JPH01147436A - Autocorrelation type heterodyne optical communication system - Google Patents

Autocorrelation type heterodyne optical communication system

Info

Publication number
JPH01147436A
JPH01147436A JP62304616A JP30461687A JPH01147436A JP H01147436 A JPH01147436 A JP H01147436A JP 62304616 A JP62304616 A JP 62304616A JP 30461687 A JP30461687 A JP 30461687A JP H01147436 A JPH01147436 A JP H01147436A
Authority
JP
Japan
Prior art keywords
light
signal
optical
wavelength
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62304616A
Other languages
Japanese (ja)
Inventor
Takayuki Kimura
孝行 木村
Hiroya Watanabe
渡辺 浩哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62304616A priority Critical patent/JPH01147436A/en
Publication of JPH01147436A publication Critical patent/JPH01147436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To omit a local oscillation light source and to build a large-capacity light transmission system at a low cost by passing one light signal through optical routes of different distances and again synthesizing the same so as to interference the light signals with each other. CONSTITUTION:The light signal subjected to the modulation to alternately switch the basic wavelength of the light and the signal deviated by a certain specific micro- wavelength from the basic wavelength in the light signal in the same manner as heretofore is transmitted on a signal transmission side and a light interference device having the distance spacing shown as follows are placed on a signal reception side. Namely, the optical route acting as the light interference device is constituted of an optical path a1, optical paths a2, a3, optical paths b1-b3, translucent mirrors m1, m4, reflecting mirrors m2, m3 and a photodetector APD consisting of an avalanche photodiode. The delay distance (d) of the optical path is so determined as to satisfy d=(b1+b3)=(basic wavelength of light)X(n+0.5) (n is a positive integer). The signal having the same envelope as the source signal on the signal transmission side is thereby obtd. with the photodetector APD and the need for the local oscillation light source is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光伝送システムに関し、特にヘテロダイン光通
信方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical transmission system, and particularly to a heterodyne optical communication system.

以下余白 〔従来の技術〕 従来、この種のヘテロダイン光通信方式は、受信側にお
いて入力された光信号と受信側で発生する局部発振光源
とを互いに干渉させることによって得られた出力信号を
検波することKよって源信号を得ていた。
Blank space below [Prior art] Conventionally, this type of heterodyne optical communication system detects an output signal obtained by interfering with an input optical signal on the receiving side and a local oscillation light source generated on the receiving side. The source signal was obtained from KotoK.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の局部発振光源の基本波長は、送信側で発生した基
本波長と特定の値だけずれたものであるが、このずれ幅
は送信側と受信側で非常に高い精度で一定に保持されな
ければならない。しかし。
The fundamental wavelength of the local oscillation light source mentioned above deviates from the fundamental wavelength generated on the transmitting side by a certain value, but this deviation must be kept constant with extremely high precision on the transmitting and receiving sides. It won't happen. but.

この様な特性を持つヘテロダイン通信用のレーデダイオ
ードの製造には通常のレーデダイオードよシも特殊な加
工技術を要し、量産にも適しておらず、製造コストも高
く、高価なものとなっていた。
Manufacturing a radar diode for heterodyne communication with such characteristics requires special processing technology compared to ordinary radar diodes, making it unsuitable for mass production and requiring high manufacturing costs. It had become.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による自己相関ヘテロダイン光通信方式は、送信
側においては従来と同様のヘテロダイン用レーザダイオ
ードを用いて光の基本波長とその基本波長からある特定
の微小波長だけずれた信号、を交互に交替する変調を行
なった信号を送信し。
The autocorrelation heterodyne optical communication system according to the present invention uses a conventional heterodyne laser diode on the transmitting side to alternately switch between the fundamental wavelength of light and a signal shifted by a certain minute wavelength from the fundamental wavelength. Transmit the modulated signal.

一方、受信側では(レーデダイオードの持つ基本波長)
X(n+0.5)(但し、nは正の整数)の間隔を持つ
光干渉器と通常の光検出器とを有することを特徴とする
On the other hand, on the receiving side (the fundamental wavelength of the radar diode)
It is characterized by having an optical interference device and a normal photodetector having an interval of X(n+0.5) (where n is a positive integer).

〔実施例〕〔Example〕

次に1本発明の実施例を図面を参照して説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

まず送信側から、これから伝送しようとする信号である
源信号のデータ列を5(t)2とし、この篇ニから作ら
れる一種の差分信号Δ5(t)。、を次の式から求める
First, from the transmitting side, the data string of the source signal, which is the signal to be transmitted, is 5(t)2, and a kind of difference signal Δ5(t) is created from this data string. , is obtained from the following formula.

Δ5(t)。1=(Δ5(t)。、+5(t)。、)第
一桁目   ■ここで、添字のOlはSが0.又は1の
いずれかをとることを意味する。
Δ5(t). 1 = (Δ5(t)., +5(t).,) 1st digit ■Here, the subscript Ol is S is 0. or 1.

