JPH01148087A - Brake for multi-stator induction motor - Google Patents

Brake for multi-stator induction motor

Info

Publication number
JPH01148087A
JPH01148087A JP62304991A JP30499187A JPH01148087A JP H01148087 A JPH01148087 A JP H01148087A JP 62304991 A JP62304991 A JP 62304991A JP 30499187 A JP30499187 A JP 30499187A JP H01148087 A JPH01148087 A JP H01148087A
Authority
JP
Japan
Prior art keywords
stator
rotor
phase
stators
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62304991A
Other languages
Japanese (ja)
Other versions
JP2845366B2 (en
Inventor
Toshihiko Satake
佐竹 利彦
Yukio Onoki
大野木 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP62304991A priority Critical patent/JP2845366B2/en
Publication of JPH01148087A publication Critical patent/JPH01148087A/en
Application granted granted Critical
Publication of JP2845366B2 publication Critical patent/JP2845366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

PURPOSE:To alter torque characteristic by providing a voltage phase shifter with respect to at least one of a plurality of stators. CONSTITUTION:Terminals U1, V1, W1 and X1, Y1, Z1 are respectively provided at windings 22, 23 of first and second stators 24, 25, the terminals U1, V1, W1 of the winding 23 of the second stator 25 are respectively connected through switches S1, S10 for forming a rotary magnetic field normal/reverse switching unit 26 to commercial 3-phase power sources U, V, W, and a plurality of phase shifting switches are provided at the connecting strokes 48 for connecting the windings 23, 24 in series and the connecting strokes 49 for connecting the winding 22 and the commercial power sources U, V, W, thereby constructing a voltage phase shifter 50. Phase shifting switches S2-S9 for composing the shifter 50 are suitably operated to set efficient starting phase difference, control phase difference and operating phase difference.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は始動性能または始動性能とトルク特性を改善し
た複数固定子誘導電動機の制動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a braking device for a multi-stator induction motor with improved starting performance or starting performance and torque characteristics.

〔従来技術とその問題点〕[Prior art and its problems]

従来、−膜内に使用されているかご形誘導電動機の始動
時においては、始動電流を抑制する手段としてスターデ
ルタ始動、リアクトル始動。
Conventionally, when starting a squirrel cage induction motor used in a membrane, star-delta starting and reactor starting are used as means to suppress the starting current.

始動補償器等が知られているが、これ等いずれの手段も
始動電流を抑制することはできても始動トルクを大きく
することはできない欠点があった。また、巻線型電動機
においては二次抵抗器の抵抗値を変化させ始動トルクを
大きくすること、あるいはトルク特性を良くした可変速
誘導電動機にすることはできても、制御装置が高価であ
ると共にブラシ、スリップリングの併用を余儀なくされ
、保守性に難点のあるものであった。
Although starting compensators and the like are known, each of these means has the disadvantage that although it is possible to suppress the starting current, it is not possible to increase the starting torque. In addition, in wire-wound motors, although it is possible to increase the starting torque by changing the resistance value of the secondary resistor, or to create a variable speed induction motor with improved torque characteristics, the control device is expensive and the brushless However, it was necessary to use a slip ring in combination, which caused problems in maintainability.

また、上記問題点に対処する技術は、例えば、特開昭5
4−29005号公報に開示されている。このものは、
同軸上に設置された2組の回転子鉄心と、回転子鉄心に
対向してそれぞれ独立する固定子巻線を備えた2組の固
定子と、前記2組の回転子鉄心に蹄って共通に設置され
、かつ両端にてそれぞれ短絡環を介して相互間を短絡し
たかご形誘導体と、2組の回転子鉄心間におけるかご形
導体の中央箇所にてかご形導体の相互間を短絡する高抵
抗体とを備え、始動時には固定子巻線の相互間の位相を
180°ずらせ、始動後の運転時には位相を合わせて給
電する双鉄心かご形電動機であるが、このものは、始動
時に固定子巻線の相互間の位相を180℃ずらすことに
より始動トルクを大にして始動特性を向上し、運転時に
は固定子巻線の相互間の位相を合わせて通常のトルク特
性で運転できる点に特徴を有するが、制動装置を備えて
いなかったので使用範囲が限定されるものであった。
In addition, techniques to deal with the above problems include, for example, Japanese Patent Application Laid-open No. 5
It is disclosed in Japanese Patent No. 4-29005. This thing is
Two sets of rotor cores installed coaxially, two sets of stators each having independent stator windings facing the rotor cores, and common to the two sets of rotor cores. A squirrel-cage conductor is installed in the center and short-circuited at both ends via short-circuit rings, and a high-voltage conductor is short-circuited between the squirrel-cage conductors at the center of the squirrel-cage conductors between the two sets of rotor cores. This is a twin iron squirrel cage electric motor that is equipped with a resistor, shifts the phase of the stator windings by 180 degrees at startup, and supplies power while matching the phase during operation after startup. By shifting the phase between the windings by 180 degrees, the starting torque is increased and the starting characteristics are improved, and during operation, the phase between the stator windings is matched, allowing operation with normal torque characteristics. However, since it did not have a braking device, its range of use was limited.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来技術の欠点を改善するためのもので、
始動トルクを改善した複数固定子誘導電動機あるいは始
動トルクと中間速度におけるトルクを改善した複数固定
子誘導電動機において制動装置を加えて複数固定子誘導
電動機の性能を向上させようとするものである。
The present invention is intended to improve the drawbacks of the above-mentioned prior art,
This invention attempts to improve the performance of a multi-stator induction motor by adding a braking device to a multi-stator induction motor with improved starting torque or a multi-stator induction motor with improved starting torque and torque at intermediate speeds.

なお、本発明の目的には前記複数固定子誘導電動機をも
っばら制動機として使用する場合も含まれる。
Note that the object of the present invention also includes a case where the plural stator induction motor is used mainly as a brake.

なお、本発明の複数固定子誘導電動機は、単相または3
相電源等接続して使用され、回転子形態は、普通かご形
1.二重かご形、深溝かご形。
Note that the multiple stator induction motor of the present invention is a single-phase or three-phase induction motor.
It is used by connecting a phase power source, etc., and the rotor type is a normal squirrel cage type.1. Double cage shape, deep groove cage shape.

特殊かご形1巻線形などのいずれの形式のものにも適用
できるものであ2)、本発明の説明に用いる導体とは、
かご形回転子コアに装設した導体、および巻線形回転子
コアに巻装した巻線のそれぞれを総称するものであ2)
、前記複数個の固定子をそれぞれ並列に電源に接続する
こと、あるいは複数個の固定子相互を直列に接続するこ
と、さらに、複数個の固定子と、回転子が巻線型の場合
には回転子にも複数種の極数を形成する巻線を施すこと
等は、任意に選択して採用できるものである。
It can be applied to any type of conductor such as a special squirrel cage single winding type2), and the conductor used in the explanation of the present invention is:
A general term for the conductors installed on the squirrel cage rotor core and the windings wound on the wound rotor core.2)
, connect the plurality of stators to a power supply in parallel, or connect the plurality of stators in series; It is possible to arbitrarily select and adopt windings that form multiple types of pole numbers on the child as well.

〔問題点を解決するための手段〕[Means for solving problems]

上記技術的課題を達成するために本発明は、同一回転軸
に任意の間隔を設けて軸着した複数個の回転子コアのそ
れぞれに装設した複数個の導体のそれぞれを回転子コア
間を渡って連結して一体的な回転子に形成し、前記回転
子コア間において前記複数個の導体を抵抗材によって連
結し、前記複数個の回転子コアに対峙して複数個の固定
子を機枠に並設し、前記複数個の固定子のうち少なくと
も1個の固定子に関連して電圧移相装置を付設すると共
に、前記固定子に巻装した巻線に回転磁界正逆切換装置
を連結して問題解決の手段とした。
In order to achieve the above-mentioned technical problem, the present invention connects each of a plurality of conductors installed in each of a plurality of rotor cores that are attached to the same rotating shaft at arbitrary intervals between the rotor cores. the plurality of conductors are connected across the rotor cores to form an integral rotor, the plurality of conductors are connected by a resistive material between the rotor cores, and a plurality of stators are arranged facing the plurality of rotor cores. A voltage phase shifting device is installed in parallel with the frame and associated with at least one stator among the plurality of stators, and a rotating magnetic field forward/reverse switching device is attached to the winding wound around the stator. Connected and used as a means of problem solving.

〔作 用〕[For production]

本発明によって電圧移相装置を付設した固定子に対峙す
る回転子導体部分に誘起する電圧とその他の固定子に対
峙する回転子導体部分に誘起する電圧とに位相の差を生
じさせて、すなわち、回転子導体に誘起する電圧を制御
してトルク特性を変えることができる。
According to the present invention, a phase difference is created between the voltage induced in the rotor conductor portion facing the stator provided with the voltage phase shift device and the voltage induced in the rotor conductor portion facing the other stators, that is, , the torque characteristics can be changed by controlling the voltage induced in the rotor conductors.

また、複数個の回転子コア間において、複数個の導体を
任意の電圧が加わると通電する抵抗材により連結しであ
るから、起動時あるいは中間速度において前記抵抗材を
介して電流が導体間に流れ強力な回転トルクを出すこと
ができる。
In addition, since the plurality of conductors are connected between the plurality of rotor cores by a resistive material that conducts current when a given voltage is applied, current flows between the conductors through the resistive material at startup or at intermediate speeds. It can generate powerful rotational torque.

