JPH01143356A - Gto thyristor - Google Patents

Gto thyristor

Info

Publication number
JPH01143356A
JPH01143356A JP30214387A JP30214387A JPH01143356A JP H01143356 A JPH01143356 A JP H01143356A JP 30214387 A JP30214387 A JP 30214387A JP 30214387 A JP30214387 A JP 30214387A JP H01143356 A JPH01143356 A JP H01143356A
Authority
JP
Japan
Prior art keywords
thickness
spike voltage
voltage
gto
base layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30214387A
Other languages
Japanese (ja)
Inventor
Takayasu Kawamura
川村 貴保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP30214387A priority Critical patent/JPH01143356A/en
Publication of JPH01143356A publication Critical patent/JPH01143356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To prevent the breakdown of an element due to a spike voltage by forming a structure in which the thickness of the base layer of a GTO thyristor is set under the conditions of a spike voltage resistance at the time of turning OFF. CONSTITUTION:In a GTO thyristor having 4 layers and 3 junctions of P1-N1-P2-N2, the larger the thickness of an N-type base layer becomes, the higher the spike voltage resistance is increased, and the relationship between both is determined by a range surrounded by linear lines A, B. The line A becomes the characteristic of a gradient 1, the line B becomes the characteristic of gradient 1, 2, and it is understood that, to raise the spike voltage resistance required for the thyristor by 1 volt or more, the thickness of the N-type base may be increased by 1-1.2 micrometer. That is, the GTO thyristor can be realized by providing a predetermined spike voltage resistance by forming an element structure in which the ratio of the thickness d(mu) of the N-type base layer to the spike voltage resistance VSP (V) required for the element is d/VSP=1-1.2.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、GTO(ゲートターンオフ)サイリスクに関
する。
DETAILED DESCRIPTION OF THE INVENTION A. INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a GTO (gate turn-off) sirisk.

B9発明の概要 本発明は、P+ N+ P* N2の4層3接合を備え
るGTOサイリスクにおいて、 N、ベース層の厚さをターンオフ時のスパイク電圧耐量
の条件から設定した構造とすることにより、 スパイク電圧による素子破壊を防止でき、しかも耐電圧
と可制御電流の比を向上した素子製作を確実にするもの
である。
B9 Summary of the Invention The present invention provides a structure in which the thickness of the N and base layers is set based on the spike voltage withstand conditions at turn-off in a GTO SIRISK equipped with a 4-layer 3-junction of P+N+P*N2. It is possible to prevent element destruction due to voltage, and to ensure the manufacture of an element with an improved ratio of withstand voltage to controllable current.

C1従来の技術 GTO(ゲートターンオフ)サイリスクは、ゲ−l−電
流による自己消弧能力を有し、一般のサイリスクに必要
な転流回路を不要にし、電力変換装置等のスイッヂ素子
に採用して変換効率の向」−や装置の小型、軽量化を図
ることができ、最近では各種電力制御装置への適用が多
く見られる。特に、大電力制御装置になるほどGTOサ
イリスクの特長を発揮できることから、GTOサイリス
クはその高耐圧化、可制御電流の増大が望まれてきてい
る。
C1 Conventional technology GTO (gate turn-off) SIRISK has a self-extinguishing ability using galvanic current, eliminates the need for a commutation circuit required for general SIRISK, and can be used in switch elements such as power converters. It is possible to improve the conversion efficiency and make the device smaller and lighter, and recently it has been widely applied to various power control devices. In particular, since the characteristics of GTO Cyrisk can be exhibited more effectively as the power control device becomes larger, it is desired that GTO Cyrisk has a higher withstand voltage and an increased controllable current.

GTOサイリスクの耐電圧は、Nベース層の比抵抗、厚
さ及びPベース層の濃度勾配等から比較的容易に設計し
うるちので、耐電圧4500ボルトクラスの高耐圧GT
Oサイリスクが実用化されているし、研究段階ではそれ
以」二の高耐圧GTOサイリスタも発表されている。
The withstand voltage of GTO Cyrisk can be designed relatively easily from the specific resistance and thickness of the N base layer, the concentration gradient of the P base layer, etc., so it is a high withstand voltage GT with a withstand voltage class of 4500 volts.
The Othyristor has been put into practical use, and two other high-voltage GTO thyristors have also been announced at the research stage.

