JPH0565917A - Dynamic pressure air bearing device - Google Patents

Dynamic pressure air bearing device

Info

Publication number
JPH0565917A
JPH0565917A JP25428391A JP25428391A JPH0565917A JP H0565917 A JPH0565917 A JP H0565917A JP 25428391 A JP25428391 A JP 25428391A JP 25428391 A JP25428391 A JP 25428391A JP H0565917 A JPH0565917 A JP H0565917A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
pressure air
rotating body
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25428391A
Other languages
Japanese (ja)
Inventor
Ryukichi Tsuno
柳吉 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP25428391A priority Critical patent/JPH0565917A/en
Publication of JPH0565917A publication Critical patent/JPH0565917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To enable comparatively easy manufacture and prevent seizure. CONSTITUTION:In a dynamic pressure air bearing formed of a rotor 2 and a cylindrical bearing 1, a resin coat 14 is formed on at least one opposed face of the rotor 2 or cylindrical bearing 1. As a result, even if a protrusion 13 caused by a flaw or a dent exists on the face with a spiral groove formed to generate dynamic pressure or on its opposed face, or the rotor 2 and bearing 1 are brought into contact with each other due to vibration or the like during rotation, the direct contact between the rotor 2 and bearing 1 is prevented to impede the generation of welding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は動圧空気軸受装置に関す
る。更に詳述すると、本発明は、高速回転する軸例えば
レーザ走査用モータや高速スピンドルモータ等のような
高速で回転するモータのロータを支持するのに用いて好
適な動圧空気軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure air bearing device. More specifically, the present invention relates to a dynamic pressure air bearing suitable for supporting a rotor of a high speed rotating motor such as a laser scanning motor or a high speed spindle motor.

【0002】[0002]

【従来の技術】レーザ走査用モータ、磁気ドラム用モー
タ、ジャイロモータあるいは高速スピンドルモータのよ
うな高速で回転するモータ等には、高速回転を可能とす
るため、回転に基づく相対運動による動圧空気でロータ
部を支持する動圧空気軸受が採用されている。この動圧
空気軸受は、回転体の外周面とこれを支承する円筒状の
軸受部材の内周面のいずれかの周面にスパイラル状の動
圧発生用溝を形成し、回転体と軸受部材との間で動圧空
気軸受を構成するようにしている。この動圧空気軸受
は、回転時に動圧を発生させて回転体を浮揚させて支持
するため、回転体と軸受部材との間には一定の軸受隙間
(通常、最大5μm)が形成されている。このため、回
転中に回転体と軸受部材とが接触して摩擦熱を発生し、
接触部分の溶融により軸と軸受が凝着するいわゆる焼付
現象を惹き起こす危険がある。一般的には起動停止時の
軸受負荷能力の低い状態での接触による摩耗が焼付の引
き金となるが、また外力を受けた際の振動等によって高
速回転時に接触する場合にも起こる。
2. Description of the Related Art A laser scanning motor, a magnetic drum motor, a gyro motor, or a motor that rotates at a high speed such as a high-speed spindle motor is capable of rotating at high speed. The dynamic pressure air bearing that supports the rotor part is adopted. In this dynamic pressure air bearing, a spiral dynamic pressure generating groove is formed on any one of the outer peripheral surface of the rotating body and the inner peripheral surface of a cylindrical bearing member supporting the rotating body to form a rotating body and a bearing member. A dynamic pressure air bearing is constructed between and. Since this dynamic pressure air bearing generates dynamic pressure during rotation to levitate and support the rotating body, a constant bearing gap (usually 5 μm at maximum) is formed between the rotating body and the bearing member. .. Therefore, the rotating body and the bearing member come into contact with each other during rotation to generate friction heat,
There is a risk of causing a so-called seizure phenomenon in which the shaft and the bearing adhere to each other due to the melting of the contact portion. Generally, wear due to contact in the state where the bearing load capacity is low at the time of start and stop causes seizure, but it also occurs when contact occurs at high speed due to vibration when external force is applied.

