JPH01150018A - Dynamic pressure fluid bearing - Google Patents

Dynamic pressure fluid bearing

Info

Publication number
JPH01150018A
JPH01150018A JP30618787A JP30618787A JPH01150018A JP H01150018 A JPH01150018 A JP H01150018A JP 30618787 A JP30618787 A JP 30618787A JP 30618787 A JP30618787 A JP 30618787A JP H01150018 A JPH01150018 A JP H01150018A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
lubricating oil
synthetic resin
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30618787A
Other languages
Japanese (ja)
Other versions
JP2598049B2 (en
Inventor
Yoshiro Oki
芳郎 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOBEA RULON KOGYO KK
Original Assignee
YOBEA RULON KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOBEA RULON KOGYO KK filed Critical YOBEA RULON KOGYO KK
Priority to JP62306187A priority Critical patent/JP2598049B2/en
Publication of JPH01150018A publication Critical patent/JPH01150018A/en
Application granted granted Critical
Publication of JP2598049B2 publication Critical patent/JP2598049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To prevent and control the generation of abrasion powder to the most extent so as to improve the sliding property of the bearing in the caption by forming a thin film made of synthetic resin on at least one side of opposite faces making relative rotation, in a dynamic pressure bearing in which grooves for leading lubricating oil in a fixed direction are formed. CONSTITUTION:In a dynamic pressure fluid bearing in which lubricating oil is used as fluid, a SUS 304 made shaft 2 having herringbone grooves 5 is dipped in painting liquid in polyester resin is dispersed by methyl-ethyl-ketone and is burned to be formed in a film 4 of about 1mum thickness. Accordingly, synthetic resin thin film on the shaft surface prevents this surface from contact with metal and wear is eliminated so that rotational torque can be stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は動圧流体軸受に関するものである。[Detailed description of the invention] [Industrial application field] This invention relates to a hydrodynamic bearing.

〔従来の技術〕[Conventional technology]

近年、レーザビームプリンタ等に用いられる多面鏡(ポ
リゴンミラー)回転軸、VTRシリンダーヘッドスピン
ドル、磁気ディスクスピンドル等の軸受は高速、高精度
での回転を満足することが強く要望され、高速回転時に
回転むらが非常に少な(、回転トルクも小さ(安定して
いるような軸受性能を保持するためオイルやグリースを
潤滑油とした動圧流体軸受が用いられて来た。このよう
な動圧流体軸受は、定常回転時固定側と回転側の間に高
圧の流体層を発生させ微小な隙間(2〜lOμ程度)を
保持しながら、非接触で回転することに特徴があり、そ
の軸受性能(回転精度、回転ムラ、回転トルク等)もそ
れに由来している。そしてこのような微小な隙間の保証
は固定側と回転側の摩耗粉によるグリース、オイル等の
劣化等にに伴う軸受性能の低下や焼付きというような軸
受にとっては致命的なトラブルを防止するうえできわめ
て重要である。しかし、潤滑油と金属表面との親和性が
とぼしいため、回転時に潤滑油が排出され、金属接触が
発生してしまう。よって摩耗が起こってしまうという欠
点があった。
In recent years, there has been a strong demand for bearings for polygon mirror rotation shafts used in laser beam printers, VTR cylinder head spindles, magnetic disk spindles, etc. to rotate at high speed and with high precision. Hydrodynamic bearings that use oil or grease as a lubricant have been used to maintain bearing performance with very little unevenness (and stable rotational torque). The bearing is characterized by generating a high-pressure fluid layer between the stationary side and the rotating side during steady rotation, and rotating without contact while maintaining a minute gap (about 2 to 10μ). Accuracy, rotational unevenness, rotational torque, etc.) are also derived from this.In addition, the guarantee of such a small gap is due to the deterioration of bearing performance due to deterioration of grease, oil, etc. due to wear particles on the fixed side and rotating side. This is extremely important to prevent fatal problems for bearings such as seizure.However, since the affinity between lubricating oil and metal surfaces is poor, lubricating oil is discharged during rotation and metal-to-metal contact can occur. This has the drawback of causing wear.

