuring system reliability.

なお、本実施例では、三方弁を加温器7の前の極低温移
送配管6に設置しているが、移送配管8に悪影響を与え
ない程度であれば、加温器7に近い場所で、移送配管8
部に設けても良い。また、He冷凍機等のように移送配
管8を冷凍機に接続して加温した冷媒を回収するもので
も良い。但し極低温冷媒放出管11から放出した冷媒は
回収しない。
In this embodiment, the three-way valve is installed in the cryogenic transfer pipe 6 in front of the warmer 7, but it may be placed near the warmer 7 as long as it does not adversely affect the transfer pipe 8. , transfer piping 8
It may be provided in the section. Alternatively, the transfer pipe 8 may be connected to a refrigerator, such as a He refrigerator, to recover the heated refrigerant. However, the refrigerant discharged from the cryogenic refrigerant discharge pipe 11 is not recovered.

本実施例によれば、三方弁を設け、異常時には極低温冷
媒放出管側に極低温冷媒を放出し、移送配管には極低温
冷媒を流入させないようにできるため、移送配管に常温
の配管を使用することができると共に、常温用の配管の
結霜、結露対策および伸縮吸収機構が不要になるため安
価で信頼性の亮い極低温冷媒供給装置となる効果がある
According to this embodiment, a three-way valve is provided, and in the event of an abnormality, the cryogenic refrigerant is released to the cryogenic refrigerant discharge pipe side, and the cryogenic refrigerant is not allowed to flow into the transfer pipe, so the normal temperature pipe is connected to the transfer pipe. In addition, since there is no need for measures against frost or dew condensation on pipes for room temperature use, and for an expansion/contraction absorption mechanism, there is an effect that the cryogenic refrigerant supply device is inexpensive and reliable.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、被冷却体の導出側に分岐点を設は異常
時には前記分岐点の流路を自動的に切替えることができ
るので、装置に不具合が生ぜず安価で信頼性を高くする
ことができるという効果がある
According to the present invention, when a branch point is provided on the outlet side of the object to be cooled, the flow path at the branch point can be automatically switched in the event of an abnormality, so that the device is not malfunctioning and is inexpensive and highly reliable. It has the effect of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である極低温冷媒供給装置を
示すブロック図、第2図は第1図のA部の詳細図、第3
図は従来例である極低温冷媒供給装置を示すブロック図
である。 l・・・・・・液体窒素タンク、2・・・・・・極低温
冷媒移送配管、3・・・・・・被冷却体、7・・・・・
・加温器、10・・・・・・三方弁、丘・・・・・・温
度スイッチ 代理人 弁理士  小 川 勝 男 。 〜 第2図
Fig. 1 is a block diagram showing a cryogenic refrigerant supply device which is an embodiment of the present invention, Fig. 2 is a detailed view of part A in Fig. 1, and Fig.
The figure is a block diagram showing a conventional cryogenic refrigerant supply device. l...Liquid nitrogen tank, 2...Cryogenic refrigerant transfer piping, 3...Object to be cooled, 7...
・Warmer, 10...Three-way valve, hill...Temperature switch Patent attorney Katsuo Ogawa. ~ Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、極低温冷媒供給源と、被冷却体と、前記極低温冷媒
供給源から前記被冷却体へ極低温冷媒を移送する極低温
冷媒移送配管と、前記被冷却体を冷却した後の極低温冷
媒を加温する加温手段と、該加温手段で加温した冷媒を
移送する移送配管とから成る極低温冷媒供給装置におい
て、前記被冷却体の導出側に前記移送配管側と大気側と
に分岐させて該分岐の流路を切替える流路切替手段と、
前記移送配管内の温度を検知し前記被冷却体を冷却した
後の極低温冷媒が所定の温度まで加温されずに流れた場
合又は停電時に前記流路切替手段を大気側に切り替える
制御手段とを設けたことを特徴とする極低温冷媒供給装
置。
1. A cryogenic refrigerant supply source, an object to be cooled, a cryogenic refrigerant transfer pipe that transfers the cryogenic refrigerant from the cryogenic refrigerant supply source to the object to be cooled, and a cryogenic temperature after cooling the object to be cooled. In a cryogenic refrigerant supply device comprising a heating means for heating a refrigerant and a transfer pipe for transferring the refrigerant heated by the heating means, the transfer pipe side and the atmosphere side are connected to the outlet side of the object to be cooled. a flow path switching means for switching the flow path of the branch by branching into the flow path;
control means for detecting the temperature in the transfer pipe and switching the flow path switching means to the atmospheric side when the cryogenic refrigerant after cooling the object to be cooled flows without being heated to a predetermined temperature or when a power outage occurs; A cryogenic refrigerant supply device characterized by being provided with.
JP30754087A 1987-12-07 1987-12-07 Cryogenic refrigerant feeder Pending JPH01150775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30754087A JPH01150775A (en) 1987-12-07 1987-12-07 Cryogenic refrigerant feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30754087A JPH01150775A (en) 1987-12-07 1987-12-07 Cryogenic refrigerant feeder

Publications (1)

Publication Number Publication Date
JPH01150775A true JPH01150775A (en) 1989-06-13

Family

ID=17970323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30754087A Pending JPH01150775A (en) 1987-12-07 1987-12-07 Cryogenic refrigerant feeder

Country Status (1)

Country Link
JP (1) JPH01150775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067719A (en) * 1996-01-30 2008-03-27 Organogenesis Inc Ice seeding apparatus for cryopreservation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067719A (en) * 1996-01-30 2008-03-27 Organogenesis Inc Ice seeding apparatus for cryopreservation system

Similar Documents

Publication Publication Date Title
EP0281762A2 (en) Air conditioning system for buildings
JPH0341750B2 (en)
US3812872A (en) System to prevent freezing of heating units such as boilers
JP4946948B2 (en) Heat pump air conditioner
JPH01150775A (en) Cryogenic refrigerant feeder
JP6382743B2 (en) Heat pump water heater
JP2010181036A (en) Air conditioner
US5557925A (en) Piping installation for low temperature fluid
JP4864415B2 (en) Hot water storage water heater
JPS6138060Y2 (en)
JPH0615260Y2 (en) Antifreeze device for water heater
JPH0686958B2 (en) Solar water heater
JPH0244144A (en) Air conditioner
JPH06272798A (en) Device and method for parallel operation argon evaporator
JPS6027321Y2 (en) Air conditioning equipment
JPH0522761Y2 (en)
JPH0285579A (en) Circulating fluid leakage preventing device and cutoff valve
JPH0233108Y2 (en)
JPS6138061Y2 (en)
RU30599U1 (en) Isothermal module for liquid carbon dioxide fire extinguishing system
CN115888336A (en) Micro-thermal regeneration dryer control and fault display system
CN110878907A (en) Ethylene vaporization system and control method thereof
JP4193057B2 (en) Precooler
JPH04236063A (en) Apparatus for transferring cold heat
JPS63223458A (en) Solar heat utilizing hot water heater