JPH0114893B2 - - Google Patents

Info

Publication number
JPH0114893B2
JPH0114893B2 JP5763483A JP5763483A JPH0114893B2 JP H0114893 B2 JPH0114893 B2 JP H0114893B2 JP 5763483 A JP5763483 A JP 5763483A JP 5763483 A JP5763483 A JP 5763483A JP H0114893 B2 JPH0114893 B2 JP H0114893B2
Authority
JP
Japan
Prior art keywords
acid
parts
weight
reaction
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5763483A
Other languages
Japanese (ja)
Other versions
JPS59184146A (en
Inventor
Kenji Tanimoto
Hiroshi Maki
Haruhisa Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5763483A priority Critical patent/JPS59184146A/en
Publication of JPS59184146A publication Critical patent/JPS59184146A/en
Publication of JPH0114893B2 publication Critical patent/JPH0114893B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はβ−レゾルシル酸の工業的に有利な製
造方法に関する。 β−レゾルシル酸は紫外線吸収剤たとえば2,
2′,4,4′−テトラヒドロキシベンゾフエノン、
2,2′−ジヒドロキシ−4,4′−ジメトキシベン
ゾフエノン等の原料として有用な化合物であり、
その製造法としては炭酸ガス気流中でレゾルシン
をアルカリ金属炭酸水素塩(たとえばKHCO3
NaHCO3など、以下単に炭酸水素塩という)と
反応させて収率50%程度で得る方法〔Org、Syn、
Coll.、Vol.、557(1943)〕が知られている。 しかしながら、このような公知方法では炭酸水
素塩をレゾルシンに対して5倍モル以上、生成し
たβ−レゾルシル酸に対しては実に10倍モル以上
もの多量を必要とし、β−レゾルシル酸の製造コ
ストに占める炭酸水素塩の比率が非常に大きく、
工業的製法として有利とは言えなかつた。 このようなことから、本発明者らは上述の公知
方法のもつ欠点を改良し、工業的有利にβ−レゾ
ルシル酸を製造すべく検討の結果、炭酸水素塩に
代えてアルカリ金属炭酸塩を用いれば、炭酸水素
塩の場合に比べてその使用量が約半モル倍でよ
く、しかも炭酸水素塩を用いる場合と殆んど同程
度の収率で反応が進行し、更にはアルカリ金属炭
酸塩は一般に炭酸水素塩よりも安価であることか
ら使用量の約半減と相俟つて経済的にも非常に有
利となることを見出し、本発明を完成するに至つ
た。 すなわち本発明は、 (A) レゾルシンを水溶液中で炭酸ガスの共存下に
アルカリ金属炭酸塩(以下、単に炭酸塩とい
う)を用いて80〜100℃で加熱反応する工程 (B) 反応終了後、反応液を0〜50℃に冷却してア
ルカリを析出させ、水層と分離する工程 (C) 分離水層を酸析し、析出するβ−レゾルシル
酸を分離する工程 からなることを特徴とするβ−レゾルシル酸の製
造方法を堤供するものである。 本発明の方法によれば、炭酸塩の使用量が少な
く、しかもβ−レゾルシル酸の収率は従来法と殆
んど同等であるため経済的有利に目的物を製造す
ることができる。 また、本発明において、酸析処理工程で発生す
る炭酸ガスを加熱反応工程に用いる炭酸ガスの一
部もしくは全部として利用することにより、原料
コスト的には事実上原料炭酸ガスが不要となるか
少量でよいこととなり、更には反応液を冷却して
析出せしめたアルカリを加熱反応工程における炭
酸塩と併用することにより、原料炭酸塩の使用量
を通常の約半分程度まで減少することができ、従
つてこの場合の使用量は従来公知の方法で用いら
れる炭酸水素塩量の約1/4モル倍程度となり、経
済的に非常に有利となる。 以下、本発明を詳細に説明する。 本発明において、(A)工程における加熱反応にお
いて、炭酸塩の使用量は基本的には原料レゾルシ
ンに対して2.5〜3.5モル倍好ましくは2.7〜3モル
倍である。 ここで、基本的というのは後述する回収アルカ
リを再使用しない場合を意味し、再使用の場合に
はこの使用量を1.2〜2モル倍程度にまで減ずる
ことができる。 炭酸塩としてはNa2CO3、K2CO3が例示される
が、Na2CO3が特に好ましく用いられる。 この反応は水溶液中で実施されるが、反応系内
における水の量が少なければ反応率が低下し、ま
た多すぎても反応率が低下し、容積効率も悪くな
るのみならず、(B)工程でのアルカリ回収率が悪く
なるなどの点で、一般的には水の量は原料レゾル
シンに対して8〜12重量倍、好ましくは9.5〜
10.5重量倍であるが、10重量倍前後である場合が
とりわけ好ましい。 炭酸ガスは反応系内に連続的に供給され、その
量が少なすぎると反応収率も悪く、(B)工程におけ
るアルカリの回収率が悪くなるなどの点で、通常
原料レゾルシンに対して2.5〜5モル倍である。 反応温度は80〜100℃であるが、90〜100℃とり
わけ95℃前後が最も好ましく、この範囲を越える
と反応率が低下する。 反応は、炭酸塩およびレゾルシンを溶解した水
溶液に炭酸ガスを吹き込みながら所定の反応温度
となるように加熱、保持することにより行われる
が、操作性、目的化合物の着色防止などの点か
ら、あらかじめ調整した炭酸塩水溶液に炭酸ガス
を吹き込みながら所定の反応温度まで昇温し、こ
れにレゾルシンを濃度30〜50%のレゾルシン水溶
液として加え、炭酸ガスの吹き込みを続けながら
所定の反応温度を保持するようにして行うのが好
ましい。この方法による場合、炭酸ガスは炭酸ガ
スの全仕込量中の5〜15%を炭酸塩水溶液の調整
から昇温までに、残りをレゾルシン水溶液の添加
から反応液の冷却までに加えるのが好ましく、そ
の供給速度は前段階は後段階よりも遅く、かつそ
れぞれの段階では略一定速度となるようにするの
が好ましい。 尚、炭酸塩水溶液の昇温に要する時間、レゾル
シン水溶液の添加に要する時間、保温時間はそれ
ぞれの条件により適宜決定され、特に制限される
ものではないが、一般的にはそれぞれ0.5〜3時
間、10〜60分、2〜6時間である。 上記加熱反応が終了して得られる反応液中には
未反応レゾルシン、β−レゾルシル酸アルカリ金