一方、GTOサイリスクの可制御電流I TGOMは、
次の関係にあることが知られている。
On the other hand, the controllable current I TGOM of GTO Cyrisk is
It is known that the following relationship exists.

I TGOM =Goff−1gr CCGoff−V
J+/ρspB但し、Goffは電流利得、Igrはゲ
ート逆電流、V 、、+ 1はゲート・カソード間の逆
電圧、ρSPBはPベース層のシート抵抗である。
I TGOM = Goff-1gr CCGoff-V
J+/ρspBwhere, Goff is the current gain, Igr is the gate reverse current, V, , +1 is the reverse voltage between the gate and cathode, and ρSPB is the sheet resistance of the P base layer.

上述の関係から、GTOサイリスクの可制御電流の増大
には逆電圧V J Iを大きくするか、又はシート抵抗
ρSPBを小さくする必要がある。このうち、逆電圧v
、71の増大はオフゲート電源電圧の高圧化、制御電力
増で制限される。
From the above relationship, it is necessary to increase the reverse voltage V J I or decrease the sheet resistance ρSPB in order to increase the controllable current of the GTO Sirisk. Of these, the reverse voltage v
, 71 is limited by increasing the off-gate power supply voltage and increasing the control power.

そこで、ソート抵抗ρSr’Bを実質的に小さくするも
のとして、第2図に示ず埋込ゲート型GTOサイリスク
がある。このGTOサイリスタは、P。
Therefore, as a method for substantially reducing the sorting resistance .rho.Sr'B, there is a buried gate type GTO circuit not shown in FIG. This GTO thyristor is P.

N、P2 N24層3接合において、P、ベース層中に
放射状、格子状などの適当なパターンを持つ高濃度不純
物層P2゛を設け、ゲート電極Gからのオフゲート電流
を大きくかつ分割カソード型と同様に電流集中を回避す
る。なお、Kはカソード電極、Aはアノード電極を示す
N, P2 In the N24 layer 3 junction, a high concentration impurity layer P2' with an appropriate pattern such as radial or lattice pattern is provided in the P and base layer to increase the off-gate current from the gate electrode G and to make it similar to the split cathode type. Avoid current concentration. Note that K indicates a cathode electrode and A indicates an anode electrode.

D0発明が解決しようとする問題点 従来の埋込ゲート型GTOサイリスクは、シート抵抗ρ
SPBを低減し、低電圧のオフゲート電源によるもオフ
ゲート電流1grを増大するが、ターンオフ時にスナバ
回路のリード線インダクタンスで発生ずるスパイク電圧
によってターンオフ電力損失の瞬時値過大で素子破壊を
起こす問題がある。
D0 Problems to be solved by the invention The conventional buried gate type GTO silicon risk has a sheet resistance ρ
Although SPB is reduced and the off-gate current is increased by 1gr by using a low-voltage off-gate power supply, there is a problem that the spike voltage generated in the lead wire inductance of the snubber circuit at turn-off causes an excessive instantaneous value of turn-off power loss, causing element destruction.

第3図は一般的なGTOサイリスクのターンオフ時のア
ノード電流IA、アノード・カソード間電圧VD及び両
者の積になる電力損失Lossの波形を示す。同図から
も明らかなように、GTOサイリスクの電力損失L o
ssの瞬時値が最も大きくなるのは電圧VD波形にスパ
イク電圧Vspが現れる時点になり、このスパイク電圧
Vspによって素子破壊を起こす。
FIG. 3 shows the waveforms of the anode current IA, the anode-cathode voltage VD, and the power loss Loss, which is the product of both, at the time of turn-off of a general GTO Cyrisk. As is clear from the figure, the power loss Lo of GTO Cyrisk
The instantaneous value of ss becomes the largest at the time when a spike voltage Vsp appears in the voltage VD waveform, and this spike voltage Vsp causes element destruction.

に述のスパイク電圧Vspは、素子のターンオフ時の過
電圧dv/dt抑制のために設けるスナバ回路部品がイ
ンダクタンス分を含むことに因るもので、該インダクタ
ンス分の低減が望まれる。しかし、GTOサイリスクが
高耐圧化するにしたがってスナバ回路部品の耐電圧も高
くする必要があり、このことから回路部品のインダクタ
ンスの低減を難しくしている。
The spike voltage Vsp mentioned above is due to the fact that the snubber circuit component provided for suppressing the overvoltage dv/dt at the time of turn-off of the element includes an inductance component, and it is desired to reduce the inductance component. However, as the withstand voltage of GTO SiRisk becomes higher, the withstand voltage of the snubber circuit components must also be increased, which makes it difficult to reduce the inductance of the circuit components.