【0003】そこで、従来は、高硬度で摩耗の少い材料
が焼付きに有利であるとの観点から、回転軸に焼入れ鋼
を使用し、更に硬質クロムメッキを施したり、または焼
入硬化型のステンレス鋼を使用する場合が多い。また、
相手側の軸受部材にも同様の材料を使用するか、銅合金
を使用する場合が多い。また、セラミック質材料で軸受
を形成したり、軸受内面又は回転軸表面へセラミック質
材料の被覆を実施することも考えられる。
Therefore, conventionally, from the viewpoint that a material having high hardness and little wear is advantageous for seizure, hardened steel is used for the rotating shaft, and further hard chrome plating is applied, or quench hardening type is used. Often used stainless steel. Also,
Similar materials or copper alloys are often used for the other bearing member. It is also conceivable to form the bearing with a ceramic material or to coat the inner surface of the bearing or the surface of the rotating shaft with the ceramic material.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、焼入れ
鋼などの硬質金属材料の使用が完全な焼付対策となって
いないことは、衆目の一致するところであり、かかる動
圧軸受の泣き処ともなっている。また、セラミック系材
料の使用は技術的、コスト的に難点を有し、実用的とは
言い難い。即ち、セラミックは硬質で加工精度が出し難
いことから、数μmの軸受隙間をあけかつ5〜20μm
の浅いスパイラル状の溝を必要とする動圧空気軸受の製
作には不向きである。
However, the fact that the use of hard metal materials such as hardened steel is not a complete countermeasure against seizure is in agreement with the general public, and is a tearing point for such dynamic pressure bearings. Further, the use of ceramic materials has technical and cost problems, and is not practical. That is, since ceramic is hard and it is difficult to obtain machining accuracy, a bearing gap of several μm is formed and 5 to 20 μm.
It is not suitable for manufacturing a dynamic pressure air bearing that requires a shallow spiral groove.

【0005】本発明は、比較的製作工法が容易であり、
かつ焼付を生じることのない動圧空気軸受を提供するこ
とを目的とする。
The present invention is relatively easy to manufacture,
Moreover, it is an object of the present invention to provide a dynamic pressure air bearing that does not cause seizure.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成するた
め、本発明は、回転軸とそれを回転自在に支持する軸受
部材との相対向する面のいずれかにスパイラル状の溝を
設け、回転時に前記スパイラル状溝の作用で軸受隙間の
空気圧を高めて軸受荷重を支承する動圧空気軸受におい
て、前記回転軸と前記軸受部材との対向面の少なくとも
いずれか一方に樹脂被膜を形成するようにしている。こ
こで、樹脂被膜は、軸受隙間以上の厚さで、回転時の軸
受内発熱に因る熱膨張によって悪影響が出ない程度の厚
さ、好ましくは軸受隙間の2倍以上の厚さで、回転時の
軸受内発熱に因る熱膨張によって悪影響が出ない程度の
厚さ、最も好ましくは約10μmの厚さに形成されてい
る。また、樹脂被膜の材料は特に限定されるものではな
いが、エポキシ樹脂、ポリ塩化ビニル、ナイロン等が好
ましいものの1つとして挙げられる。
In order to achieve the above object, the present invention provides a spiral groove on either of the surfaces of a rotary shaft and a bearing member that rotatably supports the rotary shaft so as to face each other. At times, in the dynamic pressure air bearing that supports the bearing load by increasing the air pressure in the bearing gap by the action of the spiral groove, a resin coating is formed on at least one of the facing surfaces of the rotating shaft and the bearing member. ing. Here, the resin coating has a thickness equal to or larger than the bearing gap, a thickness that does not adversely affect thermal expansion due to heat generation in the bearing during rotation, and preferably a thickness equal to or larger than twice the bearing gap. The thickness is such that the thermal expansion due to the heat generation in the bearing at that time does not have an adverse effect, most preferably the thickness is about 10 μm. The material of the resin coating is not particularly limited, but epoxy resin, polyvinyl chloride, nylon, etc. are mentioned as one of the preferable materials.