属塩、未反応炭酸塩および反応により生じた炭酸
水素塩が混在することとなり、該反応液を0〜50
℃好ましくは20〜40℃に冷却することによりアル
カリが結晶として析出する。 このアルカリは主として炭酸水素塩からなり、
その他少量の反応レゾルシン、β−レゾルシル酸
アルカリ金属塩および炭酸塩を含んでいる。 冷却反応液からなるアルカリを分離する方法と
しては通常の固一液分離法が採用されるが、回収
アルカリを次回の反応に再使用するには、冷却反
応液を30〜240分程度静置して結晶分を反応槽に
沈降せしめ、その上澄液を分離水層として取り出
す方法が有利である。この方法による場合にはア
ルカリを沈降させた反応槽で次回の反応が実施さ
れることになるため、アルカリ中に含まれる未反
応レゾルシンや目的物であるβ−レゾルシル酸も
アルカリ成分と共にその全部が次回の反応系に循
環されるため全く損失とならない。 かかる冷却処理により、原料として用いた炭酸
塩はその45〜60%が主として炭酸水素塩の形で回
収される。 アルカリを分離したのちの分離水層はこれを酸
析し、β−レゾルシル酸を結晶として析出させる
が、この際に用いる酸として、酸析処理のみを目
的とする場合には特に制限されないが、発生する
炭酸ガスを回収、再使用する場合には酸として塩
酸を用いれば炭酸ガス中に塩化水素ガスが混入す
る等の問題があり、硫酸が特に好ましく使用され
る。 酸析処理法自体は公知の方法に準じて実施され
るが、酸水溶液中に分離水層を添加してゆく方法
が好ましい。 この際、酸析処理で発生する炭酸ガスを次回の
反応に用いるには、発生する炭酸ガス量が該反応
に供給する炭酸ガス量と見合うように分離水層の
酸水溶液中への供給速度を調整することが好まし
い。 酸析処理に用いる酸量は通常理論量の1.01〜
1.1モル倍であつて一般にはPHが2.5以下となるま
で添加される。 また、酸は通常10〜50%濃度の水溶液として使
用され、処理温度は一般には60℃以下であり、酸
析処理後は通常40℃以下に保持される。 酸析終了後、析出結晶を過等の手段で分離す
ることによりβ−レゾルシル酸を結晶として得る
ことができ、分離された水層は次回の酸析用の酸
水溶液として利用することができる。 尚、前述の回収アルカリは炭酸水素塩を主成分
とするものであるが、炭酸水素塩は反応成分であ
るため、回収アルカリをそのまま次回の反応に利
用する場合には新たに使用する炭酸塩はレゾルシ
ンに対して1.2〜2モル倍程度でよく、原料炭酸
塩の使用量を著しく減ずることができる。また、
酸析処理時に発生する炭酸ガスを次回の反応にお
ける炭酸ガスの一部もしくは全部として利用する
場合にも反応原料として新たに使用する炭酸ガス
の一部もしくは全部が不要となる。 かくして、本発明の方法に従えば、レゾルシン
反応率50〜60%、β−レゾルシル酸選択率95%以
上という従来法と同等もしくはそれ以上の収率で
目的物が得られ、しかも炭酸塩の使用量は従来法
の約半分でよいというすぐれた効果が得られ、と
りわけ、アルカリや炭酸ガスを回収し、これを反
応原料としてリサイクル使用する場合には、炭酸
塩の使用量は従来法の約1/4程度でよく、新たな
反応原料としての炭酸ガスは不要もしくは一部で
よいなど経済的に極めて有利である。 尚、本発明方法を実施するための製造装置の一
例を第1図に示すが、この製造装置はアルカリ、
炭酸ガスの回収およびその再使用に有利なもので
ある。 図中、記号1は還流コンデンサー、CO2供給用
ノズル6、各原料仕込口、反応マス上澄液(分離
水層)抜出管7などを備えた反応槽であり、2は
分離水層(酸析原料)貯槽、3は撹拌機、ミスト
分離器、酸仕込口、酸析原料仕込口および酸析マ
ス抜出管8を備えた酸析槽、4は過器、5は
過母液貯槽、9は過母液の移送管、10は回収
炭酸ガスの移送管をそれぞれ示す。 以下、実施例により本発明を説明する。 実施例 1 反応槽1に水990重量部を仕込み、撹拌しなが
らNa2CO3293重量部を仕込む。次いで、CO2ガス
を毎時10重量部の速度で吹込みつつ、2時間かけ
て、90℃迄昇温する。次いで、反応温度が90〜95
℃になる様に制御しながら、CO2ガスの吹込み量
を毎時20重量部に増加し、50重量%のレゾルシン
水溶液220重量部を30分かけて仕込む。その後
CO2ガスの吹込量を毎時20重量部に維持しながら
95℃で3時間保温し、ついで3時間かけて40℃迄
冷却する。CO2ガスの吹込みを止め、同温度でさ
らに30分間撹拌下に保持する。この時の反応槽内
の組成は、未反応レゾルシン51重量部、β−レゾ
ルシル酸のNa塩93重量部、Na2CO380重量部、
NaHCO3293.4重量部及び水1047重量部であり、
レゾルシン反応率53.6%、β−レゾルシル酸−
Na選択率は98.0%であつた。 次いで撹拌を停止し、1時間静置したのち上澄
液を酸析原料貯槽2に移送する。上澄液は未反応
レゾルシン41.1重量部、β−レゾルシル酸−
Na75.2重量部、Na2CO363.0重量部、
NaHCO373.3重量部及び水850重量部から成り、
反応槽1に残つた固相は未反応レゾルシン9.9重
量部、β−レゾルシル酸−Na17.8重量部、
Na2CO317重量部、NaHCO3220.1重量部及び水
197重量部から成り、固相側に回収された、Na+
はNa2CO3換算55.02%に達し、上澄液中のβ−レ
ゾルシル酸−Na1モル当たりに使用されたNa+
Na2CO3として2.926molであつた。 反応槽1に残した固相は次の実施例2の原料の
一部として使用し、また上澄液も実施例2におけ
る操作の一部として酸析した。 尚、酸析終了後、酸析槽3の内容物を過器4
で過し、過器上で200重量部の水で2回洗浄
し、さらに内温が100℃以上になる様な、真空箱
型乾燥機にて、十分に乾燥したところ、純度99.9
%のβ−レゾルシル酸の白色結晶60.2重量部が得
られた。酸析、過、水洗、乾燥迄の収率は
91.92%であり、結局、β−レゾルシル酸1mol当
りに使用されたNa2CO3は、3.183molであつた。 実施例 2 酸析槽3に水125重量部を仕込み、撹拌しなが
ら98%硫酸125重量部を加え、内温を40℃に調整
する。また、酸析槽3から反応槽1への気相ライ
ン10を連結しておく。 実施例1で得られた固相(未反応レゾルシン
9.9重量部、β−レゾルシル酸−Na17.8重量部、
Na2CO317重量部NaHCO3220.1重量部及び水197
重量部から成る)の入つた反応槽1に水814重量
部を仕込み、撹拌しながらNa2CO3132重量部を
仕込んでおく。 これに、酸析原料貯槽2の酸析原料(実施例1
で得られた上澄液であつて、未反応レゾルシン
41.1重量部、β−レゾルシル酸−Na75.2重量部、
Na2CO363.0重量部NaHCO373.3重量部及び水850
重量部から成る)を毎時88重量部の割合で2時間
フイードする(このときのCO2ガス発生量は、毎
時5.2重量部となる)。この間に反応槽1の温度を
90℃迄上げる。酸析原料を毎時176.5重量部
(CO2ガス発生量は毎時10.5重量部となる)に増
加し、3時間30分供給する。この間最初の30分間
で178重量部の50%レゾルシン水溶液を内温90〜
95℃に保ちつつ反応槽1に仕込み、後の3時間は
内温を95℃に保つ。 その後、酸析原料の供給量を毎時102.7重量部
(CO2ガス発生量は毎時6.1重量部となる)に下
げ、約3時間供給する。この間反応槽1の温度を
40℃迄下げ、酸析原料がなくなると同時に、酸析
槽3と反応槽1の連結ライン10を閉じ、そのま
ま30分間保温する。この時の反応槽1内の組成は
未反応レゾルシン49重通部、β−レゾルシル酸−
Na96.2重量部、Na2CO379重量部、
NaHCO3293.8重量部及び水1055重量部から成り、
レゾルシン反応率は、50.45%(新しく仕込んだ
RESに対しては56.1%)、β−レゾルシル酸−Na
選択率は97.64%であつた。 次いで撹拌を停止し、1時間静置後上澄液を酸
析原料貯槽2に移送する。上澄液は未反応レゾル
シン39.3重量部、β−レゾルシル酸−Na77.8重量
部、Na2CO362.5重量部、NaHCO373.9重量部及
び水863重量部から成り、反応槽1に残つた回相
は未反応レゾルシン9.7重量部、β−レゾルシル
酸−Na18.4重量部、Na2CO316.5重量部、
NaHCO3219.9重量部及び水195重量部から成り、
固相側に回収されたNa+はNa2CO3換算54.83%に
達し、上澄液中のβ−レゾルシル酸−Na1mol当
りに使用されたNa+はNa2CO3換算2.843molであ
つた。 一方、酸析原料貯槽2に移送された酸析原料を
次回の反応に使用して本実施例と同一の条件で酸
析し、実施例1に記載と同様にして水洗、過乾
燥したところ、純度99.9%のβ−レゾルシル酸の
白色結晶62.3重量部が得られた。酸析、過、水
洗、乾燥迄の収率は92.04%であり、β−レゾル
シル酸1mol当りに使用されたNa2CO3は3.089mol
であつた。 比較例 1 グラスライニング製反応槽に水990重量部を仕
込み、撹拌しながらNaHCO3464重量部を仕込
む。次いでCO2ガスを毎時、5重量部の割合で吹
込みつつ、2時間かけて90℃迄昇温する。反応温
度が90〜95℃の間になる様に制御しながら、CO2
ガスの吹込み量を毎時10重量部に添加し、50%レ
ゾルシン水溶液220重量部を30分かけて仕込む。
その後、CO2ガスの吹込量を毎時10重量部に維持
しながら温度95℃で3時間保温する。保温終了
後、CO2ガスの吹込み量を毎時5重量部とし、3
時間かけて40℃迄冷却する。この時の反応槽内の
組成は、未反応レゾルシン50.4重量部、β−レゾ
ルシル酸−Na93.8重量部、Na2CO374重量部、
NaHCO3301.5重量部及び水1078重量部より成り、
レゾルシン反応率は54.2%、β−レゾルシル酸−
Na選択率は98.4%であり、β−レゾルシル酸−
Na1molの製造に要したNaHCO3量は10.36molに
達した。 この反応マスに280重量部の濃硫酸を4時間か
けて加え、酸析したのち40℃迄冷却し、過機で
過し過器上で200重量部の水で2回洗浄し、
さらに内温が100℃以上になる様な真空箱型乾燥
機にて十分に乾燥したところ、純度99.6%のβ−
レゾルシル酸の白色結晶75.7部が得られた。酸析
〜乾燥迄の収率は、91.80%であつたが、実施例
2で得られたものに比較してNa2SO4に基く不純
物が0.3%多かつた。 尚、β−レゾルシル酸1mol当りに使用された
NaHCO3は11.282molであつた。 実施例1、2及び比較例1の結果より、β−レ
ゾルシル酸1gmolを製造するに要した
NaHCO3、Na2CO3、CO2ガス及び、H2SO4量を
比較すると次表の如くとなる。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an industrially advantageous method for producing β-resorsilic acid. β-resorsilic acid is an ultraviolet absorber such as 2,
2',4,4'-tetrahydroxybenzophenone,
It is a compound useful as a raw material for 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, etc.
Its production method involves mixing resorcin with an alkali metal hydrogen carbonate (e.g. KHCO 3 , KHCO 3 ,
A method in which it is obtained with a yield of about 50% by reacting with NaHCO 3 (hereinafter simply referred to as hydrogen carbonate) [Org, Syn,
Coll., Vol., 557 (1943)] is known. However, in such a known method, a large amount of hydrogen carbonate is required, at least 5 times the molar amount relative to resorcin, and 10 times the molar amount or more relative to the generated β-resorsilic acid, which increases the production cost of β-resorsilic acid. The proportion of hydrogen carbonate is very large,
It could not be said to be advantageous as an industrial manufacturing method. For this reason, the present inventors have conducted studies to improve the drawbacks of the above-mentioned known methods and produce β-resorsilic acid with industrial advantage, and as a result, they have found that an alkali metal carbonate is used instead of a hydrogen carbonate. For example, the amount used can be about half as much as when using hydrogen carbonate, and the reaction proceeds with almost the same yield as when using hydrogen carbonate. Since they are generally cheaper than hydrogen carbonates, they have found that the amount used can be reduced by about half, making them very economically advantageous, and have completed the present invention. That is, the present invention includes (A) a step of heating and reacting resorcinol with an alkali metal carbonate (hereinafter simply referred to as carbonate) at 80 to 100°C in the presence of carbon dioxide gas in an aqueous solution; (B) after completion of the reaction; A step (C) of cooling the reaction solution to 0 to 50°C to precipitate an alkali and separating it from the aqueous layer; and (C) a step of precipitating the separated aqueous layer with acid and separating the precipitated β-resorcylic acid. The present invention provides a method for producing β-resorsilic acid. According to the method of the present invention, the amount of carbonate used is small and the yield of β-resorcylic acid is almost the same as that of the conventional method, so that the desired product can be economically advantageously produced. In addition, in the present invention, by using the carbon dioxide gas generated in the acid precipitation treatment process as part or all of the carbon dioxide gas used in the heating reaction process, raw material carbon dioxide gas is virtually unnecessary in terms of raw material cost, or only a small amount of carbon dioxide gas is needed. Furthermore, by using the alkali precipitated by cooling the reaction solution together with the carbonate in the heating reaction step, the amount of raw carbonate used can be reduced to about half of the usual amount. In this case, the amount used is about 1/4 mole of the amount of hydrogen carbonate used in conventionally known methods, which is economically very advantageous. The present invention will be explained in detail below. In the present invention, in the heating reaction in step (A), the amount of carbonate used is basically 2.5 to 3.5 times, preferably 2.7 to 3 times, by mole relative to the raw material resorcin. Here, "basic" means the case where the recovered alkali, which will be described later, is not reused, and in the case of reuse, the amount used can be reduced to about 1.2 to 2 moles. Examples of carbonates include Na 2 CO 3 and K 2 CO 3 , with Na 2 CO 3 being particularly preferably used. This reaction is carried out in an aqueous solution, but if the amount of water in the reaction system is small, the reaction rate will decrease, and if it is too large, the reaction rate will not only decrease and the volumetric efficiency will deteriorate, but also (B) Generally speaking, the amount of water is 8 to 12 times the weight of the raw material resorcin, preferably 9.5 to 12 times the weight of the raw material resorcin, since the alkali recovery rate in the process becomes poor.
The amount is 10.5 times by weight, but it is particularly preferably around 10 times by weight. Carbon dioxide gas is continuously supplied into the reaction system, and if the amount is too small, the reaction yield will be poor, and the recovery rate of alkali in step (B) will be poor. 5 moles. The reaction temperature is from 80 to 100°C, most preferably from 90 to 100°C, particularly around 95°C; if this range is exceeded, the reaction rate decreases. The reaction is carried out by heating and maintaining a predetermined reaction temperature while blowing carbon dioxide gas into an aqueous solution in which carbonate and resorcinol are dissolved. While blowing carbon dioxide gas into the aqueous carbonate solution, the temperature is raised to a predetermined reaction temperature, and resorcinol is added thereto as a resorcinol aqueous solution with a concentration of 30 to 50%, and the predetermined reaction temperature is maintained while continuing to blow carbon dioxide gas. It is preferable to do so. When using this method, it is preferable to add 5 to 15% of the total amount of carbon dioxide gas to be added between the preparation of the carbonate aqueous solution and the temperature rise, and the remainder between the addition of the resorcinol aqueous solution and the cooling of the reaction solution. Preferably, the feeding rate is slower in the earlier stage than in the later stage, and is approximately constant in each stage. Note that the time required to raise the temperature of the carbonate aqueous solution, the time required to add the resorcinol aqueous solution, and the heat retention time are determined appropriately depending on each condition, and are not particularly limited, but generally each is 0.5 to 3 hours, 10 to 60 minutes, 2 to 6 hours. Unreacted resorcin, β-resorcylic acid alkali metal salt, unreacted carbonate, and hydrogen carbonate produced by the reaction coexist in the reaction solution obtained after the heating reaction is completed, and the reaction solution is 50
By cooling to preferably 20 to 40°C, the alkali precipitates as crystals. This alkali mainly consists of bicarbonate,
It also contains small amounts of reactive resorcin, β-resorcylic acid alkali metal salts and carbonates. The usual solid-liquid separation method is used to separate the alkali from the cooled reaction liquid, but in order to reuse the recovered alkali in the next reaction, the cooled reaction liquid must be allowed to stand for about 30 to 240 minutes. An advantageous method is to allow the crystal components to settle in a reaction tank, and then take out the supernatant liquid as a separated aqueous layer. In this method, the next reaction is carried out in the reaction tank in which the alkali has been precipitated, so that all of the unreacted resorcin contained in the alkali and the target product, β-resorcylic acid, are removed together with the alkali components. Since it is recycled to the next reaction system, there is no loss at all. Through this cooling treatment, 45 to 60% of the carbonate used as a raw material is recovered mainly in the form of hydrogen carbonate. After separating the alkali, the separated aqueous layer is acid-precipitated to precipitate β-resorsilic acid as crystals.The acid used at this time is not particularly limited if the purpose is only for acid-precipitation treatment. When the generated carbon dioxide gas is recovered and reused, if hydrochloric acid is used as the acid, there are problems such as hydrogen chloride gas being mixed into the carbon dioxide gas, so sulfuric acid is particularly preferably used. The acid precipitation treatment method itself is carried out according to a known method, but a method in which a separated aqueous layer is added to an acid aqueous solution is preferred. At this time, in order to use the carbon dioxide gas generated in the acid precipitation treatment for the next reaction, the rate of supply of the separated aqueous layer into the acid aqueous solution should be adjusted so that the amount of carbon dioxide gas generated matches the amount of carbon dioxide gas supplied to the reaction. Adjustment is preferred. The amount of acid used for acid precipitation treatment is usually 1.01 to 1.01 of the theoretical amount.
It is added in an amount of 1.1 moles, and is generally added until the pH becomes 2.5 or less. Further, the acid is usually used as an aqueous solution with a concentration of 10 to 50%, and the treatment temperature is generally 60°C or lower, and is usually maintained at 40°C or lower after the acid precipitation treatment. After the acid precipitation is completed, β-resorcylic acid can be obtained as crystals by separating the precipitated crystals by an appropriate means, and the separated aqueous layer can be used as an aqueous acid solution for the next acid precipitation. The main component of the recovered alkali mentioned above is hydrogen carbonate, but since hydrogen carbonate is a reaction component, if the recovered alkali is used as is for the next reaction, the newly used carbonate must be The amount may be about 1.2 to 2 moles relative to resorcinol, and the amount of raw material carbonate to be used can be significantly reduced. Also,
Even when the carbon dioxide gas generated during the acid precipitation treatment is used as part or all of the carbon dioxide gas in the next reaction, part or all of the carbon dioxide gas newly used as a reaction raw material becomes unnecessary. Thus, according to the method of the present invention, the desired product can be obtained with a yield equivalent to or higher than that of the conventional method, with a resorcin reaction rate of 50 to 60% and a β-resorsilic acid selectivity of 95% or more, and moreover, without the use of carbonate. The excellent effect is that the amount of carbonate used is about half that of the conventional method.In particular, when recovering alkali and carbon dioxide gas and recycling them as reaction raw materials, the amount of carbonate used is about half that of the conventional method. /4, and carbon dioxide gas as a new reaction raw material is not required or only a part of it is necessary, which is extremely advantageous economically. An example of a manufacturing apparatus for carrying out the method of the present invention is shown in FIG.
It is advantageous for carbon dioxide recovery and its reuse. In the figure, symbol 1 is a reaction tank equipped with a reflux condenser, a CO 2 supply nozzle 6, each raw material inlet, a reaction mass supernatant liquid (separated water layer) extraction pipe 7, etc. Acid precipitation raw material) storage tank, 3 is an acid precipitation tank equipped with a stirrer, a mist separator, an acid inlet, an acid precipitation raw material inlet and an acid precipitation mass extraction pipe 8, 4 is a filter, 5 is a permeated mother liquor storage tank, Reference numeral 9 indicates a transfer tube for the supernatant liquor, and 10 indicates a transfer tube for the recovered carbon dioxide gas. The present invention will be explained below with reference to Examples. Example 1 990 parts by weight of water was charged into reaction tank 1, and 293 parts by weight of Na 2 CO 3 was charged while stirring. Next, the temperature is raised to 90° C. over 2 hours while blowing in CO 2 gas at a rate of 10 parts by weight per hour. Then the reaction temperature is 90-95
℃, the amount of CO 2 gas blown was increased to 20 parts by weight per hour, and 220 parts by weight of a 50% by weight resorcinol aqueous solution was charged over 30 minutes. after that
While maintaining the CO 2 gas injection rate at 20 parts by weight per hour.
Insulate at 95°C for 3 hours, then cool to 40°C over 3 hours. Stop the CO 2 gas blowing and keep under stirring at the same temperature for another 30 min. The composition inside the reaction tank at this time was 51 parts by weight of unreacted resorcin, 93 parts by weight of Na salt of β-resorcylic acid, 80 parts by weight of Na 2 CO 3 ,
293.4 parts by weight of NaHCO 3 and 1047 parts by weight of water,
Resorcin reaction rate 53.6%, β-resorcylic acid-
The Na selectivity was 98.0%. Next, the stirring is stopped and the supernatant liquid is transferred to the acid precipitation raw material storage tank 2 after being allowed to stand for 1 hour. The supernatant contains 41.1 parts by weight of unreacted resorcin and β-resorcylic acid.
Na 75.2 parts by weight, Na 2 CO 3 63.0 parts by weight,
Consisting of 73.3 parts by weight of NaHCO 3 and 850 parts by weight of water,
The solid phase remaining in reaction tank 1 contained 9.9 parts by weight of unreacted resorcin, 17.8 parts by weight of β-resorcylic acid-Na,
17 parts by weight of Na 2 CO 3 , 220.1 parts by weight of NaHCO 3 and water
197 parts by weight of Na + recovered on the solid phase side.
reached 55.02% in terms of Na 2 CO 3 , and the Na + used per mol of β-resorcylic acid-Na in the supernatant was
It was 2.926 mol as Na 2 CO 3 . The solid phase left in reaction tank 1 was used as part of the raw material for the following Example 2, and the supernatant liquid was also acid-precipitated as part of the operation in Example 2. In addition, after the acid precipitation is completed, the contents of the acid precipitation tank 3 are passed through the strainer 4.
After washing twice with 200 parts of water on a strainer, and thoroughly drying in a vacuum box dryer with an internal temperature of 100°C or higher, the purity was 99.9.
60.2 parts by weight of white crystals of .beta.-resorsilic acid were obtained. The yield from acid precipitation, filtration, water washing, and drying is
It was 91.92%, and in the end, 3.183 mol of Na 2 CO 3 was used per 1 mol of β-resorcylic acid. Example 2 125 parts by weight of water is charged into the acid precipitation tank 3, 125 parts by weight of 98% sulfuric acid is added while stirring, and the internal temperature is adjusted to 40°C. Further, a gas phase line 10 from the acid precipitation tank 3 to the reaction tank 1 is connected. The solid phase obtained in Example 1 (unreacted resorcin
9.9 parts by weight, β-resorcylic acid-Na 17.8 parts by weight,
17 parts by weight of Na 2 CO 3 220.1 parts by weight of NaHCO 3 and 197 parts by weight of water
814 parts by weight of water was charged into the reaction tank 1 containing 100 parts by weight of water, and 132 parts by weight of Na 2 CO 3 was charged while stirring. In addition, the acid precipitation raw material in the acid precipitation raw material storage tank 2 (Example 1
The supernatant obtained in
41.1 parts by weight, β-resorcylic acid-Na 75.2 parts by weight,
Na 2 CO 3 63.0 parts by weight NaHCO 3 73.3 parts by weight and water 850
(consisting of parts by weight) was fed at a rate of 88 parts by weight per hour for 2 hours (the amount of CO 2 gas generated at this time was 5.2 parts by weight per hour). During this time, the temperature of reaction tank 1 is
Raise the temperature to 90℃. The acid precipitation raw material was increased to 176.5 parts by weight per hour (the amount of CO 2 gas generated was 10.5 parts by weight per hour) and was supplied for 3 hours and 30 minutes. During this period, for the first 30 minutes, add 178 parts by weight of a 50% resorcinol aqueous solution to an internal temperature of 90~90.
The mixture is charged into reaction tank 1 while being maintained at 95°C, and the internal temperature is maintained at 95°C for the next 3 hours. Thereafter, the supply rate of the acid precipitation raw material was reduced to 102.7 parts by weight per hour (the amount of CO 2 gas generated was 6.1 parts by weight per hour), and the supply was continued for about 3 hours. During this time, the temperature of reaction tank 1 was
When the temperature is lowered to 40°C and the acid precipitation raw material is exhausted, the connection line 10 between the acid precipitation tank 3 and the reaction tank 1 is closed, and the temperature is maintained for 30 minutes. The composition in reaction tank 1 at this time was 49 parts of unreacted resorcin, β-resorcylic acid-
96.2 parts by weight of Na, 79 parts by weight of Na 2 CO 3 ,
Consisting of 293.8 parts by weight of NaHCO 3 and 1055 parts by weight of water,
The resorcin reaction rate was 50.45% (newly prepared
56.1% for RES), β-resorcylic acid-Na
The selection rate was 97.64%. Next, stirring is stopped, and after being allowed to stand for 1 hour, the supernatant liquid is transferred to the acid precipitation raw material storage tank 2. The supernatant liquid consisted of 39.3 parts by weight of unreacted resorcinol, 77.8 parts by weight of β-resorsilic acid-Na, 62.5 parts by weight of Na 2 CO 3 , 73.9 parts by weight of NaHCO 3 and 863 parts by weight of water, and the supernatant liquid remained in reaction tank 1. The phase consists of 9.7 parts by weight of unreacted resorcin, 18.4 parts by weight of β-resorcylic acid-Na, 16.5 parts by weight of Na 2 CO 3 ,
Consisting of 219.9 parts by weight of NaHCO 3 and 195 parts by weight of water,
The Na + recovered on the solid phase side reached 54.83% in terms of Na 2 CO 3 , and the Na + used per 1 mol of β-resorcylic acid-Na in the supernatant was 2.843 mol in terms of Na 2 CO 3 . On the other hand, the acid-precipitating raw material transferred to the acid-precipitating raw material storage tank 2 was used for the next reaction and acid-precipitated under the same conditions as in this example, washed with water and overdried in the same manner as described in Example 1. 62.3 parts by weight of white crystals of β-resorsilic acid with a purity of 99.9% were obtained. The yield after acid precipitation, filtration, water washing, and drying was 92.04%, and the amount of Na 2 CO 3 used per 1 mol of β-resorcylic acid was 3.089 mol.
It was hot. Comparative Example 1 990 parts by weight of water was charged into a glass-lined reaction tank, and 464 parts by weight of NaHCO 3 was charged while stirring. Next, the temperature was raised to 90° C. over 2 hours while blowing CO 2 gas at a rate of 5 parts by weight per hour. CO 2 was added while controlling the reaction temperature to be between 90 and 95°C.
Add gas at a rate of 10 parts by weight per hour, and charge 220 parts by weight of a 50% resorcinol aqueous solution over 30 minutes.
Thereafter, the temperature was kept at 95° C. for 3 hours while maintaining the amount of CO 2 gas blown at 10 parts by weight per hour. After heating, the amount of CO 2 gas blown was 5 parts by weight per hour.
Cool down to 40℃ over time. The composition in the reaction tank at this time was 50.4 parts by weight of unreacted resorcin, 93.8 parts by weight of β-resorcylic acid-Na, 74 parts by weight of Na 2 CO 3 ,
Consisting of 301.5 parts by weight of NaHCO 3 and 1078 parts by weight of water,
The resorcin reaction rate was 54.2%, β-resorcinic acid-
The Na selectivity was 98.4%, and β-resorcylic acid-
The amount of NaHCO 3 required to produce 1 mol of Na reached 10.36 mol. 280 parts by weight of concentrated sulfuric acid was added to this reaction mass over 4 hours to precipitate the acid, cooled to 40°C, filtered through a filter, washed twice with 200 parts by weight of water on a filter,
Furthermore, when thoroughly dried in a vacuum box dryer with an internal temperature of 100℃ or higher, the β-
75.7 parts of white crystals of resorcylic acid were obtained. The yield from acid precipitation to drying was 91.80%, but compared to that obtained in Example 2, impurities based on Na 2 SO 4 were 0.3% higher. In addition, the amount used per 1 mol of β-resorsilic acid was
NaHCO 3 was 11.282 mol. From the results of Examples 1 and 2 and Comparative Example 1, the amount required to produce 1 gmol of β-resorcylic acid was
A comparison of the amounts of NaHCO 3 , Na 2 CO 3 , CO 2 gas and H 2 SO 4 is as shown in the following table. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための製造装置
例をフローシートで示したものであり、図中の記
号(1〜10)は次のとおりである。1:反応
槽、2:酸析原料貯槽、3:酸析槽、4:過
器、5:過母液貯槽、6:CO2供給用ノズル、
7:上澄液抜出管、8:酸析マス抜出管、9:移
送管、10:炭酸ガス移送管。
FIG. 1 is a flow sheet showing an example of a manufacturing apparatus for carrying out the method of the present invention, and the symbols (1 to 10) in the figure are as follows. 1: reaction tank, 2: acid precipitation raw material storage tank, 3: acid precipitation tank, 4: filter, 5: peroxide mother liquor storage tank, 6: CO 2 supply nozzle,
7: Supernatant liquid extraction pipe, 8: Acid precipitation mass extraction pipe, 9: Transfer pipe, 10: Carbon dioxide gas transfer pipe.

Claims (1)

【特許請求の範囲】 1 (A) レゾルシンを水溶液中で炭酸ガスの共存
下にアルカリ金属炭酸塩を用いて80〜100℃で
加熱反応する工程 (B) 反応終了後、反応液を0〜50℃に冷却してア
ルカリを析出させ、水層と分離する工程 (C) 分離水層を酸析し、析出するβ−レゾルシル
酸を分離する工程 からなることを特徴とするβ−レゾルシル酸の製
造方法。 2 (C)工程の酸析処理時に発生する炭酸ガスを、
(A)工程で用いる炭酸ガスの一部もしくは全部とし
て使用する特許請求の範囲第1項に記載の方法。 3 酸析に用いる酸が硫酸である特許請求の範囲
第1項又は第2項記載の方法。 4 酸析を酸溶液中に分離水層を連続的に加える
ことにより行い、発生する炭酸ガスが(A)工程で用
いる炭酸ガスとして所望の供給速度となるよう
に、酸溶液中への分離水層の添加速度を調整する
ことからなる特許請求の範囲第2項又は第3項に
記載の方法。 5 (B)工程で分離したアルカリを(A)工程における
アルカリ金属炭酸塩と併用する特許請求の範囲第
1項、第2項、第3項又は第4項に記載の方法。
[Claims] 1 (A) A step of heating resorcinol in an aqueous solution with an alkali metal carbonate in the presence of carbon dioxide gas at 80 to 100°C. (B) After the reaction, the reaction solution is heated to 0 to 50°C. Production of β-resorcylic acid characterized by comprising the following steps: (C) cooling the separated aqueous layer with acid to precipitate an alkali and separating the precipitated β-resorsilic acid from the aqueous layer Method. 2. The carbon dioxide gas generated during the acid precipitation treatment in step (C) is
The method according to claim 1, which is used as part or all of the carbon dioxide gas used in step (A). 3. The method according to claim 1 or 2, wherein the acid used for acid precipitation is sulfuric acid. 4 Acid precipitation is performed by continuously adding a separated water layer to the acid solution, and the separated water layer is added to the acid solution so that the generated carbon dioxide gas has the desired supply rate as the carbon dioxide gas used in step (A). 4. A method according to claim 2 or 3, comprising adjusting the rate of layer addition. 5. The method according to claim 1, 2, 3, or 4, wherein the alkali separated in step (B) is used in combination with the alkali metal carbonate in step (A).
JP5763483A 1983-03-31 1983-03-31 Production of beta-resorcylic acid Granted JPS59184146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5763483A JPS59184146A (en) 1983-03-31 1983-03-31 Production of beta-resorcylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5763483A JPS59184146A (en) 1983-03-31 1983-03-31 Production of beta-resorcylic acid

Publications (2)

Publication Number Publication Date
JPS59184146A JPS59184146A (en) 1984-10-19
JPH0114893B2 true JPH0114893B2 (en) 1989-03-14

Family

ID=13061321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5763483A Granted JPS59184146A (en) 1983-03-31 1983-03-31 Production of beta-resorcylic acid

Country Status (1)

Country Link
JP (1) JPS59184146A (en)

Also Published As

Publication number Publication date
JPS59184146A (en) 1984-10-19

Similar Documents

Publication Publication Date Title
KR860001569B1 (en) Process of preparing malamine
US4382916A (en) Method of preparing hydrochloric acid and high purity ferrous sulfate hydrate crystals from hydrochloric acid waste pickle liquor
US5514359A (en) Process for making anhydrous magnesium chloride
US2764472A (en) Brine purification
JP2002527329A (en) Ammonium sulfate purification method
KR20060129524A (en) METHOD FOR PROCESSING beta;-SULPHATOETHYLSULPHONYLANILINE-2-SULPHONIC ACID
JPH0114893B2 (en)
JP4309648B2 (en) High purity aluminum chloride manufacturing method and high purity aluminum chloride manufacturing apparatus
JPS599485B2 (en) Manufacturing method of carbonated soda
JPS6320764B2 (en)
JP2011521922A (en) Process for producing trisodium salt of 2,4,6-trimercapto-s-triazine
JP3394980B2 (en) Method for producing free hydroxylamine aqueous solution
JPH069683A (en) Production of pharmaceutical grade highly pure iodeoxycholicacid
CN114901590B (en) Integrated process for the production of bis (fluorosulfonyl) imide
SU947051A1 (en) Process for producing zinc bromide
JPH10272301A (en) Method for treating ferrous compound-containing hydrochloric acid waste solution
JP3319028B2 (en) Method for producing high-purity terephthalic acid
JPH06191849A (en) Production of zirconium oxychloride crystal
JPS586681B2 (en) Method for producing sodium hypochlorite pentahydrate
CN1308013A (en) Preparation process of anhydrous sodium sulfide crystal
JPH0948751A (en) Continuous production of aminoethylsulfonic acid
RU2078073C1 (en) Method for production of pentaerytritol
KR850001779B1 (en) Process for the preparation of mono alkali salt of 1-amino-8-naphthol-3,6-disulfonic acid
US2816891A (en) E- jackson
JPS62270548A (en) Production of high-purity terephthalic acid