ヘテロダイン用レーデダイオードの発信周波数制御端子
に印加する電圧M(t)を。
The voltage M(t) applied to the oscillation frequency control terminal of the radar diode for heterodyne.

械0=バイアス電圧十k・Δ5(t)。1      
■と定める。ここでバイアス電圧とはレーデダイオード
が基本周波数f0で発信するための基準電圧で。
machine 0 = bias voltage 10k·Δ5(t). 1
■Determine. Here, the bias voltage is the reference voltage for the Raded diode to transmit at the fundamental frequency f0.

定数には光へテロダイン検波を行うのに最適となる周波
数変化Δfを得るための増分電圧である。
The constant is an incremental voltage for obtaining a frequency change Δf that is optimal for performing optical heterodyne detection.

上記の如くすることによシ、Δ5(t)。1がOのとき
光周波数はf。に、Δ5(t)。1が1のときは(fo
十Δf)となってそれぞれ送出され、源信号が光信号に
変調されたことになシ、具体的には第2図の様になる。
By doing as above, Δ5(t). When 1 is O, the optical frequency is f. , Δ5(t). When 1 is 1, (fo
The source signal is modulated into an optical signal, specifically as shown in FIG. 2.

次に、受信部においては2光干渉器として作用する第1
図に示される光学経路を作る(これは−例である)。第
1図中、alが入力信号の光路。
Next, in the receiving section, the first
Create the optical path shown in the figure (this is an example). In FIG. 1, al is the optical path of the input signal.

mlは光路a1から入力された光を光路a2と光路b1
へと分光させる半透過鏡、m4は光路a2から来た光を
そのまま光路a3へ透過し、光路b3から来た光を光路
a3へ反射させる半透過鏡である。また、m2及びm3
は通常の反射鏡、 APDはアバランシェ7オトダイオ
ードによる光検出器である。
ml is the light input from optical path a1 to optical path a2 and optical path b1.
The semi-transmissive mirror m4 is a semi-transmissive mirror that transmits the light coming from the optical path a2 as it is to the optical path a3, and reflects the light coming from the optical path b3 to the optical path a3. Also, m2 and m3
is a normal reflector, and APD is a photodetector using an avalanche 7 photodiode.

光経路の遅延距離dは、第1図の例の場合。The delay distance d of the optical path is for the example shown in FIG.

(b1+bs  )であるが、光学経路構成が異る場合
はその都度水める必要がある。光経路遅延距離dは。
(b1+bs) However, if the optical path configuration is different, it is necessary to add water each time. The optical path delay distance d is.

d”=(bt +b3 )=(光の基本波長) X (
n+0.5 )■但し、nは正の整数 を満たす様に定める。
d”=(bt +b3)=(fundamental wavelength of light)
n+0.5) ■However, n is determined to satisfy a positive integer.

0式が満たされると、ある時点から(光速度)Xd時間
後の光周波数が一定の場合、半透過鏡m4で合成される
光は互いに打ち消しあって光検出器APDに入光される
光の電力はほぼOとなシ、光検出器APDでの光の検出
はなくなる。
When Equation 0 is satisfied, if the optical frequency after a certain point in time (speed of light) The power is almost O, and the photodetector APD no longer detects light.

一方、ある時点から(光速度)Xd時間後の光周波数が
Δfだけ異っていれば、半透過鏡m4で合成される光は
fと(f+Δf)の波動が重なるかたちとなシ、光検出
器APDではΔfのうなシを持った光が検出されること
になる。
On the other hand, if the optical frequency after (speed of light) Xd time from a certain point differs by Δf, the light synthesized by the semi-transmissive mirror m4 will be in the form of overlapping waves of f and (f + Δf). In the device APD, light having a width of Δf is detected.

これと■式、■式の関係から、光検出器APDでは送信
側での源信号5(t)。1 と同じ包絡線を持った信号
が得られることになる。ここでは従来必要であった局部
発振光源が不要となる。受信側での動作の具体例を第3
図に示す。光入力波形としては前述の例で作った波形を
用いる。光検出器APDの波形として前述の例の5(t
)。1 が再現されている。
From the relationship between this and equations (1) and (2), the source signal 5(t) on the transmitting side of the photodetector APD. A signal with the same envelope as 1 will be obtained. Here, the local oscillation light source that was conventionally required is no longer necessary. A concrete example of the operation on the receiving side is shown in Part 3.
As shown in the figure. The waveform created in the above example is used as the optical input waveform. The waveform of the photodetector APD is 5(t
). 1 has been reproduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、1つの光信号を距離の異
る光学経路を通し、再び合成して干渉させることによシ
従来必要とされてきた非常に精度の高い発振周波数をも
つ局部発振光源を省略することができ、さらに光信号が
それ自体と干渉するために送信側の周波数安定度がある
程度変化しても源信号の検出が可能であシ、低コストで
大容量の光伝送システムが構築できる。
As explained above, the present invention enables local oscillation with a highly accurate oscillation frequency, which is conventionally required, by passing one optical signal through optical paths of different distances, recombining it, and causing interference. A low-cost, high-capacity optical transmission system in which the light source can be omitted and the source signal can be detected even if the frequency stability of the transmitting side changes to some extent due to interference between the optical signal and itself. can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で適用される受信側の光学経路の一例を
示した図、第2図、第3図はそれぞれ本発明の詳細な説
明するだめの信号のタイムチャート。 図中2m□ 1m4は半透過鏡tm2+”3は反射鏡、
 APDは光検出器。
FIG. 1 is a diagram showing an example of an optical path on the receiving side to which the present invention is applied, and FIGS. 2 and 3 are time charts of signals that do not provide a detailed explanation of the present invention. In the figure, 2m□ 1m4 is a semi-transmissive mirror tm2+”3 is a reflective mirror,
APD is a photodetector.

Claims (1)

【特許請求の範囲】[Claims] 1、ヘテロダイン光通信方式において、送信側では光信
号の中に光の基本波長とその基本波長からある特定の微
小波長だけずれた信号を交互に交替する変調を行なった
光信号を送信し、受信側には基本波長×(n+0.5)
(但し、nは正の整数)の距離間隔を持つ光干渉器を置
くことによって局部発振光源を用いずに光の検波を行う
自己相関型ヘテロダイン光通信方式。
1. In the heterodyne optical communication system, the transmitting side transmits and receives an optical signal that is modulated by alternating the fundamental wavelength of light and a signal shifted by a certain minute wavelength from that fundamental wavelength. Fundamental wavelength x (n+0.5) on the side
An autocorrelation type heterodyne optical communication system that detects light without using a local oscillation light source by placing an optical interferometer with a distance interval of (n is a positive integer).
JP62304616A 1987-12-03 1987-12-03 Autocorrelation type heterodyne optical communication system Pending JPH01147436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304616A JPH01147436A (en) 1987-12-03 1987-12-03 Autocorrelation type heterodyne optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304616A JPH01147436A (en) 1987-12-03 1987-12-03 Autocorrelation type heterodyne optical communication system

Publications (1)

Publication Number Publication Date
JPH01147436A true JPH01147436A (en) 1989-06-09

Family

ID=17935160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304616A Pending JPH01147436A (en) 1987-12-03 1987-12-03 Autocorrelation type heterodyne optical communication system

Country Status (1)

Country Link
JP (1) JPH01147436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350529A (en) * 1993-06-11 1994-12-22 Nec Corp Autocorrelative optical heterodyne communication system
JP2009095019A (en) * 2007-10-03 2009-04-30 Nec Lab America Inc Coherent optical orthogonal frequency division multiplexing reception using self optical carrier extraction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724921A (en) * 1980-07-22 1982-02-09 Nippon Telegr & Teleph Corp <Ntt> Demodulating method for optical phase modulation signal
JPS6089138A (en) * 1983-10-20 1985-05-20 Seiko Instr & Electronics Ltd Self-reference system optical communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724921A (en) * 1980-07-22 1982-02-09 Nippon Telegr & Teleph Corp <Ntt> Demodulating method for optical phase modulation signal
JPS6089138A (en) * 1983-10-20 1985-05-20 Seiko Instr & Electronics Ltd Self-reference system optical communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350529A (en) * 1993-06-11 1994-12-22 Nec Corp Autocorrelative optical heterodyne communication system
JP2009095019A (en) * 2007-10-03 2009-04-30 Nec Lab America Inc Coherent optical orthogonal frequency division multiplexing reception using self optical carrier extraction

Similar Documents

Publication Publication Date Title
US4969736A (en) Integrated fiber optic coupled proximity sensor for robotic end effectors and tools
JP2003501696A (en) High-speed optical analog-to-digital converter and digital optical wavelength meter
CN102032905A (en) Optical fiber gyroscope with enhanced slow light effect
CN108008531B (en) raman laser optical path matching system based on Mach-Zehnder interferometer
WO1989011110A1 (en) An interferometric fibre optic network
JPH0312360B2 (en)
EP0183502A2 (en) Improvements relating to optical pulse generating arrangements
US4027976A (en) Optical interferometer
US5394242A (en) Fiber optic resonant ring sensor and source
JP6763567B2 (en) Fiber optic sensor
JPS645242B2 (en)
JPH01147436A (en) Autocorrelation type heterodyne optical communication system
CN116026306B (en) Gyroscope based on low-coherence light source and angular velocity measurement method thereof
JPH0352003B2 (en)
JPS6134403A (en) Optical interferometer
CN113532413B (en) Light source relative intensity noise suppression device based on F-P cavity
JP2935325B2 (en) Multi-probe displacement measuring device
JP2000180184A (en) Resonance type optical fiber gyroscope
CN218238858U (en) Integrated optical gyroscope
JPS6135486B2 (en)
JPS6348284B2 (en)
JPS61180108A (en) Detecting method of rotating speed
JPS6428503A (en) Length measuring device
JP2548044B2 (en) Optical interference gyro
JPH0310045B2 (en)