JPH01146307A - Manufacture of rare-earth permanent magnet - Google Patents

Manufacture of rare-earth permanent magnet

Info

Publication number
JPH01146307A
JPH01146307A JP62304617A JP30461787A JPH01146307A JP H01146307 A JPH01146307 A JP H01146307A JP 62304617 A JP62304617 A JP 62304617A JP 30461787 A JP30461787 A JP 30461787A JP H01146307 A JPH01146307 A JP H01146307A
Authority
JP
Japan
Prior art keywords
extrusion
canning
magnet
molded body
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62304617A
Other languages
Japanese (ja)
Inventor
Hiroshi Momoya
浩 百谷
Tsutomu Otsuka
大塚 務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP62304617A priority Critical patent/JPH01146307A/en
Publication of JPH01146307A publication Critical patent/JPH01146307A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a magnet material having the magnetic characteristics superior than those of the magnet manufactured before at reduced cost of processing by a method wherein, in an extrusion processing, a degassing process is introduced before canning of the molded body which is formed in a magnetic field. CONSTITUTION:When an R-T-B (provided that R indicates one or more kinds of the rare-earth element containing Y, and T indicates a transition metal element) rare-earth magnet is manufactured, the alloy powder mainly composed of R of 28-40wt.%, B of 1.0-2.0wt.% and T of balance is compression-molded in a magnetic field, a degassing operation is conducted at the heating temperature of 1000 deg.C or below, and after a canning operation has been conducted, a hot extrusion-molding is performed at the extrusion ratio 3-20 at the temperature range of 500-1150 deg.C. For example, after the molded body, which is formed by compression-molding alloy fine powder in a magnetic field, has been filled into a pure iron pipe to be used for canning, a degassing operation is conducted by evacuation. Then, the molded body finished in canning is heated at 900 deg.C for thirty minutes, and an extrusion processing is conducted at the extrusion ratio of 11 and at the extrusion pressure of 8ton/cm<2>.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、R(RはYを含む希土類元素の一種以上)、
B 、T(Tは遷移金属)を主成分とする希土類永久磁
石の製造方法に関し、粉末冶金法に代わる製造法として
、熱間押し出し加工法を用いた特に製造法に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides R (R is one or more rare earth elements including Y),
The present invention relates to a method for producing rare earth permanent magnets whose main components are B and T (T is a transition metal), and particularly relates to a production method using a hot extrusion process as an alternative to powder metallurgy.

〔従来の技術〕[Conventional technology]

R−T−B系希土類永久磁石材料は、R−C。 The R-T-B rare earth permanent magnet material is R-C.

系永久磁石材料よシ優れた磁2石特性を持ち、そのだめ
商品としての普及が進むとともに、更に高性能化、コス
ト低減等を目的とした磁石の製造法に関する開発が進ん
でいる。
It has superior magnetic properties compared to other permanent magnet materials, and is becoming more popular as a permanent magnet. At the same time, development of methods for producing magnets with the aim of further improving performance and reducing costs is progressing.

従来、希土類永久磁石の製造方法は、粉末冶金法が用い
られ、真空または不活性雰囲気中での溶解によるインが
、ト作成、粗粉砕、微粉砕、磁場中成形、焼結、熱処理
、加工という工程によって製造される。この製造方法で
は、R−T−B系 −(特にNb−Fe−B)で得られ
る最大エネルギー積(BH)maxが35 MGOe以
上の磁石体が製造されている。
Conventionally, rare earth permanent magnets have been produced using powder metallurgy, which involves melting in a vacuum or inert atmosphere, forming a magnet, coarsely pulverizing, finely pulverizing, forming in a magnetic field, sintering, heat treatment, and processing. Manufactured by process. In this manufacturing method, a magnet body having a maximum energy product (BH) max obtained from the RTB system - (particularly Nb-Fe-B) is 35 MGOe or more is manufactured.

水系希土類永久磁石は、上記製造工程にて製造されるが
、この工程での金型成形による方法では。
Water-based rare earth permanent magnets are manufactured by the above-mentioned manufacturing process, and this process involves molding.

特に薄肉のリング、アーク形状等の成形体を成形した場
合、成形体中の圧粉密度の不均一等によシ。
Particularly when molding thin-walled rings, arc-shaped molded objects, etc., it may cause uneven density of green powder in the molded object.