【0007】[0007]

【作用】したがって、回転中に回転体と軸受部材とが接
触しても、金属と樹脂との接触であるため柔かい樹脂側
が摩耗し焼付けを起こすことはない。しかも、摩耗粉は
微細粉末となって動圧空気の流れと共にスパイラル状溝
内を通過して軸受外部に排出される。
Therefore, even if the rotating body and the bearing member come into contact with each other during rotation, the soft resin side is not worn and seizure does not occur due to the contact between the metal and the resin. Moreover, the abrasion powder becomes fine powder and passes through the spiral groove together with the flow of the dynamic pressure air, and is discharged to the outside of the bearing.

【0008】[0008]

【実施例】以下、本発明の構成を図面に示す実施例に基
づいて詳細に説明する。尚、本実施例はレーザプリンタ
やファクシミリ等の光学走査装置に使用されているポリ
ゴンミラーを高速回転させるモータに適用したものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described in detail below with reference to the embodiments shown in the drawings. The present embodiment is applied to a motor for rotating a polygon mirror used in an optical scanning device such as a laser printer or a facsimile at high speed.

【0009】図1に本発明の動圧空気軸受を組込んだポ
リゴンミラー駆動用モータの一実施例を示す。このポリ
ゴンミラー駆動用モータは、ポリゴンミラー7を支持す
る円筒状の回転体(ロータ)2と、この回転体2を嵌合
させて該回転体2との間に動圧空気軸受を構成する円筒
状軸受1と、この円筒状軸受の中央に設置されステータ
組を構成する鉄心4と駆動用巻心(コイル)5と、前記
回転体2の内周面に固着されロータ組を構成する駆動用
マグネット3とから主に成る。ロータ組とステータ組と
の間、例えば回転軸心上において対向する鉄心4の上端
と回転体2とに夫々回転体浮上用のマグネット6a,6
bが設けられている。マグネット6a,6bは同極同士
を向い合せてその反撥力により回転体2を浮上させ、ス
ラスト方向においてロータ組とステータ組とが非接触と
なるように支承している。また、回転体2にはポリゴン
ミラー7等の被回転物が取付けられる。更に、回転体2
の下方には回転を検知するためのセンサー等の電子部品
8が取付けられる。回転体2の外周面には、図2に示す
ように、動圧発生のためのスパイラル状の溝9がエッチ
ングなどによって5μm〜20μmの深さで形成されて
いる。この回転体2の上部にはポリゴンミラー7を嵌め
込むためのボス10が、中央部にはエアポケット用の溝
11が設けられている。尚、回転体2の内部空間と外部
とは図示していない小径の連通孔を以って連通されてい
る。
FIG. 1 shows an embodiment of a polygon mirror driving motor incorporating the dynamic pressure air bearing of the present invention. This polygon mirror driving motor is a cylindrical rotor (rotor) 2 that supports the polygon mirror 7, and a cylinder that forms a dynamic pressure air bearing between the rotor 2 and the rotor 2. -Shaped bearing 1, an iron core 4 and a driving core (coil) 5 that are installed in the center of the cylindrical bearing to form a stator set, and a driving unit that is fixed to the inner peripheral surface of the rotating body 2 to form a rotor set. Mainly consists of magnet 3 and. Between the rotor set and the stator set, for example, the upper end of the iron core 4 and the rotating body 2 which face each other on the rotating shaft center, are magnets 6a, 6 for floating the rotating body, respectively.
b is provided. The magnets 6a and 6b face each other with the same poles and the repulsive force causes the rotor 2 to levitate, and the magnets 6a and 6b are supported so that the rotor set and the stator set are not in contact in the thrust direction. Further, a rotating object such as a polygon mirror 7 is attached to the rotating body 2. Furthermore, the rotating body 2
An electronic component 8 such as a sensor for detecting rotation is attached below the. As shown in FIG. 2, a spiral groove 9 for generating a dynamic pressure is formed in the outer peripheral surface of the rotor 2 by etching or the like to a depth of 5 μm to 20 μm. A boss 10 for fitting the polygon mirror 7 is provided on the upper part of the rotating body 2, and a groove 11 for an air pocket is provided in the central part. The internal space of the rotating body 2 and the outside are communicated with each other through a communication hole (not shown) having a small diameter.