そこで、この接触に伴って生じる表面の摩耗を極力抑え
るため対向面に焼入れや硬質メツキを施す等表面を硬く
する必要があったが、焼入れすると軸受に歪が生じ、硬
質メツキの場合、メツキ層の厚みを高精度にコントロー
ルしてメツキするのは容易ではないので、表面を研磨等
の方法によって再度仕上げる必要もあった。なお、この
ような硬化手段を用いても表面からの摩耗粉はグリース
を始めとする潤滑油等の液体の劣化を早め、回転トルク
の変化を来たすこともしばしばあり、実使用において決
して好ましい状態とは言えず、また、これら金属系の表
面は、その表面エネルギーが大きいため、液体の移動抵
抗が大きく、運転開始後定常回転に至るまでの時間が長
くなるなどの欠点も内在していた。
Therefore, in order to minimize the surface wear caused by this contact, it was necessary to harden the facing surface by hardening or hard plating, but hardening causes distortion in the bearing, and in the case of hard plating, the plating layer Since it is not easy to control the thickness of the plate with high precision, it was necessary to refinish the surface by polishing or other methods. Even if such hardening means are used, abrasion particles from the surface will accelerate the deterioration of grease and other lubricating oils, and often cause changes in rotational torque, so it is never a desirable condition in actual use. In addition, since these metal surfaces have a large surface energy, there is a large resistance to the movement of liquid, and there are also inherent disadvantages such as a long time from the start of operation until steady rotation is reached.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上述べたように、従来の技術においては、簡易な加工
により摩耗粉の発生を極力防止抑制し、しかも運転開始
後定常回転に至るまでの時間の短い動圧液体軸受は得ら
れないという問題点があった。
As mentioned above, the problem with conventional technology is that it is not possible to obtain a dynamic pressure liquid bearing that prevents and suppresses the generation of wear particles as much as possible through simple processing, and that takes a short time from start of operation to steady rotation. was there.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決するために、この発明は、潤滑油を
定方向に導く溝を形成した動圧軸受において、相対回転
する対向面の少なくとも一方に、合成樹脂からなる薄膜
を形成するという手段を採用したものである。
In order to solve the above problems, the present invention provides a means for forming a thin film made of synthetic resin on at least one of the opposing surfaces that rotate relatively in a hydrodynamic bearing having grooves that guide lubricating oil in a fixed direction. was adopted.

まず、この発明における合成樹脂とは、一般汎用樹脂で
あり、液体状にて塗布可能なものである。
First, the synthetic resin in this invention is a general-purpose resin that can be applied in liquid form.

たとえば、エポキシ樹脂、ポリウレタン樹脂、ポリカー
ボネート樹脂、ポリイミド樹脂、フェノール樹脂、ポリ
エーテルサルホオン樹脂、アクリル樹脂、ポリエステル
樹脂等々が挙げられ、これらの単独もしくは併用であっ
てもかまわない。
Examples include epoxy resins, polyurethane resins, polycarbonate resins, polyimide resins, phenol resins, polyether sulfone resins, acrylic resins, polyester resins, etc., and these may be used alone or in combination.

このような合成樹脂の薄膜を相対する少なくとも一方の
面に形成させることによって、金属接触が発生せず、摩
耗が起こらない。さらに、潤滑油として官能基を有する
もの、または油性向上剤添加油等々を用いる場合、この
合成樹脂の薄膜により、薄膜上に単分子膜レベルの吸着
膜が形成される。この吸着膜は金属表面上にも形成され
るが合成樹脂の薄膜上の方が剪断力に強い吸着膜を形成
することができる。この吸着膜が形成されると表面エネ
ルギーが小さくなり、液体の移動抵抗が小さく、運転開
始後定常回転に至るまでの時間が短く安定できるため、
より好ましい組み合わせといえる。ここで、合成樹脂の
薄膜とは、軸受のクリアランスを考慮して0.01〜5
.0μm程度の厚さのものである。また、官能基を有す
る潤滑油とは、フルオロポリエーテル重合体、フルオロ
アルキル重合体等の含フツ素重合体もしくはオルガノポ
リシロキサンであり、油性向上剤とは飽和脂肪酸、アミ
ノ化合物等々である。
By forming such a thin film of synthetic resin on at least one opposing surface, metal contact does not occur and wear does not occur. Further, when a lubricating oil having a functional group or an oil with an oiliness improver added thereto is used, an adsorption film on the level of a monomolecular film is formed on the thin film of the synthetic resin. Although this adsorption film can be formed on a metal surface, it is possible to form an adsorption film stronger against shearing force on a thin film of synthetic resin. When this adsorption film is formed, the surface energy is reduced, the resistance to movement of the liquid is small, and the time from the start of operation to steady rotation is short and stable.
This can be said to be a more preferable combination. Here, the synthetic resin thin film is 0.01 to 5
.. The thickness is about 0 μm. The lubricating oil having a functional group is a fluorine-containing polymer such as a fluoropolyether polymer or a fluoroalkyl polymer, or an organopolysiloxane, and the oiliness improver is a saturated fatty acid, an amino compound, or the like.