成形体が充分な強度が得られず、カケ、クラック等の欠
陥が生じ易くなり、極めて製造が困難であるという欠点
があった。このため、従来の方法では、焼結後、加工を
施すことによシ、目的とする薄肉のリング、アーク状の
磁石を得ていたが、加工量などの点から9歩留の悪さ等
でコスト高であり、好ましくない。
The disadvantage is that the molded product does not have sufficient strength, tends to have defects such as chips and cracks, and is extremely difficult to manufacture. For this reason, in the conventional method, the desired thin-walled rings and arc-shaped magnets were obtained by processing after sintering, but due to the amount of processing, etc., the yield was poor. It is expensive and undesirable.

その解決法として、熱間押lし加工法による永久磁石の
製造法がある(特開昭61−48904号公報)。この
文献による熱間押し出し加工による磁石製造工程では、
真空溶解によるインゴット作成、粗粉砕、微粉砕、磁場
中成形、そしてキャンニングした後、熱間押し出し加工
するという工程によって製造する方法が述べてロシ、成
形体は。
As a solution to this problem, there is a method of manufacturing permanent magnets using a hot pressing method (Japanese Patent Application Laid-open No. 48904/1983). In the magnet manufacturing process using hot extrusion according to this document,
The method of manufacturing the ingot is by vacuum melting, coarse pulverization, fine pulverization, molding in a magnetic field, canning, and then hot extrusion processing.

キャンニングしたビットの加熱時や押し出し時に。When heating or extruding canned bits.

ち密化が達成されるので、涜結過程は必要はなく。Since densification is achieved, there is no need for a densification process.

なる。更に、この方法によれば、押し出し材は。Become. Furthermore, according to this method, the extruded material.

押し出し方向に長い棒状のものが得られ、最終製品に非
常に近いち密な押し出し材が得られている。
A rod-like material that is long in the extrusion direction is obtained, and a dense extruded material that is very close to the final product is obtained.

この熱間押し出し加工法によれば、押し出し加工は、押
し出し時に加圧されるために、薄肉形状であっても機械
的強度の優れた製品を連続的に製造できるとともに、粉
末冶金法に比べて、押し出し加工によって得られる磁石
の磁気特性が向上(押し出し時に得られる配向度の改善
によるBrの向上、および結晶粒微細化によるJHCの
同上〕したことが報告されている。
According to this hot extrusion processing method, since extrusion processing is pressurized during extrusion, it is possible to continuously manufacture products with excellent mechanical strength even in thin wall shapes, and compared to powder metallurgy methods, it is possible to continuously manufacture products with excellent mechanical strength. It has been reported that the magnetic properties of the magnet obtained by extrusion processing are improved (improvement in Br due to improvement in the degree of orientation obtained during extrusion, and same as above for JHC due to grain refinement).

このため、上述した押し出し加工法によって得られる希
土類永久磁石は、磁石特性としても粉末冶金法によって
得られる磁石よシも優れており。
For this reason, the rare earth permanent magnet obtained by the extrusion method described above has excellent magnetic properties as well as the magnet obtained by the powder metallurgy method.

かつ磁石の製造環、広範囲な用途開発が行なわれている
In addition, a wide range of applications are being developed in the magnet production cycle.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、先に宗した文献による熱間押し出し加工法では
、その工程中において、磁場成形した成形体をキャンニ
ングして、熱間押し出しによシ製造する場合f成形体を
キャンニングした缶内において、成形体中に、成形した
微粉末に吸着しているガス(CINIO)が存在し、こ
の吸着ガスが残存したまま押し出し加工されるため、こ
の不純ガス成分(C9N、0)は、著しく磁石特性を劣
化させてしまう。このため、優れた特性を持った磁石を
製造することは、極めて困難であった。これは、C,N
、O等の不純ガスが、R等の元素と反応し、炭化物及び
酸化物等を形成し、これら不純物によシ磁石特性が著し
く劣化するためである。
However, in the hot extrusion processing method according to the previous literature, when manufacturing by hot extrusion by canning the compact formed by magnetic field during the process, f , there is a gas (CINIO) adsorbed to the molded fine powder in the compact, and the extrusion process is performed with this adsorbed gas remaining, so this impure gas component (C9N, 0) significantly impairs the magnetic properties. It causes deterioration. For this reason, it has been extremely difficult to manufacture magnets with excellent characteristics. This is C,N
This is because impurity gases such as , O, etc. react with elements such as R to form carbides, oxides, etc., and these impurities significantly deteriorate magnetic properties.

そこで9本発明の技術的課題は、上記欠点に鑑み、不純
ガス成分を除去して、磁石特性を向上させた希土類永久
磁石の製造方法を提供することである。
In view of the above drawbacks, a technical object of the present invention is to provide a method for producing a rare earth permanent magnet in which impurity gas components are removed and magnetic properties are improved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、押し出し加工法の工程内において。 The present invention is performed within the process of an extrusion process.