【0010】以上のように構成されたポリゴンミラー駆
動用モータによると、駆動コイル5に通電されると、駆
動用マグネット3が回転付勢されて回転体2がポリゴン
ミラー7と共に回転を開始する。このとき、回転中、ス
パイラル状溝9の中の空気は圧縮され且つ空気圧を高め
ながら1対のスパイラル状溝9のお互いの近接する端部
へ向って流れ、溝11に達し更に図1の空気導通孔12
を経て外部へ流通する。
According to the polygon mirror driving motor configured as described above, when the driving coil 5 is energized, the driving magnet 3 is rotationally biased and the rotating body 2 starts rotating together with the polygon mirror 7. At this time, during rotation, the air in the spiral groove 9 is compressed and flows toward the ends of the pair of spiral grooves 9 which are close to each other while increasing the air pressure, and reaches the groove 11 and further reaches the air shown in FIG. Through hole 12
And then distributed to the outside.

【0011】このような構造の動圧空気軸受の回転体2
を加工するには、焼入鋼等の研削によるよりは、アルミ
合金を旋削加工して作成する方が加工コストの点で遥か
に有利である。また、軸受1も熱膨張係数を合せる意味
から、同じアルミ合金を使用することが望ましい。しか
しながらアルミ合金は軟いため、加工々程等で疵、打痕
が付き易いという欠点がある。通常、疵や打痕は、せっ
かく平滑に仕上げられた表面へ数μm程度の突起13を
局所的に形成することが避けられない。これらの突起1
3は、通常アルミ合金に対して実施されるメッキやアル
マイト等の表面処理によっても改善されず、この部分の
接触により容易に焼付の原因となることがわかった。し
たがって、加工工程や組立工程時に疵等を付けないよう
に取扱いに注意が必要であるし、良品と不良品との検査
選別の手間がかかり、更に不良品の廃却ロス等、大きな
支障となっている。
The rotary body 2 of the dynamic pressure air bearing having such a structure.
For machining, it is much more advantageous in terms of processing cost to make an aluminum alloy by turning than to grind hardened steel or the like. In addition, it is desirable to use the same aluminum alloy for the bearing 1 in terms of matching the thermal expansion coefficient. However, since the aluminum alloy is soft, it has a drawback that it is apt to be flawed or dented during processing. Usually, it is unavoidable to locally form a protrusion 13 of about several μm on a surface which is finished smooth with scratches and dents. These protrusions 1
No. 3 was not improved even by the surface treatment such as plating or alumite which is usually performed on an aluminum alloy, and it was found that the contact of this portion easily causes seizure. Therefore, it is necessary to be careful in handling during processing and assembly so as not to damage it, and it takes time and effort to inspect and sort good products and defective products. ing.

【0012】このような疵、打痕による焼付の防止に
は、軸受1若しくは回転体2の少なくとも一方の対向面
へ樹脂被膜14を施すこと、好ましくは軸受隙間の2倍
以上の厚さの樹脂を塗布することが極めて有効である。
In order to prevent the seizure due to such flaws and dents, a resin coating 14 is applied to at least one of the facing surfaces of the bearing 1 or the rotating body 2, preferably a resin having a thickness twice or more the bearing gap. Is extremely effective.

【0013】以下樹脂被膜14について詳細に述べる。The resin coating 14 will be described in detail below.

【0014】図3に軸受1と回転体2が軸受隙間eで嵌
合されている状態を示す。同図において、回転体2の表
面には高さdの疵ないし打痕による突起13が生じてい
る。
FIG. 3 shows a state in which the bearing 1 and the rotating body 2 are fitted in each other with a bearing gap e. In the figure, a protrusion 13 due to a flaw or a dent having a height d is formed on the surface of the rotating body 2.

【0015】この状態において、今、d>2eの場合、
組立時の嵌合は困難であり、直ちに不良品と判明する。
In this state, if d> 2e,
Fitting at the time of assembly is difficult, and it immediately turns out to be a defective product.

【0016】しかし、2e≧d≧eの場合、回転体2は
軸受1に嵌合するものの回転時の正常な軸受隙間はeで
あるから、回転の初期に焼付をおこす危険は極めて大き
い。
However, when 2e ≧ d ≧ e, the rotor 2 fits into the bearing 1, but the normal bearing gap during rotation is e, and therefore the risk of seizure at the initial stage of rotation is extremely large.

【0017】更に、d<eの場合、正常回転の状態では
焼付は起こらない。しかしながら、回転体2は偏肉に基
づく遠心力に起因する軸振れや、外部振動、外部モーメ
ント等の作用により、軸受隙間eが変動する。したがっ
て、この場合でも焼付の危険を有している。
Further, when d <e, seizure does not occur in the normal rotation state. However, in the rotating body 2, the bearing clearance e changes due to the effects of shaft runout, external vibration, external moment, etc. due to centrifugal force due to uneven thickness. Therefore, even in this case, there is a risk of seizure.

【0018】図4は軸受1の内面へ厚さtの樹脂層14
が被覆されており、前述のように回転体2と軸受1との
嵌合が可能な限界であるd=2eの突起13を有する回
転体2が嵌合されている状態を示す。突起13の近傍に
於ける軸受隙間は2eとなっており、この状態で回転を
始めると、正常な軸受隙間eとなるためには突起13と
樹脂層14との間に摩滅が進行しなければならない。通
常、この接触点が金属同士の場合は前述のように摩擦熱
で溶融し、凝着焼付をおこす。しかしながら金属と樹脂
の場合、お互いに溶け合うことはないので、突起13部
分かあるいはそれに接触している樹脂部分14の摩耗が
進行するのみで焼付きをおこすことはない。摩耗粉は微
細粉末となって、空気の流れと共に図2に示す動圧発生
用の溝9を経て、溝11に至り更に空気孔12から排出
される。
FIG. 4 shows a resin layer 14 having a thickness t on the inner surface of the bearing 1.
Shows the state in which the rotating body 2 having the protrusion 13 of d = 2e, which is the limit at which the rotating body 2 and the bearing 1 can be fitted, is fitted as described above. The bearing clearance in the vicinity of the protrusion 13 is 2e, and if rotation starts in this state, wear will not progress between the protrusion 13 and the resin layer 14 in order to obtain a normal bearing clearance e. I won't. Usually, when the contact point is between metals, it is melted by frictional heat as described above, and adhesion bake is caused. However, in the case of metal and resin, since they do not melt each other, only the abrasion of the protrusion 13 portion or the resin portion 14 in contact with it progresses, and seizure does not occur. The abrasion powder becomes a fine powder, passes through the groove 9 for dynamic pressure generation shown in FIG. 2 along with the flow of air, reaches the groove 11, and is further discharged from the air hole 12.

【0019】図5は樹脂層14の摩滅のみが進行し、遠
心力、外部振動等の作用で、軸受隙間eが零となるまで
偏った状態を示す。この状態においてt≧d=2eであ
れば突起13からは軸受1の表面まで到達することはな
い。この状態において、接触は平滑面同士となり接触面
が拡大し、深さ方向の摩滅は減少する。
FIG. 5 shows a state in which only abrasion of the resin layer 14 progresses and the bearing clearance e is biased to zero due to the action of centrifugal force, external vibration and the like. In this state, if t ≧ d = 2e, the protrusion 13 does not reach the surface of the bearing 1. In this state, the contacts become smooth surfaces, the contact surfaces expand, and the wear in the depth direction decreases.

【0020】本来、回転体2は遠心力の基となる偏肉を
修正するいわゆるダイナミックバランス(バランスプレ
ートを回転体2に装着したり、回転体2にバランス調整
用の穴を明ける)を取るのが通常であり、定常的にe=
0となることはない。したがって図5の状態まで進行す
ることは偶発的な外力によって、稀におこる程度であろ
う。
Originally, the rotating body 2 takes a so-called dynamic balance for correcting uneven thickness which is the basis of centrifugal force (a balance plate is attached to the rotating body 2 or a hole for balance adjustment is formed in the rotating body 2). Is normal, and e =
It will never be zero. Therefore, the progress to the state shown in FIG. 5 will rarely occur due to an accidental external force.

【0021】疵、打痕などによる突起13が無い場合で
も、前述のように偶発的な外力により、たまたま軸受隙
間eが零となっても、樹脂と金属との組合せは焼付に対
して有効である。この樹脂被膜14は軸受1側に形成し
てもよいし、回転体2側であってもよい。樹脂被膜の層
14の厚さは前述のようt≧2eであれば効果的であ
る。通常、軸受隙間eは最大5μm程度に設定されるた
めt≧10μmであればよい。
Even when there is no protrusion 13 due to a flaw or a dent, even if the bearing gap e happens to be zero due to an accidental external force as described above, the combination of resin and metal is effective for seizure. is there. The resin coating 14 may be formed on the bearing 1 side or the rotating body 2 side. It is effective that the thickness of the resin coating layer 14 is t ≧ 2e as described above. Normally, the bearing gap e is set to about 5 μm at the maximum, so that t ≧ 10 μm is sufficient.

【0022】一方、動圧空気軸受は一般に高速回転で使
用される例が多く、その場合、軸受隙間eの空気流の粘
性抵抗のために発熱量が大きく、それによる熱膨張の影
響を受け易い。しかも、軸受隙間eは小さくかつかなり
厳密に設定されるため、熱膨張は小さく抑えねばならな
い。そこで、樹脂層14は一般に熱膨張係数が大きく、
又熱伝導率も金属より小さいので、塗布する樹脂層14
の厚さはできるだけ薄い方がよい。このため、樹脂被膜
14の厚さは約10μm程度とすることが好ましい。
On the other hand, the dynamic pressure air bearing is generally used at a high speed, and in that case, the amount of heat generated is large due to the viscous resistance of the air flow in the bearing gap e, and is easily affected by the thermal expansion. .. Moreover, since the bearing clearance e is small and set quite strictly, the thermal expansion must be kept small. Therefore, the resin layer 14 generally has a large coefficient of thermal expansion,
Also, since the thermal conductivity is smaller than that of metal, the resin layer 14 to be applied
The thickness should be as thin as possible. Therefore, the thickness of the resin coating 14 is preferably about 10 μm.

【0023】樹脂被膜14を形成するための樹脂の塗布
方法は、エポキシ樹脂等の電着塗装が膜厚の均一性、膜
厚管理の点から好ましい。その他、エポキシ樹脂、ポリ
塩化ビニル、ナイロン等の静電乾式吹付塗装、流動浸漬
塗装があり、この場合は膜厚管理に難点があるため、ス
パイラル溝9を加工してない側例えば図1の実施例の場
合には軸受1側へ厚目に塗装し、その後旋削加工により
直径を仕上げるのがよい。
As a resin coating method for forming the resin coating film 14, electrodeposition coating of an epoxy resin or the like is preferable from the viewpoint of uniformity of film thickness and control of film thickness. In addition, there are electrostatic dry spray coating of epoxy resin, polyvinyl chloride, nylon, etc., and fluidized immersion coating. In this case, there is a problem in film thickness control, so the side where the spiral groove 9 is not processed, for example, as shown in FIG. In the case of the example, it is preferable to apply a thick coating on the bearing 1 side and then finish the diameter by turning.

【0024】他方、相手となる回転体2または軸受1の
対向面には無電解ニッケルメッキ、アルマイト等の表面
処理を施したり、場合によっては同様の樹脂層を適当な
厚さで塗布してもよい。この場合、相手となる樹脂層と
溶着をおこさない樹脂組合せを選定する必要があるが、
これはそれほど困難な作業ではない。
On the other hand, the opposing surface of the rotating body 2 or the bearing 1 which is a partner is subjected to a surface treatment such as electroless nickel plating or alumite, or in some cases, a similar resin layer is applied with an appropriate thickness. Good. In this case, it is necessary to select a resin combination that does not cause welding with the mating resin layer.
This is not a difficult task.

【0025】[0025]

【発明の効果】以上の説明より明らかなように、本発明
の動圧空気軸受は、回転体あるいは円筒状軸受の少なく
とも一方の対向面に樹脂被膜を形成するようにしている
ので、表面の疵や打痕による突起があっても、あるいは
回転中の振動等に起因する回転体と軸受との接触が生じ
ても、樹脂皮膜が接触して軸と軸受との直接接触を防い
で溶着が起るのを防止する。特に、樹脂被膜の肉厚を軸
受隙間の2倍以上、好ましくは約10μmにした場合、
樹脂被膜が熱伝導、熱膨張を阻害することなく、焼付を
防止することができる。
As is clear from the above description, in the dynamic pressure air bearing of the present invention, the resin coating is formed on at least one of the facing surfaces of the rotating body and the cylindrical bearing, so that the surface flaw is formed. Even if there is a protrusion due to dents or dents, or if there is contact between the rotating body and the bearing due to vibration during rotation, etc., the resin coating will contact and prevent direct contact between the shaft and bearing, and welding will occur. To prevent In particular, when the thickness of the resin coating is twice the bearing gap or more, preferably about 10 μm,
It is possible to prevent seizure without the resin film impeding heat conduction and thermal expansion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の動圧空気軸受をポリゴンミラー用モー
タに実施した一例を示す中央縦断面図である。
FIG. 1 is a central longitudinal sectional view showing an example in which a dynamic pressure air bearing of the present invention is applied to a polygon mirror motor.

【図2】回転体の表面に形成された動圧発生用溝の一例
を示す正面図である。
FIG. 2 is a front view showing an example of a dynamic pressure generating groove formed on the surface of a rotating body.

【図3】従来の動圧空気軸受の回転体と軸受との関係の
一例を示す部分拡大縦断面図である。
FIG. 3 is a partially enlarged vertical sectional view showing an example of a relationship between a rotating body and a bearing of a conventional dynamic pressure air bearing.

【図4】本発明の要部たる回転体と軸受との対向面部分
を拡大して示す部分拡大断面図である。
FIG. 4 is a partially enlarged cross-sectional view showing, in an enlarged manner, a facing surface portion of a rotating body and a bearing, which is a main part of the present invention.

【図5】本発明の要部たる回転体と軸受との対向面部分
の他の実施例を示す部分拡大断面図である。
FIG. 5 is a partially enlarged cross-sectional view showing another embodiment of a facing surface portion between a rotating body and a bearing, which is a main part of the present invention.

【符号の説明】[Explanation of symbols]

1 円筒状軸受 2 回転体 9 動圧発生用の溝 13 突起 14 樹脂被膜 DESCRIPTION OF SYMBOLS 1 Cylindrical bearing 2 Rotating body 9 Dynamic pressure generating groove 13 Protrusion 14 Resin coating

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転軸とそれを回転自在に支持する軸受
部材との相対向する面のいずれかにスパイラル状の溝を
設け、回転時に前記スパイラル状溝の作用で軸受隙間の
空気圧を高めて軸受荷重を支承する動圧空気軸受におい
て、前記回転軸と前記軸受部材との対向面の少なくとも
いずれか一方に樹脂被膜を形成したことを特徴とする動
圧空気軸受装置。
1. A spiral groove is provided on either of the surfaces of a rotating shaft and a bearing member that rotatably supports the rotating shaft so as to face each other, and the air pressure in the bearing gap is increased by the action of the spiral groove during rotation. A dynamic pressure air bearing device for bearing a bearing load, wherein a resin coating is formed on at least one of the facing surfaces of the rotating shaft and the bearing member.
【請求項2】 前記樹脂被膜は前記軸受隙間以上の厚さ
で、回転時の軸受内発熱に因る熱膨張によって悪影響が
出ない程度の厚さであることを特徴とする請求項1記載
の動圧空気軸受装置。
2. The resin coating according to claim 1, wherein the resin coating has a thickness equal to or larger than the bearing gap, and does not adversely affect thermal expansion due to heat generation in the bearing during rotation. Dynamic air bearing device.
【請求項3】 前記樹脂被膜は前記軸受隙間の2倍以上
の厚さで、回転時の軸受内発熱に因る熱膨張によって悪
影響が出ない程度の厚さであることを特徴とする請求項
3記載の動圧空気軸受装置。
3. The resin coating film has a thickness that is at least twice the thickness of the bearing gap and is such that thermal expansion due to heat generation in the bearing during rotation does not adversely affect it. 3. The dynamic pressure air bearing device according to item 3.
【請求項4】 前記樹脂被膜は約10μmであることを
特徴とする請求項1記載の動圧空気軸受装置。
4. The dynamic pressure air bearing device according to claim 1, wherein the resin coating has a thickness of about 10 μm.
JP25428391A 1991-09-06 1991-09-06 Dynamic pressure air bearing device Pending JPH0565917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25428391A JPH0565917A (en) 1991-09-06 1991-09-06 Dynamic pressure air bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25428391A JPH0565917A (en) 1991-09-06 1991-09-06 Dynamic pressure air bearing device

Publications (1)

Publication Number Publication Date
JPH0565917A true JPH0565917A (en) 1993-03-19

Family

ID=17262819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25428391A Pending JPH0565917A (en) 1991-09-06 1991-09-06 Dynamic pressure air bearing device

Country Status (1)

Country Link
JP (1) JPH0565917A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465322A (en) * 1987-09-04 1989-03-10 Yobea Rulon Kogyo Kk Dynamic pressure fluid bearing
JPH01150018A (en) * 1987-12-02 1989-06-13 Yobea Rulon Kogyo Kk Dynamic pressure fluid bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465322A (en) * 1987-09-04 1989-03-10 Yobea Rulon Kogyo Kk Dynamic pressure fluid bearing
JPH01150018A (en) * 1987-12-02 1989-06-13 Yobea Rulon Kogyo Kk Dynamic pressure fluid bearing

Similar Documents

Publication Publication Date Title
US5289067A (en) Bearing device
US5538347A (en) Dynamic pressure bearing
US5434695A (en) Dynamic pressure bearing and rotary polygon mirror device with the bearing
US7582996B2 (en) Dynamic pressure bearing motor
JPH0565917A (en) Dynamic pressure air bearing device
JPH07310733A (en) Dynamic pressure bearing device
JP2746830B2 (en) Dynamic pressure air bearing device and method of manufacturing groove for generating dynamic pressure
JPH05149326A (en) Dynamic pressure bearing device
JP3630810B2 (en) Hydrodynamic air bearing and polygon scanner using the same
US6064130A (en) Motor having dynamic pressure bearing, and rotator device having the motor as driving source
JP2995151B2 (en) Motor with polygon mirror
JPH0720397A (en) Light deflector
JPH07230056A (en) Dynamic pressure air bearing type light deflector
JPH1061659A (en) Dynamic pressure bearing and motor having polygon mirror using it
JPH0610945A (en) Dynamic pressure bearing and rotating polygon mirror device using this
JPH0865950A (en) Motor and optical scanner using the same
JP2001304259A (en) Static pressure gas bearing spindle
JPH0516574Y2 (en)
JPH07279966A (en) Dynamic pressure fluid bearing
JPH02217610A (en) Dynamic pressure bearing device
JPH0972340A (en) Dynamic pressure bearing device
JP3159918B2 (en) Dynamic pressure bearing device and method of manufacturing the same
JP2002070844A (en) Bearing mechanism
JP3128819B2 (en) Dynamic pressure type gas bearing device
JPH05149325A (en) Dynamic pressure bearing