〔実施例〕〔Example〕

実施例1: 潤滑油を流体とする図に示すような動圧流体軸受におい
て、ヘリングポン溝5のある5US304製の軸2をポ
リエステル樹脂(東洋紡社製:バイロン150A)がメ
チルエチルケトンにて0.5重量%に分散した塗液へ浸
漬し、毎分80龍の速度で引き上げ、120℃、30分
で焼成し、約1μm皮膜4を形成させ、この軸2を試験
片として5US304製のハウジング1の中に挿入した
。また、潤滑油として炭化水素油(ヘキサデカン)に油
性向上剤としてミスチリン酸を10−2mol /I添
加したものを用い、これを2000時間連続運転させて
400時間ごとのトルク(g−cn+)を測定した。こ
のトルクの変動の大きいもの(×印)、小さいもの(O
印)として二段評価し、また2000時間試験終了後に
摺動部に摩耗痕があるかどうかを調べた。得られた結果
を表にまとめた。なお、上記皮膜4は図示例の場合、軸
2の外周面に形成したものを示したが、ハウジング1の
内面および軸2のスラスト力を受けるスラスト軸受3の
上面に設けるようにしてもよい。
Example 1: In a dynamic pressure fluid bearing as shown in the figure in which lubricating oil is used as a fluid, a shaft 2 made of 5US304 with a herringbone groove 5 is coated with polyester resin (Vylon 150A manufactured by Toyobo Co., Ltd.) with 0.5 weight of methyl ethyl ketone. The shaft 2 was immersed in a coating solution dispersed in 50% of the total concentration, pulled up at a speed of 80 mm per minute, and fired at 120° C. for 30 minutes to form a film 4 of about 1 μm. inserted into. In addition, a hydrocarbon oil (hexadecane) with 10-2 mol/I of mystylinic acid added as an oiliness improver was used as a lubricating oil, and this was operated continuously for 2000 hours, and the torque (g-cn+) was measured every 400 hours. did. Those with large fluctuations in torque (x mark) and those with small fluctuations (O
After the 2000 hour test, it was examined whether there were any wear marks on the sliding parts. The results obtained are summarized in a table. Although the film 4 is shown as being formed on the outer peripheral surface of the shaft 2 in the illustrated example, it may be provided on the inner surface of the housing 1 and the upper surface of the thrust bearing 3 that receives the thrust force of the shaft 2.

実施例2: 表 潤滑油として、末端にカルボキシ基を有するフルオロポ
リエーテル重合体(伊国モンテフルオス社製:フオンプ
リン/ Z−DIACID)を用いた以外、実施例1と
全く同様の方法にて試験した。得られた結果を表に併記
した。
Example 2: A test was conducted in exactly the same manner as in Example 1, except that a fluoropolyether polymer having a carboxy group at the end (manufactured by Monte Fluos, Italy: Huonpurin/Z-DIACID) was used as the surface lubricating oil. . The obtained results are also listed in the table.

比較例: 軸2にポリエステル樹脂を被覆しないものを用いた以外
、実施例1と全く同様の試験を行ない、得られた結果を
表に併記した。
Comparative Example: The same test as in Example 1 was conducted except that the shaft 2 was not coated with polyester resin, and the obtained results are also shown in the table.

表の結果から、軸2に合成樹脂の皮膜4を形成させない
でステンレス鋼同士で潤滑油中にて回転させた比較例は
回転直後に低い回転トルク値を示したが、次第に上昇す
る傾向を示した。また、軸2とハウジング1には円周方
向に摺動痕(摩耗痕)が見られた。
From the results in the table, the comparative example in which stainless steels were rotated in lubricating oil without forming the synthetic resin film 4 on the shaft 2 showed a low rotational torque value immediately after rotation, but it showed a tendency to gradually increase. Ta. Further, sliding marks (wear marks) were observed on the shaft 2 and the housing 1 in the circumferential direction.

これに対して、軸2に合成樹脂の皮膜4を形成させた実
施例1および2は、いずれも回転開始直後からの低い回
転トルクを保持しつづけた。また、軸2およびハウジン
グ1の皮膜4および金属面に摩耗痕は確認されなかった
On the other hand, both Examples 1 and 2 in which the synthetic resin film 4 was formed on the shaft 2 continued to maintain a low rotational torque immediately after the start of rotation. Furthermore, no wear marks were observed on the coating 4 and metal surfaces of the shaft 2 and housing 1.

以上のことから、軸表面の合成樹脂薄膜により金属との
接触を防止でき、摩耗が起こらないため、回転トルクを
安定させることができる。
From the above, the synthetic resin thin film on the shaft surface can prevent contact with metal, prevent wear, and stabilize rotational torque.