磁場成形した成形体をキャンニングする前に、脱ガスの
工程を導入することにより、著しく磁石特性が向上する
ことを発見した事実に基づくものである。
This is based on the discovery that magnetic properties can be significantly improved by introducing a degassing process before canning a compact formed by magnetic field forming.

すなわち1本発明によれば、R−T−B(RはYを含む
希土類元素の一種以上、Tは遷移金属)において、R:
28〜40wt%,B:1.0〜2.。
That is, according to the present invention, in R-T-B (R is one or more rare earth elements including Y, T is a transition metal), R:
28-40wt%, B: 1.0-2. .

wt%e T : bal、よシなる組成の合金粉末を
磁場中にて圧縮成形した成形体を、キャンニング用のパ
イプ等につめた後、1000℃以下の温度にて。
wt%e T: bal, a molded body obtained by compression molding alloy powder with a different composition in a magnetic field is packed into a canning pipe, etc., and then heated at a temperature of 1000°C or less.

真空等の雰囲気にて成形体、およびパイプ等の脱ガスを
行なった後にキャンニングを行なう。そして、その後に
キャンニングした成形体を500〜1150℃の温度範
囲において、押し出し比3〜20で熱間押し出し加工す
ることによシ、従来よシも磁石特性に優れ、しかも、加
工コストの低減できた磁石材料(特に薄肉のリング、ア
ーク形状等)が得ることができる。
Canning is performed after degassing the molded body, pipes, etc. in an atmosphere such as a vacuum. Then, by hot extruding the canned compact at a temperature range of 500 to 1150°C and an extrusion ratio of 3 to 20, it has excellent magnetic properties compared to conventional methods, and also reduces processing costs. Magnetic materials (especially thin-walled rings, arc shapes, etc.) can be obtained.

本発明によれは、キャンニングする前に、圧粉体および
パイプ等の脱ガスを行なっているため。
According to the present invention, the green compact, pipes, etc. are degassed before canning.

成形した微粒子に吸着している不純ガス(C、N、 −
0)が除去され、押し出し加工時に、成形体中に磁石特
性9機械強度を劣化させるガス成分(C。
Impure gases (C, N, -
0) is removed, and during extrusion processing, a gas component (C) that deteriorates the magnetic properties 9 mechanical strength is removed from the molded body.

N、0)又はこれらとの化合物が残留しないため。N, 0) or compounds with these do not remain.

極めてち密化した磁石特性1機械強度に優れた磁石が得
られるものである。
An extremely compact magnet with excellent mechanical strength can be obtained.

この際、成形体中に残留するガス成分(C、N。At this time, gas components (C, N, etc.) remaining in the molded body.

0)の含有量がCk3000ppm以上、N#150p
pm以上、0夕110000pp以上であると、これら
のガス成分、あるいは、そのガス成分との化合物の残留
により、磁石特性の劣化の原因となシ。
0) content is Ck3000ppm or more, N#150p
If it is more than 110,000 ppm or more than 110,000 ppm, the residual of these gas components or compounds with these gas components will cause deterioration of the magnetic properties.

本発明による優れた性能を持った磁石を製造することは
困難である。従って残留するガス成分の含有量は、上記
の数値以下にする必要があシ、好ましくはC”q200
0ppm以下、 Nkl OOppm以下。
It is difficult to manufacture magnets with excellent performance according to the present invention. Therefore, the content of the remaining gas component must be kept below the above value, preferably C"q200
0ppm or less, Nkl OOppm or less.

0’?7000ppm以下にすることによって、磁石特
性として(”H)ma!≧35 MGOeの優れた磁石
の製造が可能となる。特に+?Cの効果は薄肉形状の磁
石を得ようとする場合極めて工業上有益である。
0'? By reducing the amount to 7,000 ppm or less, it becomes possible to manufacture a magnet with excellent magnetic properties ("H)ma!≧35 MGOe. In particular, the effect of +?C is extremely industrially difficult when trying to obtain a thin-walled magnet. Beneficial.

ここで9本発明において使用した合金粉末組成をR: 
28〜40 wt%、B : 1.0〜2. Owt%
 + T: ’balとしたのは、この範囲外の組成を
用いた場合には、希土類永久磁石材料として優れた磁石
特性を示さないと共に9本発明にて導入した工程も効果
を示さないからである。
Here, the alloy powder composition used in the present invention is R:
28-40 wt%, B: 1.0-2. Owt%
+ T: 'bal is used because if a composition outside this range is used, it will not exhibit excellent magnetic properties as a rare earth permanent magnet material, and the process introduced in the present invention will not be effective. be.

次に、脱ガス温度を1000℃以下としたのは。Next, the degassing temperature was set to 1000°C or less.

これ以上の温度では成形体の焼結が進行してしまい、成
形体中に不純ガス成分(CINIO)が残留してしまう
からである。
This is because, if the temperature is higher than this, sintering of the molded body will proceed, and impurity gas components (CINIO) will remain in the molded body.

次に、熱間押し出し温度を500〜1150℃の温度範
囲としだのは、熱間押し出し温度が500℃より低い場
合は、塑性変形が不充分で、押し出しが不可能であり、
また熱間押し出し温度が1150℃以上の場合には、不
可避な液相が熱間押し田し加工を阻害したシ、成形体が
溶解してしまう可能性があるからである。
Next, the reason why the hot extrusion temperature is set in the temperature range of 500 to 1150°C is because if the hot extrusion temperature is lower than 500°C, plastic deformation is insufficient and extrusion is impossible.
Further, if the hot extrusion temperature is 1150°C or higher, there is a possibility that the unavoidable liquid phase may inhibit the hot extrusion process and the molded product may melt.

次に、押し出し比を3〜20としたのは、押し出し比が
3未満の場合には、押し出し加工にょる配向性の改善、
およびち密化が実現できず、また。
Next, the reason for setting the extrusion ratio to 3 to 20 is that when the extrusion ratio is less than 3, the orientation due to extrusion processing is improved;
And density cannot be realized.

押し出し比が20を越える場合には9通常の押し出しに
よって加工が不可能となるからである。
This is because if the extrusion ratio exceeds 20, processing by normal extrusion becomes impossible.

〔実施例〕〔Example〕

次に9本発明に係る実施例を図面を参照して説明する。 Next, nine embodiments of the present invention will be described with reference to the drawings.

〈実施例1〉 R−T−B係の希土類永久磁石の製造に関してRとして
Nd 、 TとしてFeを用い、 wt%でNd:26
.28,30,32.5,35,38,40゜42 、
44 、 B : 1.0 、 Fe : balのよ
うにNd量を変えた場合、およびwt%でNd : 3
5. OI B :0.6,0.8,1.0,1.2f
1.5,1.7,2.0?2、2 v 2.5 t F
e : balのようにB量を変えた場合。
<Example 1> Regarding the production of rare earth permanent magnet of R-T-B type, Nd is used as R, Fe is used as T, Nd: 26 wt%
.. 28, 30, 32.5, 35, 38, 40°42,
44, B: 1.0, Fe: When the amount of Nd is changed like bal, and Nd: 3 in wt%.
5. OI B: 0.6, 0.8, 1.0, 1.2f
1.5,1.7,2.0?2,2 v 2.5 t F
e: When the amount of B is changed like bal.

それぞれの組成なる合金を真空高周波溶解によって作成
した。得られたインゴットをディスクミルにて粗粉砕し
、粗粉末を得た。次に、この粗粉末をゴールミルで微粉
砕しく湿式法による微粉砕)。
Alloys of each composition were created by vacuum high-frequency melting. The obtained ingot was coarsely ground using a disc mill to obtain a coarse powder. Next, this coarse powder is finely pulverized using a gall mill and then finely pulverized using a wet method.

粉砕粒径約4μmの微粉末を得た。この合金微粉末を磁
場中で圧縮成形し、成形体を作成した。得られた成形体
をキャンニング用の純鉄製のパイプにつめた後、800
℃の温度にて1時間、パイプ内を真空引きによって、成
形体および/母イブの脱ガスを行なった。その脱ガス後
、キャンニングを行ない、キャンニングした成形体を9
00℃において30分加熱し、押し出し比11.および
、押し出し圧8ton/cm2で押し出し加工した。得
られた磁石を600℃で1時間熱処理し、急冷した。得
られた磁石の磁石特性の測定結果を第1図及び第2図に
示した。
A fine powder with a pulverized particle size of about 4 μm was obtained. This fine alloy powder was compression molded in a magnetic field to create a compact. After filling the obtained molded body into a pure iron pipe for canning,
The molded body and/or the mother plate were degassed by evacuating the inside of the pipe at a temperature of .degree. C. for 1 hour. After the degassing, canning is performed and the canned molded body is
Heating at 00°C for 30 minutes, the extrusion ratio was 11. Then, extrusion processing was performed at an extrusion pressure of 8 ton/cm2. The obtained magnet was heat treated at 600° C. for 1 hour and then rapidly cooled. The results of measuring the magnetic properties of the obtained magnet are shown in FIGS. 1 and 2.

その結果、使用する組成範囲はNd:28〜40wt%
、B:1.θ〜2.Owtチ、Fe:ba1で効果があ
ることがわかる。
As a result, the composition range used was Nd: 28 to 40 wt%.
,B:1. θ~2. It can be seen that Owtchi and Fe:ba1 are effective.

〈実施例2〉 脱ガスの効果を測る手段として、以下の様に。<Example 2> As a means of measuring the effectiveness of degassing, use the following method.

35、ONd −1,0B−Fe bal、 (wt%
)なる組成の合金を〈実施例1〉と同様の方法による溶
解、粗粉砕、微粉砕、磁場中で圧縮成形した。得られた
成形体をキャンニング用の純鉄製のノeイブにつめた後
、脱ガスしないですぐにキャンニングした試料。
35, ONd-1,0B-Fe bal, (wt%
) was melted, coarsely pulverized, finely pulverized, and compression molded in a magnetic field in the same manner as in <Example 1>. A sample in which the obtained molded body was packed in a pure iron canning tube and then canned immediately without degassing.

および25.200.400.600.800 。and 25.200.400.600.800.

1000.1100℃の各温度にて1時間、パイプ内を
真空引きによって脱ガスを行なった試料をキャ −ンニ
ングし、キャンニングした成形体を900℃にて30分
加熱し、押し出し比11および押し出し圧8 ton/
crn2において押し出し加工した。得られた磁石を6
00℃で1時間熱処理し、急冷した。
The sample was degassed by vacuuming the inside of the pipe for 1 hour at each temperature of 1000 and 1100°C, and the canned molded product was heated at 900°C for 30 minutes to achieve an extrusion ratio of 11 and extrusion. Pressure 8 tons/
It was extruded in crn2. 6 of the obtained magnets
The mixture was heat-treated at 00° C. for 1 hour and then rapidly cooled.

得られた磁石の磁石特性の測定結果を第3図に示した。The results of measuring the magnetic properties of the obtained magnet are shown in FIG.

その結果、1000℃以下の温°度での脱ガス工程の導
入により磁石特性は向上し、極めてち密化し、かつ優れ
た磁石特性を持った磁石が得られることがわかる。
The results show that by introducing a degassing step at a temperature of 1000° C. or lower, the magnetic properties are improved, and a magnet that is extremely dense and has excellent magnetic properties can be obtained.

よって脱ガス温度は1000℃以下で効果があることが
わかる。
Therefore, it can be seen that a degassing temperature of 1000° C. or less is effective.

〈実施例3〉 35、 ONd −1,OB −Fe bal (wt
%)なる組成の合金を〈実施例1〉と同様の方法にょシ
溶解、粗粉砕、微粉砕、磁場中で圧縮成形した。得られ
た成形体をキャンニング用の純鉄製のノ?イグにつめた
後、800℃の温度にて1時間、パイプ内を真空引きK
よって脱ガスし、成形体をキャンニングした仮、キャン
ニングした成形体を450 、500゜700.900
.1050,1150,1200Cの各温度にて30分
加熱し、押し出し比11および押し出し圧8 ton/
crn2において押し出し加工した。得られた磁石を6
00℃で1時間熱処理し、急冷した。得られた磁石の磁
石特性の測定結果を第4図に示した。その結果、押し出
し温度が500℃より低い温度では磁石特性も低下し、
また押し出し温度が1200℃以上になると成形体が溶
解してしまい、押し出し加工は不可能であった。よって
<Example 3> 35, ONd -1, OB -Fe bal (wt
%) was melted, coarsely pulverized, finely pulverized, and compression molded in a magnetic field in the same manner as in Example 1. The obtained molded body is made of pure iron for canning. After filling it in the igu, the inside of the pipe is vacuumed at a temperature of 800℃ for 1 hour.
Therefore, after degassing and canning the molded body, the canned molded body was heated to 450°, 500°, 700.900°.
.. Heating at each temperature of 1050, 1150, 1200C for 30 minutes, extrusion ratio 11 and extrusion pressure 8 ton/
It was extruded in crn2. 6 of the obtained magnets
The mixture was heat-treated at 00° C. for 1 hour and then rapidly cooled. The measurement results of the magnetic properties of the obtained magnet are shown in FIG. As a result, when the extrusion temperature is lower than 500℃, the magnetic properties also deteriorate.
Furthermore, when the extrusion temperature exceeded 1200° C., the molded product melted, making extrusion processing impossible. Therefore.

押し出し温度範囲は500〜1150℃の範囲で効果が
あることがわかる。
It can be seen that an extrusion temperature range of 500 to 1150°C is effective.

〈実施例4〉 35、 ONd −1,OB −Fe bal 、(w
t%)なる組成の合金を〈実施例1〉と同様の方法によ
シ溶解、粗粉砕、微粉砕、磁場中で圧縮成形した。得ら
れた成形体をキャンニング用の純鉄製の・母イブにつめ
た後、800℃の温度にて1時間、・母イブ内を真空引
きによって脱ガスし、成形体をキャンニングした後、キ
ャンニングした成形体を900にて30分加熱し、2,
3,7,11,15,20の各押し出し比および押し出
し圧8 ton/crn2において押し出し加工した。
<Example 4> 35, ONd -1, OB -Fe bal , (w
t%) was melted, coarsely pulverized, finely pulverized, and compression molded in a magnetic field in the same manner as in Example 1. After packing the obtained molded body into a pure iron mother tube for canning, the inside of the mother tube was degassed by vacuuming for one hour at a temperature of 800°C, and after canning the molded body, The canned molded body was heated at 900 for 30 minutes, and 2.
Extrusion processing was performed at each extrusion ratio of 3, 7, 11, 15, and 20 and an extrusion pressure of 8 ton/crn2.

得られた磁石を600℃で1時間熱処理し、急冷した。The obtained magnet was heat treated at 600° C. for 1 hour and then rapidly cooled.

得られた磁石の磁石特性の測定結果を第5図に示した。The measurement results of the magnetic properties of the obtained magnet are shown in FIG.

その結果、押し出し比が小さい(3以下の場合)と、磁
石のち密性が悪く、他の押し出し比で作成した磁石に比
べて密度が低下し、また磁石特性も他の条件で作成した
磁石に比べて劣っていることがわかる。
As a result, when the extrusion ratio is small (3 or less), the density of the magnet is poor, the density is lower than that of magnets made with other extrusion ratios, and the magnetic properties are also lower than those of magnets made under other conditions. You can see that it is inferior in comparison.

よって、押し出し比は3〜2oの範囲で効果があること
がわかる。
Therefore, it can be seen that an extrusion ratio of 3 to 2 degrees is effective.

〈実施例5〉 35、ONd −1,0B−Fe bal (wt%)
なる組成の合金を〈実施例1〉と同様の方法にょシ溶解
、粗粉砕、微粉砕、磁場中で圧縮成形した。得られた成
形体をキャンニング用の純鉄製の・ぐイブにつめた後。
<Example 5> 35,ONd-1,0B-Fe bal (wt%)
An alloy having the following composition was melted, coarsely pulverized, finely pulverized, and compression molded in a magnetic field in the same manner as in Example 1. After filling the obtained molded body into a canning tube made of pure iron.

■ 脱ガスしなかった場合。■ If the gas is not degassed.

■ 800℃の温度にて1時間、ノクイグ内を真空引き
によって脱ガスした場合、のそれぞれの工程後、成形体
をキャンニングし、キャンニングした成形体を900℃
の温度にて30分加熱し、押し出し比11および押し出
し圧8ton/crn2において押し出し加工した。得
られた磁石を600℃で1時間熱処理し、急冷した。各
条件(■と■)で得られた磁石の磁石特性の測定結果お
よび、磁石材料中に残存するガス(C,N、O)の分析
結果を表−1に示した。その結果、脱ガス工程を導入し
なかった場合には1分析したガス量(C,N。
■ If the inside of Noquig is degassed by vacuuming at a temperature of 800°C for 1 hour, the molded body is canned after each step, and the canned molded body is heated to 900°C.
The mixture was heated for 30 minutes at a temperature of 1, and extruded at an extrusion ratio of 11 and an extrusion pressure of 8 ton/crn2. The obtained magnet was heat treated at 600° C. for 1 hour and then rapidly cooled. Table 1 shows the measurement results of the magnetic properties of the magnets obtained under each condition (■ and ■) and the analysis results of gases (C, N, O) remaining in the magnet material. As a result, when the degassing process was not introduced, the amount of gas (C, N) analyzed in one analysis was determined.

0)は、脱ガス工程を導入したときの場合に比べて2〜
3倍多く、この成形した微粉末に吸着したガスの除去が
不充分なために、磁石特性の劣化を引き起こしているこ
とがわかる。
0) is 2 to 2% compared to when the degassing process is introduced.
It can be seen that the gas adsorbed on the molded fine powder is insufficiently removed, causing deterioration of the magnetic properties.

なお1本実施に際してはRとしてNdを用いたNb・F
e−B系について述べたが、Rに関してはYを含めた希
土類元素を使用したときのR−Fe−B系合金について
も同様の効果が期待できることは容易に推際できるとこ
ろである。
In addition, when carrying out one test, Nb・F using Nd as R was used.
Although the e-B system has been described, it is easy to infer that similar effects can be expected for R-Fe-B system alloys when rare earth elements including Y are used.

〔発明の効果〕〔Effect of the invention〕

以上の説明のとおり9本発明の熱間押し出し加工法によ
る希土類永久磁石の製造法によれば・キャンニング前の
脱ガス工程を導入することにより磁石特性の向上に寄与
し、優れた磁石特性を持った磁石材料を得ることができ
る。
As explained above, 9 According to the method of manufacturing rare earth permanent magnets using the hot extrusion processing method of the present invention, by introducing a degassing step before canning, it contributes to improving the magnetic properties and provides excellent magnetic properties. You can obtain magnetic materials with

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、脱ガス温度800℃、押し出し温度900℃
、押し出し比11において、Nd:24〜44 (wt
%) + B : 1. O(wt%) 、 Fe :
 bal、のA且成範囲内でNd量(wt%)を変化さ
せたときの。 各Nd量(wt% )と各磁石特性との相関図。 第2図は、脱ガス温度800℃、押し出し温度900℃
、押し出し比11において、 Nd : 35.0(w
t%) = B : 0.6〜2.5 (wt%) g
 Fe : baLの組成範囲内でB量(wt%)を変
化させたときの。 各B量(wt% )と各磁石特性との相関図。 第3図は、35. ONd −1,OB−Fe bal
、 (wt%)の組成において、押し出し温度900℃
、押し出し比11において、脱ガス工程のない場合、お
よび脱ガス温度を25〜1100℃の範囲内の温度で変
化させた場合の各説ガス温度と各磁石特性との相関図。 第4図は、 35. ONd−1,OB−Fe bal
、 (wt%)の組成において、脱ガス温度800℃、
押し出し比11において、押し出し温度を450〜12
00℃の範囲内の温度で変化させたときの各押し出し温
度と各磁石特性との相関図。 第5図は、 35. ONd −1,OB−Fe ba
l、 (wt%)の組成において、脱ガス温度800℃
、押し出し温度900℃において、押し出し比を2〜2
0の範囲内の押し出し比で変化させたときの、各押し出
し比と各磁石特性との相関図である。 第1図 NdN  (刀L%) 第2図 81(四も%〕 第3図  ゛ !!兄力゛ス洛U宣 (0C) 第4図 押し出し温度 (’C)
Figure 1 shows a degassing temperature of 800℃ and an extrusion temperature of 900℃.
, at an extrusion ratio of 11, Nd: 24 to 44 (wt
%) + B: 1. O (wt%), Fe:
When the amount of Nd (wt%) is changed within the range of A of bal. A correlation diagram between each amount of Nd (wt%) and each magnet characteristic. Figure 2 shows a degassing temperature of 800℃ and an extrusion temperature of 900℃.
, at an extrusion ratio of 11, Nd: 35.0 (w
t%) = B: 0.6 to 2.5 (wt%) g
Fe: When the amount of B (wt%) is changed within the composition range of baL. Correlation diagram between each amount of B (wt%) and each magnet characteristic. Figure 3 shows 35. ONd-1, OB-Fe bal
, (wt%), extrusion temperature 900°C
, a correlation diagram between each estimated gas temperature and each magnet characteristic when there is no degassing step and when the degassing temperature is varied within the range of 25 to 1100° C. at an extrusion ratio of 11. Figure 4 shows 35. ONd-1, OB-Fe bal
, (wt%), degassing temperature 800°C,
At an extrusion ratio of 11, the extrusion temperature is 450-12
A correlation diagram between each extrusion temperature and each magnet characteristic when changing the temperature within the range of 00°C. Figure 5 shows 35. ONd-1, OB-Fe ba
l, (wt%), degassing temperature 800°C
, at an extrusion temperature of 900°C, an extrusion ratio of 2 to 2
FIG. 3 is a correlation diagram between each extrusion ratio and each magnet characteristic when the extrusion ratio is changed within a range of 0. Fig. 1 NdN (Sword L%) Fig. 2 81 (4%) Fig. 3 ゛!!My brother's strength (0C) Fig. 4 Extrusion temperature ('C)

Claims (1)

【特許請求の範囲】[Claims] 1.押出し加工によるR−T−B(ここで,RはYを含
む希土類元素の一種以上の元素,Tは遷移金属元素を表
す。)系希土類磁石の製造方法において,R:28〜4
0wt%,B:1.0〜2.0wt%,T:bal.を
主成分とする合金粉末を,磁場中で圧縮成形し,100
0℃以下の加熱温度で脱ガスし,キャンニングした後に
,500〜1150℃の範囲内で,押出し比3〜20で
,熱間押出し成形することを特徴とする希土類永久磁石
の製造方法。
1. In the method for manufacturing R-T-B (here, R represents one or more rare earth elements including Y, and T represents a transition metal element) system rare earth magnet by extrusion processing, R: 28 to 4
0wt%, B: 1.0 to 2.0wt%, T: bal. An alloy powder whose main component is compression molded in a magnetic field,
1. A method for producing a rare earth permanent magnet, which comprises degassing and canning at a heating temperature of 0° C. or lower, followed by hot extrusion molding at a temperature of 500 to 1150° C. and an extrusion ratio of 3 to 20.
JP62304617A 1987-12-03 1987-12-03 Manufacture of rare-earth permanent magnet Pending JPH01146307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304617A JPH01146307A (en) 1987-12-03 1987-12-03 Manufacture of rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304617A JPH01146307A (en) 1987-12-03 1987-12-03 Manufacture of rare-earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH01146307A true JPH01146307A (en) 1989-06-08

Family

ID=17935174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304617A Pending JPH01146307A (en) 1987-12-03 1987-12-03 Manufacture of rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH01146307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172037A (en) * 2007-01-12 2008-07-24 Daido Steel Co Ltd Rare earth magnet and its manufacturing method
CN101640087A (en) * 2008-07-04 2010-02-03 大同特殊钢株式会社 Rare earth magnet and production process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148904A (en) * 1984-08-16 1986-03-10 Hitachi Metals Ltd Manufacture of permanent magnet
JPS61282225A (en) * 1985-09-07 1986-12-12 Niigata Eng Co Ltd Capsule rolling stock
JPS62122107A (en) * 1985-11-21 1987-06-03 Mitsubishi Metal Corp Manufacture of sintered rare earth magnet
JPS62126122A (en) * 1985-11-27 1987-06-08 Showa Shinyaku Kk Production of ibuprofen granule having coated surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148904A (en) * 1984-08-16 1986-03-10 Hitachi Metals Ltd Manufacture of permanent magnet
JPS61282225A (en) * 1985-09-07 1986-12-12 Niigata Eng Co Ltd Capsule rolling stock
JPS62122107A (en) * 1985-11-21 1987-06-03 Mitsubishi Metal Corp Manufacture of sintered rare earth magnet
JPS62126122A (en) * 1985-11-27 1987-06-08 Showa Shinyaku Kk Production of ibuprofen granule having coated surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172037A (en) * 2007-01-12 2008-07-24 Daido Steel Co Ltd Rare earth magnet and its manufacturing method
CN101640087A (en) * 2008-07-04 2010-02-03 大同特殊钢株式会社 Rare earth magnet and production process thereof
JP2010263172A (en) * 2008-07-04 2010-11-18 Daido Steel Co Ltd Rare earth magnet and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US3723197A (en) Method of manufacturing a body having anisotropic, permanent magneticproperties
JPH0424401B2 (en)
JPS6333505A (en) Production of raw material powder for permanent magnet material
EP0538058B1 (en) Magnetic material
EP0516264A1 (en) Producing method for high coercive rare earth-iron-boron magnetic particles
JPS6181606A (en) Preparation of rare earth magnet
JPH08167515A (en) Manufacturing for material of r-f-b-based permanent magnet
JPS6181603A (en) Preparation of rare earth magnet
JPH01146307A (en) Manufacture of rare-earth permanent magnet
JPH0917677A (en) Manufacture of r-fe-b-c permanent magnet material with excellent corrosion resistance
JPS6181607A (en) Preparation of rare earth magnet
JPS6181605A (en) Preparation of rare earth magnet
JPS6181604A (en) Preparation of rare earth magnet
JPS5848608A (en) Production of permanent magnet of rare earths
JPS63289905A (en) Manufacture of rare earth-fe-b magnet
JP2725004B2 (en) Manufacturing method of permanent magnet
JPS63111155A (en) Production of permanent magnet material
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPS58108711A (en) Manufacture of rare earth permanent magnet
JPS61252604A (en) Manufacture of rare earth magnet
JPH05152113A (en) Manufacture of rare-earth anisotropic magnet powder
JPH0239503A (en) Rare earth-fe-b anisotropic permanent magnet and its manufacture
JPS5848606A (en) Production of permanent magnet of rare earths
JPH03247703A (en) Manufacture of permanent magnet
JPS63216317A (en) Manufacture of radially oriented magnet