そして、停止時にあっては、前記回転磁界正逆切換装置
によって回転磁界の向きを切換えると、逆向きのトルク
が作用して回転中の電動機に制動がかかるが、この際、
前記電圧移相装置によって複数の固定子のそれぞれに対
峙する回転子導体部分に誘起する電圧に位相のずれを生
じさせておくことによ2)、前記抵抗材を介して導体間
に電流を流すことができるので、過大な電流が流れるの
を抑制することができると共に、大きな制動トルクを得
ることができる。
When stopped, when the direction of the rotating magnetic field is switched by the rotating magnetic field forward/reverse switching device, torque in the opposite direction acts and brakes the rotating electric motor, but at this time,
By causing a phase shift in the voltages induced in the rotor conductor portions facing each of the plurality of stators by the voltage phase shifting device, 2) current is caused to flow between the conductors via the resistive material. Therefore, it is possible to suppress the flow of an excessive current and also obtain a large braking torque.

この顕著な作用は前記電圧移相装置および前記抵抗材が
なければ得られないものであ2)、本発明により運転中
の負荷に大きな制動トルクを作用させて停止させること
ができる。
This remarkable effect cannot be obtained without the voltage phase shifter and the resistance material 2), and according to the present invention, a large braking torque can be applied to the load during operation to bring it to a stop.

〔実施例〕〔Example〕

本発明の実施例を第1図〜第14図に基づき説明する。 Embodiments of the present invention will be described based on FIGS. 1 to 14.

第1図〜第3図により本発明の1実施例?説明する。符
号1は本発明による複数固定子誘導電動機であ2)、該
複数固定子誘導電動機1は以下のような構成を有する。
An embodiment of the present invention according to FIGS. 1 to 3? explain. Reference numeral 1 denotes a multi-stator induction motor 2) according to the present invention, and the multi-stator induction motor 1 has the following configuration.

磁性材料からなる回転子コア2.3を任意の間隔を設け
て回転子軸4に装着し、回転子コア2.3間は非磁性体
コア5を介設するか、または空間とする。回転子コア2
.3に装設した複数個の導体6・・・のそれぞれを回転
子コア2.3に貫通して連結し一体的な回転子7を形成
し、その直列に連結した複数個の導体6・・・の両端部
は短絡環8.8により短絡される。また、回転子コア2
,3および非磁性体コア5に回転子7の両側部10.1
1に連絡する複数個の通風胴12・・・を設け、通風胴
12・・・から直交状に回転子7の外周部に貫通する複
数個の通気孔13・・・を穿設しである。回転子7に装
設された導体・・・6は回転子コア2.3間の非磁性体
コア5部において、それぞれを任意のベクトルの差の電
流が流れると通電する抵抗材9を介して、即ちニクロム
線、炭素混入鋼。
Rotor cores 2.3 made of a magnetic material are mounted on the rotor shaft 4 at arbitrary intervals, and a non-magnetic core 5 is interposed between the rotor cores 2.3 or a space is provided between the rotor cores 2.3. Rotor core 2
.. Each of the plurality of conductors 6 installed in the rotor core 2.3 is connected to form an integral rotor 7, and the plurality of conductors 6... installed in the rotor core 2.3 are connected in series. Both ends of . are short-circuited by a short-circuit ring 8.8. In addition, rotor core 2
, 3 and the non-magnetic core 5 on both sides 10.1 of the rotor 7.
1, and a plurality of ventilation holes 13 are formed perpendicularly through the outer periphery of the rotor 7 from the ventilation cylinders 12. . The conductor 6 installed in the rotor 7 is connected to the non-magnetic core 5 between the rotor cores 2 and 3 through a resistive material 9 that conducts electricity when a current with an arbitrary vector difference flows through each of them. , i.e. nichrome wire, carbon-containing steel.

通電性セラミック等からなる抵抗材9を介して連結しで
ある。円筒状の機枠14の両側部に設けた軸受盤15.
16を連結棒17・・・にナツト18・・・を締めるこ
とにより一体的に組付ける。
They are connected via a resistive material 9 made of electrically conductive ceramic or the like. Bearing discs 15 provided on both sides of the cylindrical machine frame 14.
16 is integrally assembled to the connecting rod 17 by tightening the nuts 18.

回転子7の両側部に冷却用翼車19.20を装着し、回
転子軸4の両端部を軸受盤15.16に嵌装した軸受2
1.21に軸支し、回転子7を回転自在としてあ′る。
A bearing 2 in which cooling impellers 19.20 are mounted on both sides of the rotor 7, and both ends of the rotor shaft 4 are fitted in bearing discs 15.16.
1.21, and the rotor 7 is rotatable.

回転子コア2.3に対峙する外側部に巻線22.23を
施した第1固定子24と第2固定子25を機枠14に並
設し、機枠14と第1固定子24との間にすべり軸受2
7をe設し、すべり軸受27を機枠14に嵌装したスト
ップリングによって固定し、第2固定子25は固定環2
8により機枠14に固定する。第1固定子24の一側外
周面にはギヤー29を嵌着しである。
A first stator 24 and a second stator 25, each having a winding 22.23 on the outer side facing the rotor core 2.3, are arranged side by side on the machine frame 14, and the machine frame 14 and the first stator 24 are connected to each other. between sliding bearing 2
7 is installed e, the sliding bearing 27 is fixed by a stop ring fitted to the machine frame 14, and the second stator 25 is fixed by a stop ring fitted to the machine frame 14.
8 to fix it to the machine frame 14. A gear 29 is fitted onto the outer peripheral surface of one side of the first stator 24 .

機枠14の外周部に固設した小型モーター30に駆動用
歯車31を軸着し、該駆動用歯車31は第1固定子24
に嵌着したギヤー29に係合される。このように構成す
ることによ2)、第1固定子24は小型モーター30の
作動によって回転子7と同心的に回動して回動固定子を
構成する。そうして、第1固定子24の回動と第2固定
子25とによって電圧移相装置が構成される。
A driving gear 31 is pivotally attached to a small motor 30 fixed to the outer periphery of the machine frame 14, and the driving gear 31 is connected to the first stator 24.
It is engaged with the gear 29 fitted into the. With this configuration, 2) the first stator 24 rotates concentrically with the rotor 7 by the operation of the small motor 30, thereby forming a rotating stator. Thus, the rotation of the first stator 24 and the second stator 25 constitute a voltage phase shifting device.

機枠14の外周部に送風口34と排風口35を穿設し、
排風口35にはモーター37を有する排風機36を固着
し、空間部38の空気を機枠14外に流通させる。また
、回転子軸4と一体的に回転する冷却用翼車19,20
を通風口32より空気を取り入れて側部’to、ii、
通風1li12、通気口13に空気を流通させるために
設けである。33は空気流通のための通気口で、機枠1
4の第1固定子24と、第2固定子25に対峙する部分
に穿設しである。
A ventilation port 34 and a ventilation port 35 are bored on the outer periphery of the machine frame 14,
An exhaust fan 36 having a motor 37 is fixed to the exhaust port 35 to circulate air in the space 38 to the outside of the machine frame 14. Also, cooling impellers 19 and 20 that rotate integrally with the rotor shaft 4
Air is taken in from the ventilation hole 32 and the side 'to, ii,
The ventilation 1li12 is provided to allow air to flow through the vent 13. 33 is a vent for air circulation, which is located in the machine frame 1.
It is perforated in the portion facing the first stator 24 and the second stator 25 of No. 4.

次に、第2図を参照して第1固定子24の回動位置を検
出する手段の構成について説明する。
Next, the configuration of the means for detecting the rotational position of the first stator 24 will be explained with reference to FIG.

回動する第1固定子24の外周に磁気体39を固設し、
磁気体39に対向する機枠14の任意の部位に複数の磁
気センサー408〜406等よりなる回動位置検出器4
o・・・を設け、第1固定子24の回動位置を表示する
回動位置表示器41を備える制御装置42と連絡する。
A magnetic body 39 is fixed on the outer periphery of the rotating first stator 24,
A rotational position detector 4 consisting of a plurality of magnetic sensors 408 to 406, etc. is installed at any part of the machine frame 14 facing the magnetic body 39.
o... are provided and communicate with a control device 42 provided with a rotational position indicator 41 that displays the rotational position of the first stator 24.

43は第1固定子24の回動の開放またはロックを行う
ためのンレノイドであるが、固定子の回動の開放および
ロックは公知の任意の作動機構により行うことができる
。回動機構および回動位置検出装置の別実施例を第3図
を参照して説明する。
Reference numeral 43 denotes an inlenoid for unlocking or locking the rotation of the first stator 24, and the rotation release and locking of the stator can be performed by any known operating mechanism. Another embodiment of the rotation mechanism and rotation position detection device will be described with reference to FIG.

機枠14に固着した軸受44には回動軸45と一体的に
回転するウオームギヤ46を設けた回動軸45が回転自
在に設けられ、該回動軸の一端には正逆に回転する回動
用のパルスモータ−47を回動軸45と同心に設けて該
パルスモータ−47は機枠14に固着される。51は電
圧位相差設定器であ2)、該設定器は始動時位相差設定
ツマミ52A1制動時位相差設定ツマミ52Bおよび運
転時位相差設定ツマミ53を有し、始動時位相差設定ツ
マミ52Aで始動時にそれぞれの導体6・・・に誘起す
る電圧の位相差を負荷特性に応じて設定し、一定時間経
過後または回転子7が任意の回転数に達した後、運転時
位相差設定ツマミ53で設定した位相差に切換ねるよう
に構成する。また、電動機の停止時には制動時位相差設
定ツマミ52Bで設定した位相差で制動して回転を停止
する。
A bearing 44 fixed to the machine frame 14 is rotatably provided with a rotating shaft 45 provided with a worm gear 46 that rotates integrally with the rotating shaft 45, and one end of the rotating shaft has a rotating shaft that rotates in forward and reverse directions. A pulse motor 47 for movement is provided concentrically with the rotating shaft 45, and the pulse motor 47 is fixed to the machine frame 14. Reference numeral 51 designates a voltage phase difference setting device 2), which has a phase difference setting knob 52A at starting, a phase difference setting knob 52B during braking, and a phase difference setting knob 53 during operation. The phase difference between the voltages induced in each conductor 6 at the time of starting is set according to the load characteristics, and after a certain period of time or after the rotor 7 reaches a desired rotation speed, the operating phase difference setting knob 53 is set. The configuration is configured to switch to the phase difference set in . Further, when the electric motor is stopped, the rotation is stopped by braking with the phase difference set by the braking phase difference setting knob 52B.

次に、第1固定子24と第2固定子25のそれぞれに巻
装した巻線22.23の結線について第4.5図に基づ
いて説明する。第4図に示すものは、第1.第2固定子
24.25のそれぞれに施した巻線22.23を直列ス
ター結線とし、回転磁界正逆切換装置26を介して電源
に接続したものである。即ち、第1固定子24の巻線2
2の端子A、B、CをスイッチM1を介して商用3相電
源A、B、Cに、またスイッチM2を介して3相電源A
、C,Bに連結すると共に、巻1122の端子a、b、
cを第2固定子25の巻線23の端子A、B、Cに連結
し、巻線23の端子a、b、cを短絡して連結しである
。第5図に示すものは第1.第2固定子24.25の巻
線22.23を直列に連結して商用3相電源に回転磁界
正逆切換装置26を構成するスイッチM3.M4を介し
てデルタ−接続したものであるがその詳細な説明は省く
。なお、第5図の6A、6Bは回転子コア2.3に巻装
した巻線型回転子の結線を示し、第6図に示すものは回
転子コア2.3に巻装した巻線型回転子の結線の別実施
例図である。
Next, the connection of the windings 22 and 23 wound around each of the first stator 24 and the second stator 25 will be explained based on FIG. 4.5. What is shown in FIG. The windings 22 and 23 provided on each of the second stators 24 and 25 are connected in a series star connection, and are connected to a power source via a rotating magnetic field forward/reverse switching device 26. That is, the winding 2 of the first stator 24
The terminals A, B, and C of 2 are connected to the commercial three-phase power supply A, B, and C through the switch M1, and to the three-phase power supply A through the switch M2.
, C, B, and terminals a, b of volume 1122,
c is connected to the terminals A, B, and C of the winding 23 of the second stator 25, and the terminals a, b, and c of the winding 23 are short-circuited and connected. The one shown in FIG. A switch M3. which connects the windings 22.23 of the second stator 24.25 in series to constitute a rotating magnetic field forward/reverse switching device 26 for a commercial three-phase power supply. Although this is a delta connection via M4, a detailed explanation thereof will be omitted. In addition, 6A and 6B in FIG. 5 show the connections of the wire-wound rotor wound around the rotor core 2.3, and the one shown in FIG. 6 shows the wire-wound rotor wire wound around the rotor core 2.3. FIG.

以下に、上記構成における作用を説明する。The operation of the above configuration will be explained below.

第1固定子24の巻線22に商用3相電源から通電する
と、固定子24.25に回転磁界が生じて回転子7に電
圧が誘起され、回転子7の導体6・・・に電流が流れて
回転子7は回転する。
When the windings 22 of the first stator 24 are energized from a commercial three-phase power source, a rotating magnetic field is generated in the stator 24, 25, a voltage is induced in the rotor 7, and a current is generated in the conductors 6 of the rotor 7. The flow causes the rotor 7 to rotate.

第2固定子25に対して第1固定子24の回動量をゼロ
としたときには、それぞれの固定子24.25によ2)
、回転子7の導体6・・・部分に誘起する電圧には位相
のずれがなく、その詳細は後述する如く抵抗材9には電
流が流れないので、この状態では一般の誘導電動機と同
一のトルク特性を持つものである。
When the amount of rotation of the first stator 24 with respect to the second stator 25 is set to zero, each stator 24.25
, there is no phase shift in the voltage induced in the conductor 6 of the rotor 7, and as will be detailed later, no current flows through the resistive material 9, so in this state, it is the same as a general induction motor. It has torque characteristics.

次に、小型モーター30を作動して、第1固定子24を
位相角でθだけ回動した場合について説明する。第1固
定子24と第2固定子25が作る回転磁界の磁束φ1.
φ2の位相は回転子7の任意の導体6に関してはθだけ
ずれてお2)、そのため第1固定子24と第2固定子2
5により回転子7の導体6・・・に誘起される電圧d1
、白の位相はθだけずれることになる。今、第2固定子
25によって回転子7の導体6・・・に誘起される電圧
向を基準とし、該電圧を62=3Eとする。ここでSは
すべ2)、Eはすべり 1のときの誘起電圧である。こ
のとき第1固定子24によって導体6・・・に誘起され
る電圧向は、6r=SEεノeとなる。
Next, a case will be described in which the small motor 30 is operated to rotate the first stator 24 by a phase angle of θ. The magnetic flux φ1 of the rotating magnetic field created by the first stator 24 and the second stator 25.
The phase of φ2 is shifted by θ with respect to any conductor 6 of the rotor 72), so that the first stator 24 and the second stator 2
Voltage d1 induced in conductor 6 of rotor 7 by 5
, the phase of white will be shifted by θ. Now, with the direction of the voltage induced in the conductors 6 of the rotor 7 by the second stator 25 as a reference, the voltage is set to 62=3E. Here, S is the slip 2) and E is the induced voltage when the slip is 1. At this time, the voltage direction induced in the conductors 6 by the first stator 24 is 6r=SEεnoe.

第7図に示すものは、複数個の導体6・・・を短絡する
抵抗材9・・・が装着されていない場合の回転子7のす
べりSと、回転子入力の有効電力Pとの関係を示すもの
で、電圧の位相がθ=o。
What is shown in FIG. 7 is the relationship between the slip S of the rotor 7 and the active power P input to the rotor when the resistive material 9 that short-circuits the plurality of conductors 6 is not installed. , and the phase of the voltage is θ=o.

のとき、有効電力Pは最大とな2)、0°〈θ〈180
°のときはそれよりも小さなものとなる。
When , the effective power P is maximum2), 0°〈θ〈180
When it is °, it is smaller than that.

ここで導体6・・・の抵抗およびインダクタンスをRお
よびLとし、電源の角周波数をωとすれば、有効電力P
の極大値は 5=(R/ωL) のとき現われる。
Here, if the resistance and inductance of the conductor 6 are R and L, and the angular frequency of the power source is ω, then the effective power P
The maximum value of appears when 5=(R/ωL).

有効電力Pは誘導電動機の駆動トルクと比例するので、
第1固定子24を回動させることによって回転子7に誘
起する電圧を調整し、回転子の速度をvI’mすること
ができるが位相差が大きくなるに従って急激にトルクが
低下して実用に供しないものである。
Since the active power P is proportional to the driving torque of the induction motor,
By rotating the first stator 24, the voltage induced in the rotor 7 can be adjusted and the speed of the rotor can be increased to vI'm, but as the phase difference increases, the torque decreases rapidly, making it impractical. It is not provided.

次に、導体6を抵抗材9によって連結した場合、回転子
7の導体6・・・の短絡環8から抵抗材9までのそれぞ
れの抵抗をR1,R2、またインダクタンスをLl、L
2とし、電源の角周波数をωとし、各導体6・・・のそ
れぞれを短絡する抵抗材9の抵抗をrとすれば、回転子
7の電気的等価回路は第8図のようにな2)、符号II
Next, when the conductors 6 are connected by the resistance material 9, the respective resistances from the short circuit ring 8 to the resistance material 9 of the conductor 6 of the rotor 7 are R1, R2, and the inductance is Ll, L.
2, the angular frequency of the power source is ω, and the resistance of the resistive material 9 that short-circuits each conductor 6 is r, then the electrical equivalent circuit of the rotor 7 is as shown in FIG. ), code II
.

I2,13は各枝路を流れる電流を示すものである。I2 and 13 indicate the current flowing through each branch.

次に、第8図に示すものを両固定子24,25側からみ
た等価回路に変換すると第9図のようにな2)、R1=
R2,Ll=L2でθ=0゜のときには13=Il−1
2= Oとなり抵抗材rには電流が流れないことになる
。このことはθ=θ°のときにはトルクTはrがないと
きの値に等しいことを意味している。従って、θ=0°
のときは従来の誘導電動機と同一のトルク特性を持つこ
とになる。
Next, when converting the circuit shown in Fig. 8 into an equivalent circuit seen from both stators 24 and 25 side, it becomes as shown in Fig. 92), R1=
When R2, Ll=L2 and θ=0°, 13=Il-1
2=O, and no current flows through the resistor material r. This means that when θ=θ°, the torque T is equal to the value without r. Therefore, θ=0°
When , it will have the same torque characteristics as a conventional induction motor.

次に、RI=R2,LI=L2でθ= 180”のとき
には、rt=−12,13=II−12−21+とな2
)、従来の誘導電動機において回転子導体6・・・の抵
抗をR1+R2=RとすればRはR+2「に増加したと
同様な結果となっている。
Next, when RI=R2, LI=L2 and θ=180'', rt=-12, 13=II-12-21+ and 2
), in a conventional induction motor, if the resistance of the rotor conductor 6 is R1+R2=R, the result is the same as if R were increased to R+2''.

次に、I11固定子24と第2固定子25のそれぞれに
巻装した巻線22.23を直列に接続した作用につき説
明する。
Next, the effect of connecting the windings 22 and 23 wound around the I11 stator 24 and the second stator 25 in series will be explained.

巻線22.23を直列に接続しであるために、巻線22
に商用3相電源から入力して春$122゜23間に電流
は流れるが、仮に巻線22.23のそれぞれの抵抗の相
違あるいは両固定子24゜25の容量の大きさに相違が
あっても、それとは無関係に、それぞれの巻線22.2
3に流れる電流の大きさは等しく、したがって第1固定
子24と第2固定子25のそれぞれから回転子7の導体
6・・・に誘起して流れる電流の大きさが等しくなる作
用と、第1固定子24と第2固定子25の回動差、即ち
回転磁界の磁束に生じる位相のずれに応じて両固定子2
4.25のそれぞれから回転子7の導体6・・・に流れ
る電流の大きさが等しくなるという強制力が生じる作用
と、両固定子24.25間の電圧の位相差に起因するベ
クトル差分の電流は複数個の導体6・・・のそれぞれを
抵抗材9を介して必然的に流れるという強制力が生れる
作用との相乗効果によ2)、第10図に示す、すべりと
トルク特性のように効率の改善とそれぞれの変速領域に
おいて大きなトルクを出すことができ、負荷を連結した
状態においてもそれぞれの速度領域ごとに起動を容易と
するもので、負荷の起動特性に順応して滑らかな起動と
すること、あるいは高出力で起動 ′すること等任意に
使い分けができ、起動・停止を頻繁に反復する動力源に
最適に対応できる。
Since the windings 22 and 23 are connected in series, the windings 22 and 23 are connected in series.
A current flows between spring 122 and 23 when input from a commercial 3-phase power source, but if there is a difference in the resistance of each winding 22 and 23 or a difference in the capacitance of both stators 24 and 25, Also, independently of that, each winding 22.2
The magnitude of the current flowing through the rotor 7 is equal, and therefore the magnitude of the current induced and flowing from each of the first stator 24 and the second stator 25 to the conductor 6 of the rotor 7 is equal. Both stator 2
4.25 to the conductors 6 of the rotor 7 to be equal in magnitude, and the vector difference caused by the phase difference in voltage between both stators 24.25. Due to the synergistic effect of the current flowing through each of the plurality of conductors 6 through the resistive material 9, which creates a forcing force 2), the slip and torque characteristics shown in Fig. 10 are obtained. As a result, it is possible to improve efficiency and generate large torque in each speed range, and even when a load is connected, it is easy to start in each speed range, and it adapts to the start characteristics of the load and provides smooth control. It can be used as desired, such as starting or starting with high output, and can be optimally used for power sources that frequently repeat starting and stopping.

上記のように回転子7の変速は、第1固定子24を回動
することにより位相のずれを制御して回転子7の導体6
・・・に流れる電流を増減に変化させる制御のみで回転
子7の回転速度を任意に変速することができる。
As described above, the speed of the rotor 7 is controlled by rotating the first stator 24 to control the phase difference between the conductors 6 and 6 of the rotor 7.
The rotational speed of the rotor 7 can be changed arbitrarily only by increasing or decreasing the current flowing through the rotor 7.

なお、巻線22.23を直列に連結した第1固定子24
と第2固定子25のそれぞれから回転子7の導体6・・
・に流れる電流の大きさに対し、複数個の導体6・・・
間に抵抗材9・・・を介して短絡して流れる電流の比率
は、抵抗材9・・・の抵抗値rおよびすべりとは無関係
にPθ(P=極対数、θ=位相角)の値によって決定さ
れ、(上記比率は、Pθ=πが最大でPθ=0でゼロと
なる)Pθが一定であれば、一般の巻線形状導電動機の
二次挿入抵抗を一定とした場合と同様のすべりとトルク
特性にな2)、Pθが小になると回転子7の導体6・・
・に流れる電流の比率が小とな2)、Pθを小さくする
ことは一般の巻線形状導電動機の二次挿入抵抗を小さく
することと同等の作用をすることとなる。そして内固定
子24,25に定格電流を流した場合において、位相差
θを任意に変えてもすべり値の選定と連結材9の抵抗値
の設計次第によ2)、最高速度の持つ定格電流と定格ト
ルク特性とを、それぞれの変速領域においてもほぼ同時
に作用させることができる。また、第1.第2固定子2
4.25の巻線22.23を直列に連結してあっても、
仮に導体6・・・間に抵抗材9を設けて短絡していない
場合は、固定子から回転子導体6・・・にはほとんど電
圧が誘起されない状態とな2)、内固定子24゜25の
巻線22.23それぞれを並列に電源に連結したものよ
りも効率、トルクは低下する現象となる。
Note that the first stator 24 has windings 22 and 23 connected in series.
and the second stator 25 to the conductor 6 of the rotor 7, respectively.
・For the magnitude of the current flowing through the multiple conductors 6...
The ratio of the short-circuited current that flows through the resistive material 9 between them is determined by the value of Pθ (P = number of pole pairs, θ = phase angle), regardless of the resistance value r of the resistive material 9 and slippage. (The above ratio is the maximum when Pθ = π and becomes zero when Pθ = 0.) If Pθ is constant, the ratio is the same as when the secondary insertion resistance of a general wire-wound conductive motor is constant. Due to the slip and torque characteristics 2), when Pθ becomes small, the conductor 6 of the rotor 7...
2), reducing Pθ has the same effect as reducing the secondary insertion resistance of a general wire-wound conductive motor. When the rated current is passed through the inner stators 24 and 25, even if the phase difference θ is arbitrarily changed, it depends on the selection of the slip value and the design of the resistance value of the connecting member 92). The rated torque characteristics can be applied almost simultaneously in each shift range. Also, 1st. Second stator 2
Even if 4.25 windings 22 and 23 are connected in series,
If a resistive material 9 is provided between the conductors 6 and there is no short circuit, almost no voltage will be induced from the stator to the rotor conductors 62), and the inner stator 24°25 This phenomenon results in lower efficiency and torque than when the windings 22 and 23 are connected in parallel to the power supply.

上記に対し、第1固定子24と第2固定子25の巻線2
2.23のそれぞれを並列に商用3相雷源に連結した場
合には、第1固定子24と第2固定子25の巻線22.
23に入力する電圧は等しく、内固定子24.25のそ
れぞれから回転子7の導体6・・・に誘起する電圧は同
等でその電圧の位相はPθだけ異な2)、複数個の導体
6・・・間を抵抗材9・・・を介して流れる電流1ま、
(1/ 2) X (第1.第2固定子のそれぞれから
回転子導体に誘起した差電圧)÷(抵抗材9・・・の抵
抗値)にほぼ比例した電流となる。しかしながら、回転
子7の導体6・・・には抵抗材9・・・に流れる電流の
他に(第1.第2固定子の回転子導体に誘起する和電圧
)÷(回転子導体のインピーダンス)にほぼ比例した電
流が重畳して流れる。(上記和電圧は、Pθ=πがゼロ
で、Pθ=0で最大とな2)、回転子導体のインピーダ
ンスは導体の抵抗と二次漏れリアクタンスのそれぞれよ
りなるのですべりによって異なる)したがって、回転子
7の導体6・・・に流れる電流の大きさに対し、複数個
の導体6・・・間を抵抗材9・・・を介して流れる電流
の比率は、Pθが一定でもすべりおよび抵抗値によって
も異な2)、Pθを一定とした場合のすべりとトルク特
性は、一般の巻線形状導電動機の二次挿入抵抗を一定と
した場合の特性と、一般の誘導電動機の一次電圧を制御
した場合の特性とを混合した第11図に示す特性となる
。この特性は、第1.第2固定子24.25の巻線22
.23を直列に連結した場合の特性に対しである特定の
負荷特性の場合には速度制御の範囲が狭くなるものであ
るが、低減トルク特性の負荷の場合には直列接続の場合
とほぼ同等の広範囲で使用できるものである。
In contrast to the above, the windings 2 of the first stator 24 and the second stator 25
2.23 are connected in parallel to a commercial three-phase lightning source, the windings 22.23 of the first stator 24 and the second stator 25.
23, the voltages induced from each of the inner stators 24 and 25 to the conductors 6 of the rotor 7 are the same, and the phases of the voltages differ by Pθ 2). A current 1 flows through the resistive material 9 between...
The current is approximately proportional to (1/2)X (differential voltage induced in the rotor conductor from each of the first and second stators)÷(resistance value of the resistance material 9...). However, in addition to the current flowing through the resistive material 9, the conductor 6 of the rotor 7 has (the sum of the voltages induced in the rotor conductors of the first and second stators) ÷ (the impedance of the rotor conductor). ) flows in a superimposed manner. (The above sum voltage is maximum when Pθ=π is zero and Pθ=02).The impedance of the rotor conductor is composed of the resistance of the conductor and the secondary leakage reactance, respectively, and therefore varies depending on the slippage.) Therefore, the rotor The ratio of the current flowing between the plurality of conductors 6 through the resistive material 9 to the magnitude of the current flowing through the conductors 6 of No. 7 varies depending on the slip and resistance value even if Pθ is constant. 2) The slip and torque characteristics when Pθ is constant are the same as those when the secondary insertion resistance of a general wire-wound conductive motor is constant, and when the primary voltage of a general induction motor is controlled. The characteristics shown in FIG. 11 are obtained by mixing the characteristics of . This characteristic is the first. Winding 22 of second stator 24.25
.. Compared to the characteristics when 23 are connected in series, the speed control range becomes narrower in the case of certain load characteristics, but in the case of a load with reduced torque characteristics, the speed control range is almost the same as in the case of series connection. It can be used in a wide range of areas.

上記回転子7の回転によ2)、軸受盤15,16に穿設
した通風口32から冷却用翼車19゜20により機枠1
4内に外気を吸引し、冷却用翼車19.20により第1
.第2固定子24゜25、巻1!22.23に通風して
冷却し、また通風11112・・・を介し通気孔13・
・・に流通させる風により回転子コア2,3、導体6・
・・、抵抗材9・・・等を冷却してそれぞれの機能を安
定的に作用させる。また、第1.第2固定子24.25
の回動は小型モーター30をスイッチにより正・逆回転
させて行うが、小型モーター30に限定されるものでは
なく他の正逆転モータでも、また気体、液体シリンダー
等によるサーボ機構等任意の駆動装置を転用できるもの
である。そ′して、固定子を回動する駆動装置の作動速
度に関連して、固定子の回動を任意の回動速度にし、回
転子7の回転速度の変化速度を制御することができる。
2) Due to the rotation of the rotor 7, the cooling impeller 19°20 opens the machine frame 1 from the ventilation holes 32 bored in the bearing discs 15 and 16.
The outside air is sucked into the cooling impeller 19.20.
.. The second stator 24゜25, winding 1!22.23 are ventilated to cool them, and the ventilation holes 13, 11, 12...
The rotor cores 2, 3, conductor 6,
. . , resistance material 9 . . . etc. are cooled to stably perform their respective functions. Also, 1st. Second stator 24.25
The rotation is performed by rotating the small motor 30 in forward and reverse directions using a switch, but it is not limited to the small motor 30, and may be any other forward/reverse motor, or any drive device such as a servo mechanism using a gas or liquid cylinder, etc. can be repurposed. Then, in relation to the operating speed of the drive device that rotates the stator, the stator can be rotated at an arbitrary rotational speed, and the rate of change in the rotational speed of the rotor 7 can be controlled.

第3図に示す駆動装置はパルスモータ−47とギヤー2
9に係合したウオームギヤ46から成2)、パルスモー
タ−47に制御装置42から送るパルス数とパルス間隔
て回動量と回動速度が制御できる。この実施例ではウオ
ームギヤが回動の固定の機能をも持つものである。
The drive device shown in Fig. 3 is a pulse motor 47 and a gear 2.
The rotation amount and rotation speed can be controlled by the number of pulses sent from the control device 42 to the pulse motor 47 and the pulse interval. In this embodiment, the worm gear also has the function of fixing rotation.

定常運転状態となった回転子を制動装置を介して停止に
至らしめる場合の作用について第12図を参照して説明
する。第12図はすべりSが0〜1のいわゆる電動機と
して使用する場合と、すべりSが1〜2のいわゆる制動
機として使用する場合のすべりとトルクを示すグラフで
あ2)、電圧位相差を0” 、 30’ 、 60@、
 90°。
Referring to FIG. 12, an explanation will be given of the operation when the rotor, which is in a steady state of operation, is brought to a stop via the braking device. Figure 12 is a graph showing the slip and torque when used as a so-called electric motor with a slip S of 0 to 1, and when used as a so-called brake with a slip S of 1 to 22). ", 30', 60@,
90°.

120°とした場合の比例推移した曲線を示している。It shows a curve that changes proportionally when the angle is 120°.

制動は回転磁界正逆切換装置26のスイッチを操作して
、固定子巻線22.23に入力している3相電源の相入
れ替えで行う。すなわち、3相のうち2相の結線を入れ
替えて逆回転する回転磁界を作用させる。今、出力トル
クT1、すべりSlで回転している電動機は複数の固定
子間で90°の電圧位相差で制御されている。
Braking is performed by operating the switch of the rotating magnetic field forward/reverse switching device 26 and switching the phases of the three-phase power supply input to the stator windings 22 and 23. That is, the connections of two of the three phases are switched to apply a rotating magnetic field that rotates in the opposite direction. The electric motor currently rotating with an output torque T1 and a slip Sl is controlled with a voltage phase difference of 90° between a plurality of stators.

回転磁界正逆切換装置26を操作して逆回転磁界を作用
させるとすべりは1+5I=82とな2)、T2の制動
トルクが働く、また、位相差を設けることは巻線型誘導
電動機の2次挿入抵抗を調節することと同様に、すべり
とトルクが比例推移するが同時に電流も比例推移して変
化するので位相差を設けて制動すると小さな電流値で大
きな制動トルクを得ることができる。逆回転磁界を与え
る時間は電動機が停止するまでの短時間であ2)、電動
機の回転子に設けた回転数検出器54と回転磁界正逆切
換装置26を制御装置42を介して連結し、回転数検出
器54からの停止信号により制御することができる。
When the rotating magnetic field forward/reverse switching device 26 is operated to apply a reverse rotating magnetic field, the slip becomes 1+5I=822), and a braking torque of T2 is applied.In addition, providing a phase difference is a secondary function of a wound induction motor. Similar to adjusting the insertion resistance, slip and torque change proportionally, but at the same time, the current also changes proportionally, so by braking with a phase difference, a large braking torque can be obtained with a small current value. The time for applying the reverse rotating magnetic field is a short time until the electric motor stops. 2) The rotation speed detector 54 provided on the rotor of the electric motor and the rotating magnetic field forward/reverse switching device 26 are connected via the control device 42. It can be controlled by a stop signal from the rotation speed detector 54.

第13図は電圧移相装置の別実施例を示すものであ2)
、複数個の固定子を回動することなく、任意の固定子に
巻装した巻線に位相切換用スイッチを連結して電圧移相
装置に形成したものである。
Figure 13 shows another embodiment of the voltage phase shifter2)
, a voltage phase shifter is formed by connecting a phase changeover switch to a winding wound around an arbitrary stator without rotating a plurality of stators.

第1.第2固定子24.25のそれぞれに施した巻線2
2.23のそれぞれには、端子U+。
1st. Winding 2 applied to each of the second stators 24, 25
2. Each of 23 has a terminal U+.

V+、WlおよびXl、Y+、Z+を設け、第2固定子
25の巻線23の端子U+、V+、W1は回転磁界正逆
切換装置26を構成するスイッチS1.Smを介してそ
れぞれ商用3相電源U、V、Wに連結し、巻線22と巻
1123とを直列に連結する連結行程路48と、巻線2
2と商用3相電源との連結行程路49とに位相切換スイ
ッチを複数個介設して電圧移相装置50を構成する。
V+, Wl and Xl, Y+, Z+ are provided, and the terminals U+, V+, W1 of the winding 23 of the second stator 25 are connected to the switch S1. A connection stroke path 48 connects the winding 22 and the winding 1123 in series, and connects the winding 22 and the winding 1123 to the commercial three-phase power supplies U, V, and W via Sm, respectively.
A voltage phase shifter 50 is constructed by interposing a plurality of phase changeover switches between the power supply voltage 2 and the connection path 49 between the power source 2 and the commercial three-phase power source.

即t3、巻123(7)端子X+、Y+、Z+を巻81
122(7)端子U+、V+、W+に位相切換スイッチ
S2を介して連結し、以下同様に巻線23の端子X+、
Y+、Z+をスイッチS3を介して巻線22の端子Y+
、Z+、X+に、スイッチS4を介して巻線22の端子
W+、U+、V1に、スイッチS5を介して巻11iA
22の端子X+、Y+、Z+に連結しである。また、巻
線22の端子X+、Y+、Z+は位相切換スイッチS6
を介して3相電源V、W、Uに接続すると共に位相切換
スイッチS8を介して3相電源W。
That is, t3, volume 123 (7) terminals X+, Y+, Z+, volume 81
122 (7) is connected to terminals U+, V+, and W+ via a phase changeover switch S2, and similarly connected to terminals X+, V+, and W+ of winding 23.
Y+, Z+ are connected to the terminal Y+ of the winding 22 via the switch S3.
, Z+, X+, terminals W+, U+, V1 of the winding 22 through the switch S4, and the winding 11iA through the switch S5.
22 terminals X+, Y+, and Z+. In addition, the terminals X+, Y+, and Z+ of the winding 22 are connected to the phase changeover switch S6.
It is connected to the three-phase power supplies V, W, and U through the three-phase power supply W through the phase changeover switch S8.

U、Vに接続する。巻線22の端子U+、V+。Connect to U and V. Terminals U+, V+ of winding 22.

Wlは位相切換スイッチS7を介して3相電源U、V、
Wに接続すると共に位相切換スイッチS9を介して3相
電源V、W、Uに接続する。
Wl is connected to the three-phase power supply U, V, through the phase changeover switch S7.
W, and also connected to three-phase power supplies V, W, and U via a phase changeover switch S9.

以下に上記実施例における作用を第1図を併用して説明
する。
The operation of the above embodiment will be explained below with reference to FIG.

先ず、巻線23側のスイッチS1を投入し、また位相切
換スイッチS2.S6を投入して他を開放すると、巻線
23と巻線22とは連結行程路48に介設した位相切換
スイッチS2を介して通電し、その電流は位相切換スイ
ッチS6を介して商用3相電源に流れ、巻線23.22
のそれぞれに入力する電圧の位相は同相とな2)、最高
回転速度となる。次いで、スイッチS1を投入のままと
して位相切換スイッチS3.S7を投入しその他のスイ
ッチを開放すると、巻線23.22のそれぞれに入力す
る電圧の位相は60″ずれたものとな2)、それぞれの
位相が同相のときよりも低回転速度となる。
First, turn on the switch S1 on the winding 23 side, and then turn on the phase changeover switch S2. When S6 is turned on and the others are opened, the winding 23 and the winding 22 are energized via the phase changeover switch S2 provided in the connection stroke path 48, and the current is transferred to the commercial three-phase through the phase changeover switch S6. Flows into the power supply, winding 23.22
The phases of the voltages input to each of them are in the same phase 2), resulting in the maximum rotation speed. Next, with the switch S1 left on, the phase changeover switch S3. When S7 is turned on and the other switches are opened, the phases of the voltages input to each of the windings 23 and 22 are shifted by 60''2), resulting in a lower rotational speed than when the respective phases are in the same phase.

次いで、スイッチS+を投入のままとして位相切換スイ
ッチS4.S8を投入し他のスイッチを開放すると、巻
線23.22それぞれの位相は120°ずれて、位相の
ずれが60″のときょりもさらに低回転速度となる。さ
らに最低回転速度とするときには、スイッチS1を投入
のままとし、位相切換スイッチSs、Ssを投入し他の
スイッチを開放すると、巻線22.23のそれぞれに入
力の電圧の位相は180”ずれ、位相のずれに応じた回
転速度となる。
Next, with the switch S+ left on, the phase changeover switch S4. When S8 is turned on and the other switches are opened, the phases of the windings 23 and 22 are shifted by 120 degrees, and the rotation speed becomes even lower than when the phase shift is 60''.Furthermore, when the rotation speed is set to the minimum, , when switch S1 is left on, phase changeover switches Ss and Ss are turned on, and the other switches are opened, the phase of the voltage input to each of the windings 22 and 23 is shifted by 180", and rotation occurs according to the phase shift. It becomes speed.

上記したように電圧移相装置50を構成する位相切換ス
イッチ82〜S9を適宜操作することによ2)、位相の
ずれを0°、60°、120°。
As described above, by appropriately operating the phase changeover switches 82 to S9 constituting the voltage phase shifter 50, 2) the phase shift can be adjusted to 0°, 60°, and 120°.

180°に設定でき、効率のよい起動位相差、制御位相
差および運転位相差を設定し、制御を行うことができる
It can be set to 180 degrees, and efficient starting phase difference, control phase difference, and operation phase difference can be set and control can be performed.

電圧移相装置50を位相切換スイッチとしたこの実施例
における特徴は、無段階的に始動時および制動時位相差
と運転時位相差の設定制御はできないが、位相の切換に
より多段階的に迅速に始動時位相差から運転時位相差に
切換えることができ、また、多段階的に迅速に制動時位
相差に切換えることができる点にある。なお、本発明の
電圧移相装置としては上記実施例の他に、本出願人の発
明に係る特願昭61’−128314号に詳細を記載し
た単相変圧器と結線切換スイッチ、誘導電圧調整器等が
ある。
The feature of this embodiment in which the voltage phase shifter 50 is a phase changeover switch is that although it is not possible to steplessly control the setting of the phase difference during starting and braking and the phase difference during operation, the phase difference can be quickly set in multiple stages by switching the phase. It is possible to switch from the phase difference during starting to the phase difference during operation, and also to quickly switch to the phase difference during braking in multiple stages. In addition to the above-mentioned embodiments, the voltage phase shifting device of the present invention may include a single-phase transformer, a connection changeover switch, and an induced voltage adjustment device, which are described in detail in Japanese Patent Application No. 128314/1983, which was invented by the present applicant. There are utensils etc.

次に、第14図に示すブロック図によ2)、複数固定子
誘導電動機1の起動・運転自動制御の一実施例を説明す
る。
Next, referring to the block diagram shown in FIG. 14 (2), one embodiment of automatic start-up and operation control of the multi-stator induction motor 1 will be described.

入出力回路56.制御回路57.演算回路58、記憶回
路59等からなる制御装置42の入力側に、始動時位相
差設定ツマミ52A、制動時位相差設定ツマミ52Bお
よび運転時位相差設定ツマミ53から成る電圧位相差設
定器51゜回転子軸4に装着した速度表示器55を備え
たタコゼネレーター等の速度検出器54、第1固定子2
4の回動位置を検出する回動位置検出器40と、機枠1
4内の適所に装着した温度検出器60と、回動速度設定
器61とデイスプレィを備えたキーボード62とを連結
し、制御装置42の出力側に回転磁界正逆切換装置26
、小型モーター30.導体6.抵抗材9等を冷却放熱す
る排風8136のモーター37およびソレノイド43を
連結してあ2)、電圧位相差設定器51、回動速度設定
器61またはキーボード62から制御装置42の記憶回
路59には以下のような制御値が入力される。即ち、始
動時位相差値、制動時位相差値、運転時位相差値2回動
速度設定値、そして、位相角O°〜180°に対応する
第1固定子24の回動角(電気角で0°〜180°)を
検出する回動位置検出器40の検出値と、温度検出器6
0の検出する温度に対してモーター37を増減に制御す
る基準温度設定値等を入力しである。
Input/output circuit 56. Control circuit 57. On the input side of the control device 42 consisting of an arithmetic circuit 58, a memory circuit 59, etc., there is a voltage phase difference setting device 51° consisting of a starting phase difference setting knob 52A, a braking phase difference setting knob 52B, and an operation phase difference setting knob 53. A speed detector 54 such as a tacho generator equipped with a speed indicator 55 attached to the rotor shaft 4, and the first stator 2
A rotational position detector 40 that detects the rotational position of frame 1
A rotating magnetic field forward/reverse switching device 26 is connected to the output side of the control device 42 by connecting a temperature detector 60 mounted at an appropriate place within the control device 42, a rotation speed setting device 61, and a keyboard 62 equipped with a display.
, small motor 30. Conductor 6. Connect the motor 37 and solenoid 43 of the exhaust air 8136 that cools and radiates heat from the resistive material 9, etc. 2), the voltage phase difference setter 51, the rotation speed setter 61, or the keyboard 62 to the memory circuit 59 of the control device 42. The following control values are input. That is, the phase difference value at startup, the phase difference value at braking, the phase difference value at operation, the rotation speed setting value, and the rotation angle (electrical angle) of the first stator 24 corresponding to the phase angle 0° to 180°. 0° to 180°) and the temperature sensor 6.
This is done by inputting a reference temperature setting value, etc., which controls the motor 37 to increase or decrease with respect to the temperature detected by the sensor.

運転開始に際して、キーボード62から運転準備のキー
を入力すると、第1固定子24の現在の回動位置を回動
位置検出器40が検出すると共に、電圧位相差設定器5
1の始動時位相差設定ツマミ52Aにより設定され、回
転子軸4に連結した負荷の起動特性に適合する任意の始
動時位相差値を制御装置42の記憶回路59から出力す
る信号を受けてソレノイド43を作動して第1固定子2
4に嵌着したギヤー29のロックを解除し、小型モータ
ー30を作動させて第1固定子24を回動させ、所望の
始動時回動位置に至ると小型モーター30は自動停止す
る。
When the operation preparation key is input from the keyboard 62 at the start of operation, the rotation position detector 40 detects the current rotation position of the first stator 24, and the voltage phase difference setting device 5 detects the current rotation position of the first stator 24.
The solenoid receives a signal from the memory circuit 59 of the control device 42 to output an arbitrary starting phase difference value that is set by the starting phase difference setting knob 52A of No. 1 and that matches the starting characteristics of the load connected to the rotor shaft 4. 43 and the first stator 2
4 is unlocked, the small motor 30 is operated to rotate the first stator 24, and when the desired starting rotation position is reached, the small motor 30 automatically stops.

そして複数固定子誘導電動機1が回転開始する。Then, the multi-stator induction motor 1 starts rotating.

回転を開始して任意時間経過後又は、回転子7の回転数
が設定回転数に達した後、運転時位相差設定ツマミ53
により設定された運転時位相差値に移相する信号が送ら
れ、小型モーター30が回動開始する。
After an arbitrary period of time has elapsed after starting rotation, or after the rotation speed of the rotor 7 reaches the set rotation speed, the operating phase difference setting knob 53
A signal is sent to shift the phase to the operating phase difference value set by , and the small motor 30 starts rotating.

複数固定子誘導電動機1の速度変化の加速度は小型モー
ター30の回動速度に関連するが、複数固定子誘導電動
機1に連絡される負荷の種類によりあらかじめ回動速度
が設定されているので、小型モーター30の回動速度が
制御されると、複数固定子誘導電動tl11の変速速度
が任意に調整されるものである。
The acceleration of the speed change of the multi-stator induction motor 1 is related to the rotation speed of the small motor 30, but since the rotation speed is set in advance depending on the type of load connected to the multi-stator induction motor 1, the small size When the rotation speed of the motor 30 is controlled, the speed change of the multi-stator induction electric motor tl11 is arbitrarily adjusted.

そして、定常運転となった電動機を制御停止するには、
回転磁界正逆切換装置26を切換えて制動時位相差値で
回転子にυ1動トルクを作用させ、回転子を迅速に停止
に至らしめ、停止と同時に回転磁界を解くものである。
Then, to control and stop the electric motor that is in steady operation,
The rotating magnetic field forward/reverse switching device 26 is switched to apply υ1 dynamic torque to the rotor using the phase difference value during braking, the rotor is quickly brought to a stop, and the rotating magnetic field is released at the same time as the rotor is stopped.

なお、始動時位相差設定器と制動時位相差設定器を有し
、運転中は回転子の回転数で制御することや、位相差な
しで運転することなど随意である。また、本発明の複数
固定子誘導電動機1に従来公知の極致変換装置やスター
デルタ−起動装置を組合せることも可能であ2)、電動
機の始動・運転の速度範囲を拡大するとともに高効率域
での使用が可能となる。
In addition, it has a phase difference setter at the time of starting and a phase difference setter at the time of braking, and during operation, it is optional to control by the rotation speed of the rotor or to operate without a phase difference. Furthermore, it is also possible to combine the multi-stator induction motor 1 of the present invention with a conventionally known peak conversion device or star-delta starting device 2), thereby expanding the speed range of starting and operating the motor and increasing the efficiency range. It can be used in

本発明の実施例は主としてかご形回転子をもつ複数固定
子誘導電動機によって詳説したが、これに限定されるも
のではなく、巻線形回転子でもよく、その場合には第5
図、第6図に示すように一般的には回転子コア間におい
てそれぞれの回転子コアに巻装された巻線の各相間が短
絡される。
Although the embodiments of the present invention are mainly described in terms of a multi-stator induction motor with a squirrel-cage rotor, the present invention is not limited thereto; a wound rotor may also be used, in which case a fifth stator induction motor may be used.
As shown in FIG. 6, generally, the phases of the windings wound around the rotor cores are short-circuited between the rotor cores.

また、複数個の固定子のそれぞれに複数種の極数を形成
する巻線を施して該巻線の端子に極数切換スイッチを連
結することを併用して制動性をより高める場合もある。
Further, braking performance may be further enhanced by providing windings each of a plurality of stators with a plurality of types of pole numbers and connecting a pole number changeover switch to the terminals of the windings.

そして、前記固定子のそれぞれに巻装した巻線の結線を
デルタ結線、スター結線のいずれかに切換自在とするス
イッチを設けて制動性をより高める場合もある。
In some cases, a switch is provided that allows the connection of the windings wound around each of the stators to be switched between delta connection and star connection to further improve braking performance.

さらに、複数の固定子のそれぞれに巻装された巻線が相
互に直列に接続されていること、複数の固定子のそれぞ
れに巻装された巻線のそれぞれが電源に並列に接続され
ることもある。なお、前述のように固定子巻線が互いに
直列に連結された場合には、電動機あるいは制動機とし
てのトルク特性が特に優れたものになる。
Furthermore, the windings wound around each of the plurality of stators are connected in series with each other, and the windings wound around each of the plurality of stators are connected in parallel to the power supply. There is also. Note that when the stator windings are connected in series as described above, the torque characteristics as an electric motor or a brake are particularly excellent.

なお、複数個の固定子にすべて同じ向きの回転磁界を生
じさせるのでなく、回転磁界正逆切換装置を適宜配置し
て複数個の固定子のいずれかに逆向きの回転磁界を生じ
させること、複数個の固定子のいずれかに他の固定子と
は逆の向きの回転磁界を生じさせることにより回転子に
制動力を働かせるか、又は回転子をロックすることもあ
る。この場合もやはり正回転磁界を生じさせる固定子と
逆回転磁界を生じさせる固定子との間では位相のずれを
設けておき、すなわち、正回転磁界を生じる固定子に対
峙する回転子導体部分に誘起する電圧と逆回転磁界を生
じる固定子に対峙する回転子導体部分に誘起する電圧に
は位相の差が生じるようにしておき、回転子コア間にお
いて導体を連結する抵抗材に電流を流して抵抗を作用さ
せるのが一般的である。
In addition, instead of producing a rotating magnetic field in the same direction in all of the plurality of stators, a rotating magnetic field forward/reverse switching device is appropriately arranged to produce a rotating magnetic field in the opposite direction in any one of the plurality of stators; A braking force may be applied to the rotor or the rotor may be locked by generating a rotating magnetic field in one of the plurality of stators in a direction opposite to that of the other stators. In this case as well, a phase shift is provided between the stator that generates the forward rotating magnetic field and the stator that generates the reverse rotating magnetic field. A phase difference is created between the induced voltage and the voltage induced in the rotor conductor portion facing the stator, which generates a counter-rotating magnetic field, and a current is passed through the resistive material connecting the conductors between the rotor cores. It is common to apply resistance.

〔発明の効果〕〔Effect of the invention〕

上記に説明した如く、本発明によれば、複数個の固定子
のうち任意の固定子に関連して電圧移相装置を設け、そ
れぞれの回転子コアに装設した回転子導体に誘起する電
圧に位相の差を生じさせ、複数個の導体間を任意の電圧
が加わると通電する抵抗材で連結した複数固定子誘導電
動機に、回転磁界正逆切換装置を付設した構成によ2)
、起動時に大きなトルクを出し、そして位相差を制御し
て運転状態とするものや、起動トルクを調整して起動し
、任意に速度制御する運転状態とするものにおいて、停
止時に複数の固定子に関連して位相差を設けて回転磁界
の向きを切換えると導体間に介設した抵抗材を介して導
体間に電流が流れるので過大な電流が流れるのを抑制す
るとともに大きな制動トルクを得ることができる。
As explained above, according to the present invention, a voltage phase shifter is provided in relation to any stator among a plurality of stators, and the voltage induced in the rotor conductor installed in each rotor core is A rotating magnetic field forward/reverse switching device is attached to a multi-stator induction motor connected by a resistive material that causes a phase difference between the conductors and conducts current when an arbitrary voltage is applied between the conductors.2)
, a device that outputs a large torque at startup and then controls the phase difference to enter the operating state, or a device that adjusts the starting torque to start and achieves an operating state where the speed is arbitrarily controlled. Relatedly, when the direction of the rotating magnetic field is switched by providing a phase difference, current flows between the conductors via the resistive material interposed between the conductors, so it is possible to suppress excessive current flow and obtain a large braking torque. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第14図は、本発明の実施例図であ2)、第1
図は複数固定子誘導電動機の側断面図、第2図は固定子
の回動機構と回動位置検出機構を示す側断面図、第3図
は回動機構にパルスモータ−を用い回動位置検出を記憶
演算回路で行う実施例図、第4図、第5図は両固定子に
巻装した巻線の結線図、第6図は回転子巻線の結線側図
、第7図は回転子のすべりと有効電力の関係を示す図、
第8図は回転子の電気的等価回路図、第9図は固定子側
からみた電気的等価回路図、第10図は固定子巻線を直
列に連結した場合速度とトルクの関係を示す図、第11
図は固定子巻線を並列に電源に接続した場合の速度とト
ルクの関係を示す図、第12図は固定子巻線を直列に連
結した場合のすべり0〜2の範囲のすべりとトルクの関
係を示す図、第13図は電圧移相装置を位相切換スイッ
チで構成した結線図、第14図は自動制御の構成を示す
ブロック図である。 1・・・複数固定子誘導電動機、2.3・・・回転子コ
ア、4・・・回転子軸、5・・・非磁性体コア、6・・
・導体、6A、6B・・・回転子巻線、7・・・回転子
、8・・・短絡環、9・・・抵抗材、10.11・・・
側部、12・・・通風胴、13・・・通気口、14・・
・機枠、15.16・・・軸受盤、17・・・連結棒、
18・・・ナツト、19.20・・・冷却用翼車、21
・・・軸受、22.23・・・巻線、24・・・第1固
定子、25・・・第2固定子、26・・・磁界正逆切換
装置、27・・・すべり軸受、28・・・固定環、29
・・・ギヤー、30・・・小型モーター、31・・・駆
動用歯車、32・・・通風口、33・・・通気口、34
・・・送風口、35・・・排風口、36・・・排風機、
37・・・モーター、38・・・空間部、39−1気体
、40,40a 、40b 。 40C,40d・・・回動位置検出器、41・・・回動
位置表示器、42・・・制御装置、43・・・ソレノイ
ド、44・・・軸受、45・・・回動軸、46・・・ウ
オームギヤー、47・・・パルスモータ−148・・・
連結行程路、49・・・連結行程路、50・・・電圧移
相装置、51・・・電圧位相差設定器、52A・・・始
動時位相差設定ツマミ、52B・・・制動時位相差設定
ツマミ、53・・・運転時位相差設定ツマミ、54・・
・速度検出器、55・・・速度表示器、56・・・入出
力回路、57・・・制御回路、58・・・演算回路、5
9・・・記憶回路、60・・・温度検出器、61・・・
回動速度設定器、62・・・キーボード。
1 to 14 are illustrations of embodiments of the present invention2),
The figure is a side sectional view of a multi-stator induction motor, Figure 2 is a side sectional view showing the stator rotation mechanism and rotation position detection mechanism, and Figure 3 is a side sectional view showing the rotation mechanism of the stator and the rotation position detection mechanism. Figures 4 and 5 are wiring diagrams of the windings wound around both stators, Figure 6 is a wiring diagram of the rotor windings, and Figure 7 is a diagram of the rotor windings. Diagram showing the relationship between child slip and active power,
Figure 8 is an electrical equivalent circuit diagram of the rotor, Figure 9 is an electrical equivalent circuit diagram seen from the stator side, and Figure 10 is a diagram showing the relationship between speed and torque when stator windings are connected in series. , 11th
The figure shows the relationship between speed and torque when stator windings are connected in parallel to the power supply, and Figure 12 shows the relationship between slip and torque in the range of slip 0 to 2 when stator windings are connected in series. FIG. 13 is a diagram showing the relationship, FIG. 13 is a wiring diagram in which the voltage phase shifter is configured with a phase changeover switch, and FIG. 14 is a block diagram showing the configuration of automatic control. DESCRIPTION OF SYMBOLS 1...Multiple stator induction motor, 2.3...Rotor core, 4...Rotor shaft, 5...Nonmagnetic core, 6...
・Conductor, 6A, 6B... Rotor winding, 7... Rotor, 8... Short circuit ring, 9... Resistance material, 10.11...
Side part, 12... Ventilation trunk, 13... Ventilation port, 14...
・Machine frame, 15.16...bearing board, 17...connecting rod,
18...nut, 19.20...cooling impeller, 21
... bearing, 22.23 ... winding, 24 ... first stator, 25 ... second stator, 26 ... magnetic field forward/reverse switching device, 27 ... sliding bearing, 28 ...Fixed ring, 29
... Gear, 30 ... Small motor, 31 ... Drive gear, 32 ... Ventilation port, 33 ... Ventilation port, 34
...Air outlet, 35...Air exhaust port, 36...Exhaust fan,
37...Motor, 38...Space, 39-1 gas, 40, 40a, 40b. 40C, 40d... Rotation position detector, 41... Rotation position indicator, 42... Control device, 43... Solenoid, 44... Bearing, 45... Rotation shaft, 46 ...Worm gear, 47...Pulse motor-148...
Connecting stroke path, 49... Connecting stroke path, 50... Voltage phase shifter, 51... Voltage phase difference setter, 52A... Phase difference setting knob at starting, 52B... Phase difference at braking Setting knob, 53... Phase difference setting knob during operation, 54...
・Speed detector, 55... Speed indicator, 56... Input/output circuit, 57... Control circuit, 58... Arithmetic circuit, 5
9... Memory circuit, 60... Temperature detector, 61...
Rotation speed setting device, 62...keyboard.

Claims (7)

【特許請求の範囲】[Claims] (1)、同一回転軸に任意の間隔を設けて軸着した複数
個の回転子コアのそれぞれに装設した複数個の導体のそ
れぞれを回転子コア間を渡つて連結して一体的な回転子
に形成し、前記回転子コア間において前記複数個の導体
を抵抗材によって連結し、前記複数個の回転子コアに対
峙して複数個の固定子を機枠に並設し、前記複数個の固
定子のうち少なくとも1個の固定子に関連して電圧移相
装置を付設すると共に前記固定子に巻装した巻線に回転
磁界正逆切換装置を連結したことを特徴とする複数固定
子誘導電動機の制動装置。
(1) Integral rotation by connecting multiple conductors installed in each of multiple rotor cores attached to the same rotating shaft at arbitrary intervals across the rotor cores. the plurality of conductors are connected by a resistive material between the rotor cores, a plurality of stators are arranged in parallel on the machine frame facing the plurality of rotor cores, and the plurality of stators A plurality of stators, characterized in that a voltage phase shifting device is attached to at least one stator among the stators, and a rotating magnetic field forward/reverse switching device is connected to a winding wound around the stator. Braking device for induction motor.
(2)、前記回転子コア間を空間または非磁性体とした
特許請求の範囲第(1)項記載の複数固定子誘導電動機
の制動装置。
(2) A braking device for a multi-stator induction motor according to claim (1), wherein a space or a non-magnetic material is provided between the rotor cores.
(3)、前記電圧移相装置を前記複数個の固定子のうち
少なくとも1個の固定子を前記回転子と同心的に回動自
在に形設して回動固定子とした特許請求の範囲第(1)
項または第(2)項に記載の複数固定子誘導電動機の制
動装置。
(3) The voltage phase shifting device is formed into a rotary stator by forming at least one stator among the plurality of stators so as to be rotatable concentrically with the rotor. No. (1)
A braking device for a multi-stator induction motor according to item (2) or item (2).
(4)、前記回動固定子が、該回動固定子に対峙する前
記回転子の対応する導体部分に誘起する電圧と、他方の
固定子に対峙する前記回転子の対応する導体部分に誘起
する電圧の位相の差を電気角で0゜から 180゜の範
囲内において任意の差に設定保持できるものである特許
請求の範囲第(3)項に記載の複数固定子誘導電動機の
制動装置。
(4) The rotating stator induces a voltage in a corresponding conductor portion of the rotor facing the rotating stator and a voltage induced in a corresponding conductor portion of the rotor facing the other stator. A braking device for a multi-stator induction motor according to claim (3), which is capable of setting and maintaining a phase difference between voltages at an arbitrary value within a range of 0° to 180° in electrical angle.
(5)、前記回動固定子に、該回動固定子に関連して直
接または間接的に回動位置検出器を装着した特許請求の
範囲第(3)項または第(4)項記載の複数固定子誘導
電動機の制動装置。
(5) The rotary stator is provided with a rotary position detector directly or indirectly in relation to the rotary stator, as set forth in claim (3) or (4). Braking device for multiple stator induction motors.
(6)、前記回転磁界正逆切換装置と前記電圧移相装置
を制御装置を介して連絡した特許請求の範囲第(1)項
〜第(5)項のいずれかに記載の複数固定子誘導電動機
の制動装置。
(6) The multiple stator induction according to any one of claims (1) to (5), wherein the rotating magnetic field forward/reverse switching device and the voltage phase shift device are connected via a control device. Braking device for electric motor.
(7)、前記回転子に直接又は間接的に回転速度検出器
を設け、前記回転磁界正逆切換装置と前記回転速度検出
器を連結した特許請求の範囲第(1)項〜第(6)項の
いずれかに記載の複数固定子誘導電動機の制動装置。
(7) Claims (1) to (6) in which a rotational speed detector is provided directly or indirectly on the rotor, and the rotating magnetic field forward/reverse switching device and the rotational speed detector are connected. A braking device for a multi-stator induction motor according to any one of paragraphs.
JP62304991A 1987-12-01 1987-12-01 2 Stator induction motor braking device Expired - Lifetime JP2845366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304991A JP2845366B2 (en) 1987-12-01 1987-12-01 2 Stator induction motor braking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304991A JP2845366B2 (en) 1987-12-01 1987-12-01 2 Stator induction motor braking device

Publications (2)

Publication Number Publication Date
JPH01148087A true JPH01148087A (en) 1989-06-09
JP2845366B2 JP2845366B2 (en) 1999-01-13

Family

ID=17939759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304991A Expired - Lifetime JP2845366B2 (en) 1987-12-01 1987-12-01 2 Stator induction motor braking device

Country Status (1)

Country Link
JP (1) JP2845366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762802A (en) * 2014-01-15 2014-04-30 中国科学院电工研究所 Coaxial double permanent magnetic type magnetic flow switching motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262690A (en) * 1986-05-08 1987-11-14 Satake Eng Co Ltd Induction motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262690A (en) * 1986-05-08 1987-11-14 Satake Eng Co Ltd Induction motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762802A (en) * 2014-01-15 2014-04-30 中国科学院电工研究所 Coaxial double permanent magnetic type magnetic flow switching motor

Also Published As

Publication number Publication date
JP2845366B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
KR920000683B1 (en) Variable speed induction motor
JPH0227920B2 (en)
JPS62262690A (en) Induction motor
JPH01148087A (en) Brake for multi-stator induction motor
JP2571367B2 (en) Variable speed induction motor
JPS62268391A (en) Induction motor
JPH01144375A (en) Multiple-stator induction motor
JPS62260590A (en) Induction motor
JPS6311089A (en) Adjust speed induction motor
JPH01126195A (en) Controller for varying speed for variable speed induction motor
JPS6318985A (en) Variable speed induction motor
JPH01148094A (en) Multi-stator induction motor
JP2516398B2 (en) Variable speed induction motor
JP2919492B2 (en) Multiple stator induction motor
JPH01148093A (en) Brake for multi-stator induction motor
JP2516393B2 (en) 2 stator induction motor
JPH01177848A (en) Plural stator induction motor
JPH01283093A (en) Variable speed induction motor
JPH0834713B2 (en) Variable speed induction motor
JP2851644B2 (en) 2 stator induction motor
JP2516383B2 (en) Variable speed induction motor
JPH0199494A (en) Controller of variable speed induction motor
JP3080625B2 (en) Phase difference changing device for multiple stator induction motor
JPH01107636A (en) Cooling device for variable speed induction motor
JPH08163825A (en) Cooler for variable speed induction motor