〔効果〕〔effect〕

この発明の動圧流体軸受は、摩耗粉の発生を極力防止制
御し、しかも運転開始後定常回転に至るまでの時間が短
い等、摺動特性の優れた軸受であるため、この発明の意
義はきわめて大きいと言える。
The hydrodynamic bearing of this invention is a bearing with excellent sliding characteristics, such as controlling the generation of wear particles as much as possible and achieving steady rotation in a short time after the start of operation.The significance of this invention is therefore It can be said that it is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

図は実施例に用いた動圧流体軸受の構造を示すための模
式化した断面図である。 1・・・・・・ハウジング、   2・・・・・・軸、
3・・・・・・スラスト軸受、 4・・・・・・皮膜、
5・・・・・・ヘリングボン溝。
The figure is a schematic cross-sectional view showing the structure of a hydrodynamic bearing used in an example. 1...Housing, 2...Shaft,
3... Thrust bearing, 4... Film,
5... Herringbone groove.

Claims (1)

【特許請求の範囲】[Claims] 潤滑油を流体とする動圧流体軸受の相対する面の少なく
とも一方に、合成樹脂からなる薄膜を形成したことを特
徴とする動圧流体軸受。
1. A hydrodynamic bearing characterized in that a thin film made of synthetic resin is formed on at least one of opposing surfaces of the hydrodynamic bearing which uses lubricating oil as a fluid.
JP62306187A 1987-12-02 1987-12-02 Hydrodynamic bearing Expired - Fee Related JP2598049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62306187A JP2598049B2 (en) 1987-12-02 1987-12-02 Hydrodynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62306187A JP2598049B2 (en) 1987-12-02 1987-12-02 Hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JPH01150018A true JPH01150018A (en) 1989-06-13
JP2598049B2 JP2598049B2 (en) 1997-04-09

Family

ID=17954066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62306187A Expired - Fee Related JP2598049B2 (en) 1987-12-02 1987-12-02 Hydrodynamic bearing

Country Status (1)

Country Link
JP (1) JP2598049B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565917A (en) * 1991-09-06 1993-03-19 Sankyo Seiki Mfg Co Ltd Dynamic pressure air bearing device
US7866889B2 (en) * 2006-02-06 2011-01-11 Minebea Co., Ltd. Fluid dynamic bearing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133634U (en) * 1974-09-05 1976-03-12
JPS5947517A (en) * 1982-09-10 1984-03-17 Copal Erekutora:Kk Fluid bearing with dynamic pressure generating mechanism and manufacturing method thereof
JPS6136516A (en) * 1984-07-25 1986-02-21 Nippon Seiko Kk Dynamic pressure type plain bearing and preparation thereof
JPS6199722U (en) * 1984-12-07 1986-06-26

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133634U (en) * 1974-09-05 1976-03-12
JPS5947517A (en) * 1982-09-10 1984-03-17 Copal Erekutora:Kk Fluid bearing with dynamic pressure generating mechanism and manufacturing method thereof
JPS6136516A (en) * 1984-07-25 1986-02-21 Nippon Seiko Kk Dynamic pressure type plain bearing and preparation thereof
JPS6199722U (en) * 1984-12-07 1986-06-26

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565917A (en) * 1991-09-06 1993-03-19 Sankyo Seiki Mfg Co Ltd Dynamic pressure air bearing device
US7866889B2 (en) * 2006-02-06 2011-01-11 Minebea Co., Ltd. Fluid dynamic bearing system

Also Published As

Publication number Publication date
JP2598049B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
EP0515687A1 (en) Gas dynamic bearing
JPH056416Y2 (en)
JP3894648B2 (en) Hydrodynamic bearing device
US8732954B2 (en) Single thrust bearing fluid dynamic bearing motor
JPH10184692A (en) Water-lubricated bearing or water-lubricated seal
US20050201645A1 (en) Hydrodynamic bearing device
US6981797B2 (en) Hydrodynamic bearing unit
US20090073596A1 (en) Hydrodynamic bearing device, and spindle motor and information processing apparatus equipped with the same
US6394654B1 (en) Antiwear lubrication coating for bearing surfaces for hydrodynamic fluid bearings
US7135797B2 (en) Fluid dynamic bearing with wear resilient surface
JPH01150018A (en) Dynamic pressure fluid bearing
JP2548755B2 (en) Hydrodynamic bearing
KR960005184B1 (en) Combination fluid bearing apparatus
US5310263A (en) Self-acting air bearing for high speed laser scanner
US20090324147A1 (en) Thin liquid film for a spindle motor gas bearing surface
JP3580580B2 (en) Hydrodynamic bearing
JPH01182617A (en) Dynamic pressure fluid bearing
JPH0830490B2 (en) Hydrodynamic bearing
JPH04277315A (en) Compound type fluid bearing device
JP2002323037A (en) Fluid bearing unit
JPH08296649A (en) Bearing device
JPH02493Y2 (en)
US20010048778A1 (en) Hydrodynamic type bearing unit
JPH04277316A (en) Fluid bearing type rotational head cylinder
JPH1198763A (en) Dynamic pressure bearing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees