JPS59184146A - Production of beta-resorcylic acid - Google Patents

Production of beta-resorcylic acid

Info

Publication number
JPS59184146A
JPS59184146A JP5763483A JP5763483A JPS59184146A JP S59184146 A JPS59184146 A JP S59184146A JP 5763483 A JP5763483 A JP 5763483A JP 5763483 A JP5763483 A JP 5763483A JP S59184146 A JPS59184146 A JP S59184146A
Authority
JP
Japan
Prior art keywords
acid
weight
parts
reaction
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5763483A
Other languages
Japanese (ja)
Other versions
JPH0114893B2 (en
Inventor
Kenji Tanimoto
谷本 賢二
Hiroshi Maki
真木 洋
Haruhisa Harada
治久 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5763483A priority Critical patent/JPS59184146A/en
Publication of JPS59184146A publication Critical patent/JPS59184146A/en
Publication of JPH0114893B2 publication Critical patent/JPH0114893B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the titled compound economically in a yield equal to that in the conventional method, by reacting resorcinol with a small amount of an inexpensive alkali metal carbonate in an aqueous solution in the presence of CO2 gas, and reutilizing a gas generated in the acid coagulation treatment. CONSTITUTION:Resorcinol is reacted with an alkali metal carbonate in an aqueous solution in the presence of CO2 gas under heating at 80-100 deg.C, and the reaction solution after the completion of the reaction is cooled to 0-50 deg.C to deposit the alkali and separate the alkali from the aqueous layer. The separated alkali is then used together with the above-mentioned alkali metal carbonate. The aqueous layer separated in an acid solution, e.g. sulfuric acid, is then continuously added thereto to carry out the acid coagulation treatment, and deposited crystals of beta-resorcylic acid are separated. CO2 gas generated in the step is reused as part or all of the CO2 gas to be used in the thermal reaction step, and the rate of addition of the separated aqueous layer to the acid solution is preferably adjusted to give the desired feed rate. USE:A raw material for ultraviolet light absorbers.

Description

【発明の詳細な説明】 ル 本発明はβ−レゾルシタ酸の工業的に有利な製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an industrially advantageous method for producing β-resorcitic acid.

ル′ β−レゾルシタ酸は紫外線吸収剤たとえば2.2’、4
.4’ −テトラヒドロキシベンゾフェノン、2.2′
−ジヒドロキシ−4,47−シメトキシベンゾフエノン
等の原料として有用な化合物であり、その製造法として
は炭酸ガス気流中でレゾルシンをアルカリ金属炭酸水素
塩(たとえばjG(CO,、NaHCO,など、以下単
に炭酸水素塩という)と反応させて収率50%程度で得
る方法(Org、Syn、Goe/、、Vo/、Q。
β-resorcitic acid is an ultraviolet absorber such as 2.2', 4
.. 4'-tetrahydroxybenzophenone, 2.2'
It is a compound useful as a raw material for -dihydroxy-4,47-simethoxybenzophenone, etc., and its production method involves mixing resorcin with an alkali metal hydrogen carbonate (e.g., jG(CO, NaHCO, etc.) in a carbon dioxide gas stream. (hereinafter simply referred to as hydrogen carbonate) in a yield of about 50% (Org, Syn, Goe/, Vo/, Q.

557(1948))が知られている。557 (1948)) is known.

し゛かしながら、このような公知方法では炭酸水素塩を
レゾルシンに対して5倍モル以上、生成したβ−レゾル
シr酸に対しては実に10率が非常に大きく、工業的製
法として有利とは言えなかった。
However, in such a known method, the molar ratio of hydrogen carbonate to resorcin is at least 5 times, and the ratio of hydrogen carbonate to the generated β-resorcinic acid is actually very large, and is therefore not advantageous as an industrial production method. I could not say it.

このようなことから、本発明者らは上述の公知方法のも
つ欠点を改良し、工業的有利iこノν β−ンゾルシj酸を製造すべく検討の結果、炭酸水素塩
に代えてアルカリ金属炭酸塩を用いれば、炭酸水素塩の
場合に比べてその使用量が約半モル倍でよく、シかも炭
酸水素塩を用いる場合と殆んど同程度の収率で反応が進
行し、更にはアルカリ金属炭酸塩は一般に炭酸水素塩よ
りも安価であることから使用量の約半減と相俟って経済
的にも非常に有利となることを見出し、本発明を完成す
るに至っk。
In view of this, the present inventors investigated to improve the drawbacks of the above-mentioned known methods and produce industrially advantageous ni-β-benzoic acid, and found that an alkali metal instead of hydrogen carbonate If carbonate is used, the amount used is about half a molar amount compared to the case of hydrogen carbonate, and the reaction proceeds with almost the same yield as when hydrogen carbonate is used. Since alkali metal carbonates are generally cheaper than hydrogen carbonates, they have discovered that the amount used can be reduced by about half, making them very economically advantageous, and have thus completed the present invention.

すなわち本発明は、 (Al  レゾルシンを水溶液中で炭酸がスの共存下に
アルカリ金属炭酸塩(以下、単Eこ炭酸塩′という)を
用いて80〜100℃で加熱反応する工程 (Bl  反応終了後、反応液を0〜50℃に冷却して
アルカリを析出させ、水層と分離する工程 (C1分離水層を酸析し、析出するβ−レゾルル′ ジノ酸を分離する工程 〕〆 からなることを特徴とするβ−レゾルシI酸の製造方法
を提供するものである。
That is, the present invention comprises (a step of heating and reacting Al resorcin in an aqueous solution with an alkali metal carbonate (hereinafter referred to as single E carbonate') at 80 to 100°C in the coexistence of carbonic acid (Bl reaction completed) After that, the reaction solution is cooled to 0 to 50°C to precipitate the alkali and separate it from the aqueous layer (step of precipitating the C1 separated aqueous layer with acid and separating the precipitated β-resolul'dino acid). The present invention provides a method for producing β-resorsi I acid characterized by the following.

本発明の方法によれば、炭酸塩の使用量が少。く1.か
もβ−2ゾ2□少酸。収率、よ従来法と殆んど同等であ
るため経済的有利に目的物を製造することができる。
According to the method of the present invention, the amount of carbonate used is small. 1. Kamo β-2zo2□ oligoacid. Since the yield is almost the same as that of the conventional method, the desired product can be produced economically.

また、本発明の方法において、酸析処理工程で発生する
炭酸ガスを加熱反応工程Eこ用いる炭酸ガスの一部もし
くは全部として利用することiこより、原料コスト的に
は事実上原料炭酸ガスが不要となるか少量でよいことを
なることにより、原料炭酸塩の゛使用量を通常の約半分
程度にまで減少することができ、従ってこの場合の使用
量は従来公知の方法で用いられる炭酸水素塩量の約1/
4モル倍程度となり、経済的に非常擾こ有利となる。
In addition, in the method of the present invention, the carbon dioxide gas generated in the acid precipitation treatment process is used as part or all of the carbon dioxide gas used in the heating reaction process E, so that raw carbon dioxide gas is virtually unnecessary in terms of raw material cost. By realizing that only a small amount is required, the amount of raw carbonate used can be reduced to about half of the usual amount, and therefore the amount used in this case is lower than that of hydrogen carbonate used in conventionally known methods. Approximately 1/of the amount
The amount is about 4 times the mole, which is very economically advantageous.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において、(A)工程Eこおける加熱反応におい
て、炭酸塩の使用量は基本的には原料レゾルシンに対し
て2.5〜8.5モル倍好ましくは2.7〜8モル倍で
ある。
In the present invention, in the heating reaction in (A) step E, the amount of carbonate used is basically 2.5 to 8.5 times, preferably 2.7 to 8 times, by mole relative to the raw material resorcinol. .

ここで、基本的というのは後述する回収アルカリを再使
用しIない場合を意味し、再使用の場合にはこの使用量
を1.2〜2モル倍程度にまで減することができる。
Here, "basic" means the case where the recovered alkali, which will be described later, is not reused, and in the case of reuse, the amount used can be reduced to about 1.2 to 2 moles.

炭酸塩としてはNa□Co、 、に、Co、  が例示
されるが、Na2COgが特に好ましく用いられる。
Examples of carbonates include Na□Co, , Co, and Na2COg, and Na2COg is particularly preferably used.

この反応は水溶液中で実施されるが、反応系内における
水の鼠が少なければ反応率が低下し、また多すぎても反
応率が低下し、容積効率も悪くなるのみならず、(B)
工程でのアルカリ回収率が悪くなるなどの点で、一般的
には水の量は原料レゾルシンに対して8〜12重量倍、
好ましくは9.5〜10.5重量倍であるが、10重量
倍前後である場合がとりわけの量が少なすぎると反応収
率も悪く、(B)工程におけるアルカリの回収率か悪く
なるなどの点で、通常原料レゾルシンに対して2.5〜
5モル倍である。
This reaction is carried out in an aqueous solution, but if there is too little water in the reaction system, the reaction rate will decrease, and if there is too much water, the reaction rate will decrease, and the volumetric efficiency will not only deteriorate, but also (B)
Generally speaking, the amount of water is 8 to 12 times the weight of the raw material resorcin, since the alkali recovery rate in the process will be poor.
The amount is preferably 9.5 to 10.5 times by weight, but if the amount is around 10 times by weight, the reaction yield will be poor and the recovery rate of alkali in step (B) will be poor. 2.5 to 2.5 to the normal raw material resorcinol.
5 moles.

反応温度は80〜100℃であるが、90〜100℃と
りわけ95℃前後が最も好ましく、この範囲を越えると
反応率が低下する。
The reaction temperature is 80 to 100°C, most preferably 90 to 100°C, especially around 95°C; if this range is exceeded, the reaction rate decreases.

反応は、炭酸塩およびレゾルシンを溶解した水溶液に炭
酸がスを吹き込みながら所定の反応温度となるように加
熱、保持することにより行われるが、操作性、目的化合
物の着色防止などの点から、あらかじめ調整した炭酸塩
水溶液に炭酸がスを吹き込みながら所定の反応温度まで
昇温し、これにレゾルシンを濃度80〜50%のレゾル
シン水溶液として加え、炭酸ガスの吹き込みを続けなが
ら所定の反応温度を保持するようにして行うのが好まし
い。この方法による場合、炭酸がスは炭酸がスの全仕込
量中の5〜15斃を炭酸塩水溶液の調製から昇温までに
、残りをレゾルシン水溶液の添加から反応液の冷却まで
に加えるのが好ましく、その供給速度は前段階は後段階
よりも遅く、かつそれぞれの段階では略一定速度となる
ようにするのが好ましい。
The reaction is carried out by heating and maintaining a predetermined reaction temperature while blowing carbon dioxide into an aqueous solution in which carbonate and resorcinol are dissolved. The temperature is raised to a predetermined reaction temperature while blowing carbon dioxide into the prepared carbonate aqueous solution, and resorcinol is added thereto as a resorcinol aqueous solution with a concentration of 80 to 50%, and the predetermined reaction temperature is maintained while continuing to blow carbon dioxide gas. It is preferable to do it in this way. In this method, it is recommended to add 5 to 15 parts of the total amount of carbonate gas from the preparation of the carbonate aqueous solution to the time of temperature rise, and the rest from the addition of the resorcinol aqueous solution to the time of cooling the reaction solution. Preferably, the feeding rate is slower in the earlier stage than in the later stage, and is preferably maintained at a substantially constant rate in each stage.

尚、炭酸塩水溶液の昇温に要する時間、レゾルシン水溶
液の添加に要する時間、保温時間はそれぞれの条件によ
り適宜決定され、特に制限されるものではないが、一般
的にはそれぞれ0.5〜3時間、10〜60分、2〜6
時間である。
Note that the time required to raise the temperature of the carbonate aqueous solution, the time required to add the resorcinol aqueous solution, and the heat retention time are determined appropriately depending on each condition, and are not particularly limited, but generally each is 0.5 to 3 Time, 10-60 minutes, 2-6
It's time.

上記加熱反応が終了して得られる反応液中?ン には未反応レゾルシン、β−レゾルシジ酸アルカリ金属
塩、未反応炭酸塩および反応fこより生じた炭酸水素塩
が混在することとなり、該反応液を0〜50℃好ましく
は20〜40℃に冷却することによりアルカリが結晶と
して析出する。
In the reaction solution obtained after the above heating reaction? Unreacted resorcin, β-resorcidic acid alkali metal salt, unreacted carbonate, and hydrogen carbonate generated from the reaction coexist in the reaction solution, and the reaction solution is cooled to 0 to 50°C, preferably 20 to 40°C. This causes the alkali to precipitate as crystals.

このアルカリは主として炭酸水素塩からなり、その他少
量の未反応レゾルシン、β−レ?ン ゾルシl酸アルカリ金属塩および炭酸塩を含んでいる。
This alkali mainly consists of hydrogen carbonate, with a small amount of unreacted resorcinol and β-resorcin. Contains alkali metal salts and carbonates of sulfuric acid.

冷却反応液からかかるアルカリを分離する方法としては
通常の固−液分離法が採用されるが、回収アルカリを次
回の反応に再使用するには、冷却反応液を30〜240
分程度静置して結晶分を反応槽に沈降せしめ、その上澄
液を分離水層として取り出す方法が有利である。この方
法による場合にはアルカリを沈降させた反応槽で次回の
反応が実施されることになるため、アルカリ中Cζ含ま
れる未反応フく=                 
        ノシレゾルシン7目的物であるβ−レ
ゾルシI酸もアルカリ成分と共にその全部が次回の反応
系に循環されるため全く損失とならない。
A normal solid-liquid separation method is used to separate the alkali from the cooled reaction liquid, but in order to reuse the recovered alkali in the next reaction, the cooled reaction liquid must be
An advantageous method is to allow the crystals to settle in the reaction tank by allowing the mixture to stand for about a minute, and then take out the supernatant liquid as a separated aqueous layer. In this method, the next reaction will be carried out in the reaction tank in which the alkali has been precipitated, so the unreacted fumes contained in the alkali =
β-Resorcin I acid, which is the target product of NosiResorcin 7, is completely recycled together with the alkaline component to the next reaction system, so there is no loss at all.

かかる冷却処理により、原料として用いた炭酸塩はその
45〜60%が主として炭酸水素塩の形で回収される。
Through this cooling treatment, 45 to 60% of the carbonate used as a raw material is recovered mainly in the form of hydrogen carbonate.

アルカリを分離したのちの分離水層はこれノV を酸析し、β−レゾルシレ酸を結晶として析出させるが
、この際に用いる酸として、酸析処理のみを目的とする
場合には特に制限されないが、発生する炭酸がスを回収
、再使用す畝 る場合には酸として塩酸を用いtば炭酸ガス中に塩化水
素ガスが混入する等の問題があり、硫酸が特に好ましく
使用される。
After the alkali is separated, the separated aqueous layer is acid-precipitated to precipitate β-resorcioleic acid as crystals, but the acid used at this time is not particularly limited if the purpose is only for acid-precipitation treatment. However, when the generated carbonic acid is to be collected and reused, using hydrochloric acid as the acid poses problems such as hydrogen chloride gas being mixed into the carbon dioxide gas, so sulfuric acid is particularly preferably used.

酸析処理法自体は公知の方法に準じて実施されるが、酸
水溶液中に分離水層を添加してゆく方法が好ましい。
The acid precipitation treatment method itself is carried out according to a known method, but a method in which a separated aqueous layer is added to an acid aqueous solution is preferred.

この際、酸析処理で発生する炭酸ガスを次回の反応に用
いるには、発生する炭酸がス量が該反応に供給する炭酸
ガス量と見合うように分離水層の酸水溶液中への供給速
度を調整することが好ましい。
At this time, in order to use the carbon dioxide gas generated in the acid precipitation treatment for the next reaction, the rate of supply of the separated water layer into the acid aqueous solution must be adjusted so that the amount of carbon dioxide generated is commensurate with the amount of carbon dioxide gas supplied to the reaction. It is preferable to adjust.

酸析処理に用いる酸量は通常理論量の1.01〜1.1
モル倍であって一般にはpHが2.5以下となるまで添
加される。
The amount of acid used for acid precipitation treatment is usually 1.01 to 1.1 of the theoretical amount.
It is generally added until the pH becomes 2.5 or less.

また、酸は通常10〜60%濃度の水溶液として使用さ
れ、処理温度は一般には60℃以下であり、酸析処理後
は通常40’CgL下lこ保持される。
Further, the acid is usually used as an aqueous solution with a concentration of 10 to 60%, the treatment temperature is generally 60° C. or lower, and the acid is generally maintained at 40°CgL or less after the acid precipitation treatment.

酸析終了後、析出結晶を沖過等の手段で分ツメ 離すること1こよりβ−レゾルシI酸を結晶として得る
ことができ、分離された水層は次回の酸析用の酸水溶液
として利用することができる。
After completion of acid precipitation, β-resorci I acid can be obtained as crystals by separating the precipitated crystals by means such as filtration, and the separated aqueous layer is used as an acid aqueous solution for the next acid precipitation. can do.

尚、前述の回収アルカリは炭酸水素塩を主成分とするも
のであるが、炭酸水素塩は反応成分であるため、回収ア
ルカリをそのまま次回の反応に利用する場合には新たに
使用する  −炭酸塩はレゾルシン蕾こ対して1.2〜
2モル倍程度でよく、原料炭酸塩の使用量を著しく減す
ることができる。また、酸析処理時に発生する炭酸がス
を次回の反応における炭酸ガスの一部もしくは全部とし
て利用する場合にも反応原料として新たに使用する炭酸
ブスの一部もしくは全部が不要となる。
Note that the recovered alkali mentioned above has hydrogen carbonate as its main component, but since hydrogen carbonate is a reaction component, if the recovered alkali is to be used as is for the next reaction, it must be used as a new carbonate. is 1.2~ for resorcinol buds.
The amount may be about 2 times the mole, and the amount of raw material carbonate to be used can be significantly reduced. Further, when the carbonic acid gas generated during the acid precipitation treatment is used as part or all of the carbon dioxide gas in the next reaction, part or all of the carbonate gas that is newly used as a reaction raw material becomes unnecessary.

かくして、本発明の方法に従えば、レゾルシン反応率5
0〜60%、β−レゾルシ!酸歯択率95%以上という
従来法と同等もしくはそれ以上の収率で目的物が得られ
、しかも炭酸塩の使用量は従来法の約半分でよいという
すぐれた効果が得られ、とりわけ、アルカリや炭酸ガス
を回収し、これを反応原料としてリサイクル使用する場
合には、炭酸塩の使用量は従来法の約174程度でよく
、新たな反応原料としての炭酸がスは不要もしくは一部
でよいなど経済的に極めて有利である。
Thus, according to the method of the present invention, the resorcin reaction rate is 5
0-60%, β-resorsi! The target product can be obtained with a yield equal to or higher than that of the conventional method, with an acid selectivity of 95% or more, and the amount of carbonate used is only about half of the conventional method. In the case of recovering carbon dioxide gas and recycling it as a reaction raw material, the amount of carbonate used may be about 174 ml of the conventional method, and carbonate gas as a new reaction raw material may be unnecessary or only a part of it. It is extremely advantageous economically.

尚、本発明方法を実施するための製造装置の一例を第1
図(こ示すが、この製造装置はアルカリ、炭酸ガスの回
収およびその再使用に有利なものである。
Incidentally, an example of a manufacturing apparatus for carrying out the method of the present invention is shown in the first example.
(As shown in the figure, this production equipment is advantageous for recovering alkali and carbon dioxide gas and reusing them.

給用ノズル6、各原料仕込口、反応マス上澄液(分離水
層)抜出管7などを備えた反応槽であり、2は分離水層
(酸析原料)貯槽、8は攪拌機、ミスト分離器、酸仕込
口、酸析原料仕込口および酸析マス抜出管8を備えた酸
析槽、4はr過器、5は濾過母液貯槽、9は濾過母液の
移送管、10は回収炭酸ガスの移送管をそれぞれ示す。
It is a reaction tank equipped with a supply nozzle 6, each raw material inlet, a reaction mass supernatant liquid (separated water layer) extraction pipe 7, etc. 2 is a separated water layer (acid precipitation raw material) storage tank, 8 is a stirrer, and a mist An acid precipitation tank equipped with a separator, an acid inlet, an acid precipitation raw material inlet, and an acid precipitation mass extraction pipe 8; 4 is an r-filter; 5 is a filtration mother liquor storage tank; 9 is a filtration mother liquor transfer pipe; 10 is a recovery The carbon dioxide gas transfer pipes are shown respectively.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 反応槽1に水990重量部を仕込み、攪拌しながらNa
2COs  298 重量部を仕込む。
Example 1 990 parts by weight of water was charged into reaction tank 1, and Na
Charge 298 parts by weight of 2COs.

次いで、CORガスを毎時10重量部の速度で吹込みつ
つ、2時間かけて、90℃迄昇温する。次いで、反応温
度が90〜95℃になる様に制御しながら、CO2がス
の吹込み量を毎時20重量部に増加し、50重量%のレ
ゾルシン水溶液220重量部を8゜分かけて仕込む。そ
の後CO2がスの吹込量を毎時20重量部に維持しなが
ら95℃で8時間保温し、ついで8時間かけて40℃迄
冷却する。CO□ガスの吹込みを止め、同温度でさらに
80分間攪拌下に保持する。
Next, the temperature was raised to 90° C. over 2 hours while blowing COR gas at a rate of 10 parts by weight per hour. Next, while controlling the reaction temperature to be 90 to 95°C, the amount of CO2 gas blown was increased to 20 parts by weight per hour, and 220 parts by weight of a 50% by weight resorcinol aqueous solution was charged over 8° minutes. Thereafter, the temperature was maintained at 95° C. for 8 hours while maintaining the amount of CO2 blown at 20 parts by weight per hour, and then the temperature was cooled to 40° C. over 8 hours. The blowing of CO□ gas is stopped and the mixture is kept under stirring at the same temperature for an additional 80 minutes.

この時の反応槽内の組成は、未反応レゾルツム/ シン51重量部、β−レゾルシl酸のNa塩98重量部
、 Na2GO380重量部、 Na1(C0゜298
.4重量部及び水1047重量部であり、レゾルシン反
応率58.6%、β−レゾノV ルシI酸−Na選択率は98,0%であった。
The composition in the reaction tank at this time was: 51 parts by weight of unreacted resortum/syn, 98 parts by weight of Na salt of β-resorsilic acid, 380 parts by weight of Na2GO, Na1(C0°298
.. 4 parts by weight and 1047 parts by weight of water, the resorcin reaction rate was 58.6%, and the β-resono V luciic acid-Na selectivity was 98.0%.

次いで攪拌を停止し、1時間静置したのち上澄液を酸析
原料貯槽2に移送する。上68.0重量部、NaHCO
,78,8重量部及び水850重量部から成り、反応槽
1に残っ置部、NagCOl 17重量部、NaHCO
,220,1重量部及び水197重量部から成り、固相
+ 側に回収された、Na  はNa2Cog換算55−0
2として2.926 molであった。
Next, stirring is stopped and the supernatant liquid is transferred to the acid precipitation raw material storage tank 2 after being allowed to stand for 1 hour. Top 68.0 parts by weight, NaHCO
, 78.8 parts by weight and 850 parts by weight of water, remaining in reaction tank 1, 17 parts by weight of NagCOl, and 850 parts by weight of water.
, 220.1 parts by weight and 197 parts by weight of water, and the Na recovered on the solid phase + side was 55-0 in terms of Na2Cog.
It was 2.926 mol as 2.

反応槽Iに残した固相は次の実施例2の原料の一部とし
て使用し、また上澄液も実施例2における操作の一部と
して酸析した。
The solid phase left in reaction tank I was used as a part of the raw material for the following Example 2, and the supernatant liquid was also acid-precipitated as part of the operation in Example 2.

尚、酸析終了後、酸析槽8の内容物を濾過器4で濾過し
、濾過器上で200重量部の水で2回洗浄し、さらに内
温か100℃以上になる様な、真空箱型乾燥機にて、十
分に乾燥したところ、純度99.9%のβ−レゾルシル
酸の白色結晶60.2重量部が得られた。酸析、濾過、
水洗、乾燥迄の収率は91.92%であり、結局、β−
レゾルシル酸1m04当りに使用されたNa2CO@は
、8、188 molであった。
After the acid precipitation is completed, the contents of the acid precipitation tank 8 are filtered through the filter 4, washed twice with 200 parts by weight of water on the filter, and then placed in a vacuum box with an internal temperature of 100°C or higher. When thoroughly dried in a mold dryer, 60.2 parts by weight of white crystals of β-resorcylic acid with a purity of 99.9% were obtained. Acid precipitation, filtration,
The yield after washing with water and drying was 91.92%, and in the end, β-
The amount of Na2CO@ used per 1 m04 of resorcylic acid was 8,188 mol.

実施例2 酸析槽Bに水125重量部を仕込み、攪拌しながら98
%硫酸126重量部を加え、内温を40℃に調整する。
Example 2 125 parts by weight of water was charged into acid precipitation tank B, and 98% by weight was added while stirring.
Add 126 parts by weight of % sulfuric acid and adjust the internal temperature to 40°C.

また、酸析槽8から反応槽1への気相ライン10を連結
しておく。
Further, a gas phase line 10 from the acid precipitation tank 8 to the reaction tank 1 is connected.

実施例1で得られた固相(未反応レゾルシン9.9重量
部、β−レゾルシ夛酸−Na17.8重量部、NagC
Oll 7重量部NaHCO3220、1重量部及び水
197重量部から成る)の入った反応槽1に水814重
量部を仕込み、攪拌しながらNλIC0,182重蓋部
を仕込んでおく。
The solid phase obtained in Example 1 (9.9 parts by weight of unreacted resorcinol, 17.8 parts by weight of β-resorcinic acid-Na, NagC
814 parts by weight of water was charged into a reaction tank 1 containing 7 parts by weight of NaHCO3220, 1 part by weight, and 197 parts by weight of water, and a NλIC0,182 heavy lid part was charged while stirring.

これに、酸析原料貯槽2の酸析原料(実施例1で得られ
た上澄液であって、未反応レゾルシン41.1重量部、
β−レゾルシル酸−Na75.2重量部、Na2CO1
68,0重量部Na2CO178,8重量部及び水85
0重址部から成る)を毎時88重量部の割合で2時間フ
ィードする(このときのCO2がス発生量は、毎時5.
2重量部となる)。この間に反応槽1の温度を90℃迄
上げる。酸析原料を毎時176.6重量部(CO,ガス
発生量は毎時10.5重量部となる)に増加し、8時間
80分供給する。この間最初の80分間で178重量部
の50%レゾルシン水溶液を内温90 r= 95℃に
保ちつつ反応槽lに仕込み、後の8時間は内温を95℃
に保つ。
To this, the acid precipitation raw material in the acid precipitation raw material storage tank 2 (the supernatant liquid obtained in Example 1, 41.1 parts by weight of unreacted resorcin),
β-resorcylic acid-Na75.2 parts by weight, Na2CO1
68.0 parts by weight Na2CO 178.8 parts by weight and 85 parts by weight water
(consisting of 0 parts by weight) is fed at a rate of 88 parts by weight per hour for 2 hours (the amount of CO2 produced at this time is 5.0 parts by weight per hour).
2 parts by weight). During this time, the temperature of reaction tank 1 is raised to 90°C. The acid precipitation raw material was increased to 176.6 parts by weight per hour (the amount of CO and gas generated was 10.5 parts by weight per hour) and was supplied for 8 hours and 80 minutes. During this period, for the first 80 minutes, 178 parts by weight of 50% resorcinol aqueous solution was charged into reaction tank L while keeping the internal temperature at 90 r = 95°C, and for the next 8 hours, the internal temperature was kept at 95°C.
Keep it.

その後、酸析原料の供給量を毎時102.7重量部(C
O2がス発生量は毎時6.1重量部となる)に下げ、約
8時間供給する。この間反応槽1の温度を40℃迄下げ
、酸析原料がなくなると同時に、酸析槽8と反応槽lの
連結ライン10を閉じ、そのまま80分間保温する。こ
の時の反応槽1内の組成は未反応レゾルシン49重通部
、β−レゾル ルシI酸−N296.2重量部、Na2 COB 79
重量部、NaHCo、  298.8重量部及び水10
55重量部から成り、レゾルシン反応N3選択率は97
.64%であった。
Thereafter, the supply amount of the acid precipitation raw material was increased to 102.7 parts by weight (C
The amount of O2 gas produced was reduced to 6.1 parts by weight per hour) and was supplied for about 8 hours. During this time, the temperature of the reaction tank 1 is lowered to 40° C., and at the same time that the acid precipitation raw material is exhausted, the connection line 10 between the acid precipitation tank 8 and the reaction tank 1 is closed, and the temperature is maintained for 80 minutes. The composition in the reaction tank 1 at this time was 49 parts by weight of unreacted resorcinol, 296.2 parts by weight of β-resorlucinic acid-N, and 79 parts by weight of Na2 COB.
Parts by weight, NaHCo, 298.8 parts by weight and 10 parts by weight of water
It consists of 55 parts by weight, and the resorcinol reaction N3 selectivity is 97.
.. It was 64%.

次いで攪拌を停止し、1時間静置抜上澄液を酸析原料貯
槽2督こ移送する。上澄液は未反応レゾルシン89,8
重量部、β−レゾ!V ルシク酸−N&77.8重量部Na2COs 62.6
車量部、N亀HCO178,9重量部及び水863重量
部から成り、反応橋1に残った同相は未反応レゾルシン
9.7重量部、β−レゾルν シを酸−NalB、4重量部、Na2GO316,5重
量部、NλHC0,219,9重蓋部及び水195重量
部から成り、固相側に回収されたNa+はNa、Co3
  換算54.88%に達し、上澄液中のβ−レゾルシ
炭酸−Na  l moe当りに使用されたNa+はN
a2CO1換算2B43modであった。
Next, stirring is stopped, and the supernatant liquid is left to stand for 1 hour and transferred to two acid precipitation raw material storage tanks. The supernatant liquid contains unreacted resorcinol 89,8
Weight part, β-Reso! V Rusic acid-N & 77.8 parts by weight Na2COs 62.6
The same phase remaining in the reaction bridge 1 was composed of 9.7 parts by weight of unreacted resorcin, 4 parts by weight of β-resorcin, 178.9 parts by weight of N-HCO, and 863 parts by weight of water. It consists of 316.5 parts by weight of Na2GO, 0.219.9 parts by weight of NλHC, and 195 parts by weight of water, and the Na+ recovered on the solid phase side is composed of Na, Co3
The conversion amount reached 54.88%, and the Na + used per β-resorsi carbonate-Na l moe in the supernatant liquid was N
It was 2B43mod in terms of a2CO1.

一方、酸析原料貯槽2に移送された酸析原料を次回の反
応に使用して本実施例と同一の条件で酸析し、実施例1
に記載と同様にして水洗、沖過乾燥したところ、純度9
9.9%のβ−レゾルシル酸の白色結晶62.8重量部
が得られた。酸析、沖過、水洗、乾燥迄の収率は92.
04%であり、β−レゾルシル酸1 mol当りに使用
されたNa 2CO@は8.089m0# であうk。
On the other hand, the acid precipitation raw material transferred to the acid precipitation raw material storage tank 2 was used for the next reaction and acid precipitation was carried out under the same conditions as in this example.
When washed with water and dried in the same manner as described above, the purity was 9.
62.8 parts by weight of white crystals of 9.9% β-resorsilic acid were obtained. The yield after acid precipitation, filtration, washing with water, and drying was 92.
04%, and the Na 2 CO used per mol of β-resorcylic acid was 8.089 mO#.

比較例1 グラスライニング製反応槽に水990重量部を仕込み、
攪拌しながらNaHCOs 464重量部を仕込む。次
いでCO2ガスを毎時、5重量部の割合で吹込みつつ、
2時間かけて90℃迄昇温する。反応温度が90〜95
℃の間になる様に制御しながら、CO2ガスの吹込み電
を毎時10重量部に添加し、50%レゾルシン水溶液2
20重量部を80分かけて仕込む。その後、CO2がス
の吹込量を毎時10重量部に維持しながら温度95℃で
8時間保温する。保温終了後、CO2がスの吹込み量を
毎時5重量部とし、8時間かけて40℃迄冷却する。こ
の時の反応槽内の組成は、未反応レゾルシン50.4重
量部、β−レゾルシル酸−Na9B、8重量部、Nat
COs 74重量部、NaHCOs801.5重量部及
び水1078重量部より成り、レゾルシン反応率は54
,2%、β−レゾルシ、ル酸−NaJi択率は98.4
%であり、β−レゾルシル酸−Na  1mo5の製造
に要シタN a HCOs 量は10.86moeに達
した。
Comparative Example 1 990 parts by weight of water was charged into a glass-lined reaction tank,
464 parts by weight of NaHCOs are charged while stirring. Next, while blowing CO2 gas at a rate of 5 parts by weight per hour,
The temperature is raised to 90°C over 2 hours. Reaction temperature is 90-95
While controlling the temperature to be between
Prepare 20 parts by weight over 80 minutes. Thereafter, the temperature was kept at 95° C. for 8 hours while maintaining the amount of CO2 blown at 10 parts by weight per hour. After the heat retention is completed, CO2 is blown in at a rate of 5 parts by weight per hour, and the temperature is cooled down to 40°C over 8 hours. The composition in the reaction tank at this time was 50.4 parts by weight of unreacted resorcin, 8 parts by weight of β-resorcylic acid-Na9B, and Nat.
Consisting of 74 parts by weight of COs, 801.5 parts by weight of NaHCOs and 1078 parts by weight of water, the resorcin reaction rate was 54 parts by weight.
, 2%, β-resorci, acid-NaJi selectivity is 98.4
%, and the amount of Na HCOs required for the production of β-resorlic acid-Na 1mo5 reached 10.86 moe.

この反応マスに280重量部の濃硫酸を4時間かけて加
え、酸析したのち40℃迄冷却し、沖過機で濾過し濾過
器上で200重量部の水で2回洗浄し、さらに内温か1
00℃以上になる様な真空箱型乾燥機にて十分に乾燥し
たところ、純度99.6%のβ−レゾルシル酸の白色結
晶75.7部が得られた。酸析〜乾燥塩の収率は、91
.80%であったが、実施例2で得られたものに比較し
てNa2SO4に基(不純物が0.8%多かった。
280 parts by weight of concentrated sulfuric acid was added to this reaction mass over 4 hours to precipitate the acid, cooled to 40°C, filtered with an offshore filter, washed twice with 200 parts of water on the filter, and then washed internally. warm 1
When thoroughly dried in a vacuum box dryer at temperatures above 00°C, 75.7 parts of white crystals of β-resorcylic acid with a purity of 99.6% were obtained. Acid precipitation ~ yield of dry salt is 91
.. However, compared to that obtained in Example 2, the Na2SO4-based impurities were 0.8% higher.

尚、β−レゾルシル酸1 mo1当りiこ使用されたN
aHCO,は11.282 rnolであった。
In addition, the amount of N used per 1 mo1 of β-resorsilic acid was
aHCO, was 11.282 rnol.

るに要したNaHCOg 、 Na2Co3. CO2
がス及び、)I2So4量を比較すると次表の如くとな
る。
NaHCOg, Na2Co3. CO2
A comparison of the amounts of gas and )I2So4 is as shown in the following table.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための製造装置例をフロ
ーシートで示したものであり、図中の記号(1〜10)
は次のとおりである。 1:反応槽、2:酸析原料貯槽、3:酸析槽。 4:ρ過器、5:沖過母液貯槽、 6 : co2供給
用ノズル、7:上澄液抜出管、8:酸析マス抜出管、9
:移送管、10:炭酸がス移送管 第 f 図
FIG. 1 is a flow sheet showing an example of a manufacturing apparatus for carrying out the method of the present invention, and the symbols (1 to 10) in the figure are
is as follows. 1: reaction tank, 2: acid precipitation raw material storage tank, 3: acid precipitation tank. 4: ρ filter, 5: Oki filtration mother liquor storage tank, 6: CO2 supply nozzle, 7: Supernatant liquid extraction pipe, 8: Acid precipitated mass extraction pipe, 9
: Transfer pipe, 10: Carbon dioxide transfer pipe Fig. f

Claims (1)

【特許請求の範囲】 1)(A)  レゾルシンを水溶液中で炭酸がスの共存
下にアルカリ金属炭酸塩を用いて80〜100℃で加熱
反応する工程 (B)  反応終了後、反応液を0〜50℃に冷却して
アルカリを析出させ、水層と分離する工程 (C1分離水層を酸析し、析出するβ−レゾルシF酸を
分離する工程 ル からなることを特徴とするβ−レゾルシタ酸の製造方法
。 2)・(C)工程の酸析処理時に発生する炭酸ガスを、
(Al工程で用いる炭酸がスの一部もしくは全部として
使用する特許請求の範囲第1項に記載の方法。 8)酸析に用いる酸が硫酸である特許請求の範囲第1〜
第2項に記載の方法。 4)酸析を酸溶液中に分離水層を連続的に加えることに
より行い、発生する炭酸がスが(Al工程で用いる炭酸
ガスとして所望の供給速度となるように、酸溶液中への
分離水層の添加速度を調整することからなる特許請求の
範囲第2項および第8項に記載の方法 6)(す工程で分離したアルカリを(A)工程における
アルカリ金属炭酸塩と併用する特許請求の範囲第1〜第
4項に記載の方法
[Claims] 1) (A) Step (B) of heating and reacting resorcinol in an aqueous solution with an alkali metal carbonate in the presence of carbonic acid at 80 to 100°C. After the reaction is completed, the reaction solution is heated to zero. A β-resorcita characterized by comprising a step of cooling to ~50°C to precipitate an alkali and separating it from an aqueous layer (a step of acid-precipitating the C1 separated aqueous layer and separating the precipitated β-resorcin F acid) Method for producing acid. Carbon dioxide gas generated during the acid precipitation treatment in step 2) and (C) is
(The method according to claim 1, in which carbonic acid is used as part or all of the gas used in the Al process. 8) Claims 1 to 3, in which the acid used for acid precipitation is sulfuric acid.
The method described in Section 2. 4) Acid precipitation is performed by continuously adding a separated aqueous layer to the acid solution, and the generated carbonic acid is separated into the acid solution so that the desired supply rate is achieved as carbon dioxide gas used in the Al process. Method 6) according to claims 2 and 8, comprising adjusting the rate of addition of the aqueous layer. The method described in Items 1 to 4 of
JP5763483A 1983-03-31 1983-03-31 Production of beta-resorcylic acid Granted JPS59184146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5763483A JPS59184146A (en) 1983-03-31 1983-03-31 Production of beta-resorcylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5763483A JPS59184146A (en) 1983-03-31 1983-03-31 Production of beta-resorcylic acid

Publications (2)

Publication Number Publication Date
JPS59184146A true JPS59184146A (en) 1984-10-19
JPH0114893B2 JPH0114893B2 (en) 1989-03-14

Family

ID=13061321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5763483A Granted JPS59184146A (en) 1983-03-31 1983-03-31 Production of beta-resorcylic acid

Country Status (1)

Country Link
JP (1) JPS59184146A (en)

Also Published As

Publication number Publication date
JPH0114893B2 (en) 1989-03-14

Similar Documents

Publication Publication Date Title
CA2032627C (en) Process for producing sodium carbonate and ammonium sulphate from sodium sulphate
US5514359A (en) Process for making anhydrous magnesium chloride
GB1560568A (en) Method for the large-scale industrial obtaining of magnesium oxide of high purity
CN110183358A (en) Hydrazine hydrochloride is as the purposes of production aminoguanidine carbonate and the combine production method of aminoguanidine carbonate and ammonium chloride
US2764472A (en) Brine purification
JP2002527329A (en) Ammonium sulfate purification method
JPS59184146A (en) Production of beta-resorcylic acid
US4844880A (en) Process for the manufacture of sodium metabisulfite
JP2002047258A (en) Method for manufacturing n-isopropylglycine
US3773902A (en) Process for the preparation of potassium carbonate hydrate
JPS599485B2 (en) Manufacturing method of carbonated soda
EP0045590B1 (en) Production of chromium trioxide
GB2072636A (en) Preparation of dihydroxyaluminium sodium carbonate
JPS5850926B2 (en) Production method of calcium nitrite aqueous solution
JP7390488B2 (en) Integrated process for producing bis(fluorosulfonyl)imides
JPH041151A (en) Production of 1,3-bis(2-hydroxyethoxy)benzene
US3347623A (en) Preparation of potassium bicarbonate
JP3394980B2 (en) Method for producing free hydroxylamine aqueous solution
JPH0276836A (en) Production of metal ether carboxylate
JPH02117640A (en) Production of ether carboxylate
JPH03275509A (en) Production of sodium hydrogencarbonate
JPS5820703A (en) Production of aqueous sodium hypochlorite solution
JPH0948751A (en) Continuous production of aminoethylsulfonic acid
JP4117516B2 (en) Concentration method and concentration apparatus
JPH0359004B2 (en)