上述までのことから、従来のGTOサイリスクは、埋込
ゲート型にするも耐電圧3000ボルト。
From the above, the conventional GTO Cyrisk has a withstand voltage of 3000 volts even if it is a buried gate type.

4500ボルトクラスの素子において可制御電流が30
00アンペアを超すものは実用化を難しくしていた。
The controllable current is 30 in a 4500 volt class element.
Those exceeding 0.00 amperes were difficult to put into practical use.

本発明の目的は、スパイク電圧に対する素子耐量を向上
させ、耐電圧と可制御電流の比も向上させる素子構造を
提供するにある。
An object of the present invention is to provide an element structure that improves element withstand capability against spike voltages and also improves the ratio of withstand voltage to controllable current.

E6問題点を解決するための手段 本発明は上記目的を達成するためになされたもので、P
 + N+ P 2 N2の4層3接合を備えるGTo
サイリスタにおいて、前記N、ベース層の厚さd(μ)
はターンオフ時に素子破壊に至らない最大スパイク電圧
Vsp(V)設定値との比がd/Vsp  =1.0〜
1.4 になる構造にしたことを特徴とする。
E6 Means for Solving Problems The present invention has been made to achieve the above object, and
+ N+ P 2 GTo with 4 layers and 3 junctions of N2
In the thyristor, the above N, the thickness d (μ) of the base layer
The ratio with the maximum spike voltage Vsp (V) setting value that does not lead to element destruction at turn-off is d/Vsp = 1.0 ~
1.4.

F9作用 本発明者等は、種々の耐電圧を有するGTOサイリスク
について実験、研究した結果、ターンオフ時に素子破壊
に至らない最大スパイク電圧(スパイク電圧耐量と呼ぶ
)は素子の径とは殆ど関係なく、Nベース層の厚さにほ
ぼ比例することを見し冒」」シた。第1図は種々のNベ
ース層の厚さ(単位はマイクロ)を持つGTOサイリス
クについてのスパイク電圧耐量(単位はボルト)の測定
結果を示し、Nベース層の厚さが高くなるほどスパイク
電圧耐量も増し、両者の関係は直線AとBで囲まれる領
域で定められる。直線Aは勾装置の特性になり、直線B
は勾装置、2の特性になり、GTOサイリスクに要求さ
れるスパイク電圧耐量を1ボルト上昇させるにはNベー
スの厚さを1〜1.2マイクロ増大ずれば良いことが判
る。換言すれば、Nベース層の厚さd(μ)を素子に要
求されるスパイク電圧耐量Vsp(V)との比か になる素子構造にすることで所期のスパイク電圧耐量を
持たせたGTOサイリスクを実現できる。
F9 Effect The present inventors have conducted experiments and research on GTO Cyrisks having various withstand voltages, and have found that the maximum spike voltage that does not lead to element destruction at turn-off (referred to as spike voltage withstand capacity) has almost no relation to the diameter of the element. It was found that the thickness is almost proportional to the thickness of the N base layer. Figure 1 shows the measurement results of the spike voltage withstand capacity (in volts) for GTO Syllisks with various N base layer thicknesses (in micro units), and the spike voltage withstand capacity increases as the N base layer thickness increases. The relationship between the two is defined by the area surrounded by straight lines A and B. Straight line A is the characteristic of the gradient device, and straight line B
is the characteristic of gradient device 2, and it can be seen that the thickness of the N base should be increased by 1 to 1.2 microns in order to increase the spike voltage withstand capacity required for GTO Cyrisk by 1 volt. In other words, the GTO has the desired spike voltage withstand capacity by creating an element structure in which the thickness d (μ) of the N base layer is in proportion to the spike voltage withstand capacity Vsp (V) required for the device. Cyrisk can be realized.

実用」−は少しの余裕度を持たせるべく、d/Vsp 
=1〜1.4に、好ましくは1.1〜1.3に設計する
。即ち、d/Vsp の下限は要求されるスパイク電圧
耐量に対する製品の歩留り及び素子耐電圧から決められ
、d/Vspの上限は素子のオン電圧の上昇など他の特
性から決められる。
d/Vsp in order to have some margin for practical use.
= 1 to 1.4, preferably 1.1 to 1.3. That is, the lower limit of d/Vsp is determined from the product yield and element withstand voltage with respect to the required spike voltage withstand capability, and the upper limit of d/Vsp is determined from other characteristics such as the rise in on-state voltage of the element.

」二連までの事実から、Nベース層の厚さdとスパイク
電圧設定値Vspとの比d/Vspが1〜1.4になる
構造とすることにより、所期のスパイク電圧耐量を得る
ことができる。
From the facts up to the second series, it is possible to obtain the desired spike voltage withstand capacity by creating a structure in which the ratio d/Vsp between the thickness d of the N base layer and the spike voltage setting value Vsp is 1 to 1.4. Can be done.

また、従来はNベース層の厚さdが主に耐電圧の観点か
ら決められており、可制御電流I Tcoxが2000
アンペア以上のGTOサイリスクで耐電圧VDMとの比
が =8− を超えるものは製品化を困難にしていた。これは、耐電
圧のみを考慮してNベース層の厚さdを小さくしすぎる
ことでスパイク電圧による素子破壊を招いていたものと
考慮される。この点についても、Nベース層の厚さdの
下限をスパイク電圧から考慮した上述の範囲に制限する
ことで、可制御電流と耐電圧との比が0.8を超える素
子を製造し得ることになる。
Moreover, conventionally, the thickness d of the N base layer was determined mainly from the viewpoint of withstand voltage, and the controllable current I Tcox was 2000
It has been difficult to commercialize GTO cyrisks of ampere or higher and a ratio of withstand voltage VDM exceeding 8-. This is considered to be due to the fact that the thickness d of the N base layer was made too small considering only the withstand voltage, which led to device destruction due to spike voltage. Regarding this point as well, by limiting the lower limit of the thickness d of the N base layer to the above-mentioned range considering the spike voltage, it is possible to manufacture an element with a ratio of controllable current to withstand voltage exceeding 0.8. become.

G、実施例 以下、本発明の実施例を従来素子と対比させて詳細に説
明する。
G. EXAMPLE Hereinafter, an example of the present invention will be explained in detail in comparison with a conventional element.

GTOサイリスクにおいて、耐電圧4500ボルトを得
るには、Nベース層を比抵抗が250〜350Ω〜CR
で厚さが約800 ltで実現され、従来の設計でもN
ベース層の厚さを上記のものにしていた。
In order to obtain a withstand voltage of 4,500 volts in GTO Cyrisk, the N base layer should have a specific resistance of 250 to 350 Ω to CR.
The thickness is approximately 800 lt, and the conventional design also has a thickness of approximately 800 lt.
The thickness of the base layer was set as above.

この素子において、しゃ断電流3000アンペアの制御
を行うとき、スナバ回路のインダクタンスが約0.15
μHの条件ではスパイク電圧が約800ボルトになる。
In this element, when controlling a cutoff current of 3000 amperes, the inductance of the snubber circuit is approximately 0.15
Under μH conditions, the spike voltage is approximately 800 volts.

このスパイク電圧は第1図の特性からNベース層の厚さ
800μではスパイク電圧耐量800〜960ボルトよ
りも低いため、上記素子構造で耐電圧4500ボルト、
可制御電流3000アンペアを実現できる。
This spike voltage is lower than the spike voltage withstand voltage of 800 to 960 volts when the thickness of the N base layer is 800 μm from the characteristics shown in FIG.
A controllable current of 3000 amperes can be achieved.

ここで、耐電圧4500ボルトで可制御電流4500A
 (ITGOM/VDM= 1 、 0)とするには素
子径を大きくすることになるが、この電流増大に比例し
てスパイク電圧Vspも上昇する。この電流4−500
 Aでは上記スナバ回路のスパイク電圧は約1200ボ
ルト程度まで上昇し、この値は上記厚さ800μのNベ
ース層のスパイク電圧耐重を越えることから該スパイク
電圧によって素子破壊になる。
Here, the controllable current is 4500 A with a withstand voltage of 4500 volts.
(ITGOM/VDM=1, 0) requires increasing the element diameter, but the spike voltage Vsp also increases in proportion to this increase in current. This current 4-500
In case A, the spike voltage of the snubber circuit rises to about 1200 volts, and since this value exceeds the spike voltage resistance of the 800 μm thick N base layer, the spike voltage destroys the device.

ここで、本発明ではNベース層の厚さdとスパイク電圧
耐量Vspの比から該厚さdを制限した素子構造にする
。この構造は、上記耐電圧4500ポルI−1可制御電
流4500アンペアを得るのに、スナバ回路によるスパ
イク電圧I200ポルトからNベース層の厚さdを12
00〜1680μにする。この条件による実験として、
Nベース層の厚さdを1300μにし、他の条件は従来
と同様にした素子を試作した結果、スパイク電圧耐量1
200ボルト以」二でかつ可制御電流4500アンペア
、耐電圧4500ボルトを達成した。
Here, in the present invention, the device structure is such that the thickness d of the N base layer is limited based on the ratio between the thickness d and the spike voltage withstand capacity Vsp. In this structure, in order to obtain the above-mentioned withstand voltage of 4,500 pols and controllable current of 4,500 amperes, the thickness d of the N base layer is reduced from the spike voltage of 200 volts by the snubber circuit to 12
00 to 1680μ. As an experiment under these conditions,
As a result of prototyping a device in which the thickness d of the N base layer was set to 1300μ and other conditions were the same as before, the spike voltage withstand capacity was 1.
It achieved a controllable current of 4,500 amperes and a withstand voltage of 4,500 volts.

なお、本発明は埋込ゲート型GTOサイリスク−11= に限らず、一般のGTOサイリスクに適用して同等の作
用効果を得ることができる。
Note that the present invention is not limited to the embedded gate type GTO Cylisk-11, but can be applied to a general GTO Cylisk to obtain the same effect.

H3発明の効果 以上のとおり、本発明によれば、Nベース層の厚さをス
パイク電圧耐量から設定した構造とするため、従来の耐
電圧から設定するものに較べてスパイク電圧による素子
破壊を確実に防止し、また可制御電流と耐電圧の比を高
くした素子の実現を確実、容易にする効果がある。
H3 Effects of the Invention As described above, according to the present invention, since the thickness of the N base layer is set based on the spike voltage withstand capacity, element breakdown due to spike voltage is more secure compared to the conventional structure where the thickness is set based on the withstand voltage. This has the effect of surely and easily realizing an element with a high ratio of controllable current to withstand voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るNベース層厚さとスパイク電圧耐
量の関係を示す図、第2図は埋込ゲート型GTOサイリ
スクの断面構造図、第3図はGTOサイリスクのターン
オフ時の各部波形図である。 第1図 Nへ・−スフf厚さとスパイク 電圧耐!のrjI賃、充示オ(2) 200 4006008001000120ONへ−ズ
層厚j(μ)
Fig. 1 is a diagram showing the relationship between the thickness of the N base layer and the spike voltage withstand capacity according to the present invention, Fig. 2 is a cross-sectional structural diagram of a buried gate type GTO SIRISK, and Fig. 3 is a waveform diagram of various parts of the GTO SIRISK at turn-off. It is. Go to Figure 1 N.--F thickness and spike voltage resistance! rjI rent, charging layer thickness (2) 200 4006008001000120ON layer thickness j (μ)

Claims (1)

【特許請求の範囲】  P_1N_1P_2N_2の4層3接合を備えるGT
Oサイリスタにおいて、前記N_1層の厚さd(μ)は
ターンオフ時に素子破壊に至らない最大スパイク電圧V
sp(V)設定値との比が d/Vsp=1.0〜1.4 になる構造にしたことを特徴とするGTOサイリスタ。
[Claims] GT with 4 layers and 3 junctions of P_1N_1P_2N_2
In the O thyristor, the thickness d (μ) of the N_1 layer is the maximum spike voltage V that does not cause device destruction at turn-off.
A GTO thyristor characterized by having a structure in which the ratio of sp (V) to a set value is d/Vsp=1.0 to 1.4.
JP30214387A 1987-11-30 1987-11-30 Gto thyristor Pending JPH01143356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30214387A JPH01143356A (en) 1987-11-30 1987-11-30 Gto thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30214387A JPH01143356A (en) 1987-11-30 1987-11-30 Gto thyristor

Publications (1)

Publication Number Publication Date
JPH01143356A true JPH01143356A (en) 1989-06-05

Family

ID=17905425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30214387A Pending JPH01143356A (en) 1987-11-30 1987-11-30 Gto thyristor

Country Status (1)

Country Link
JP (1) JPH01143356A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189A (en) * 1981-06-12 1983-01-05 ペンウオルト・コ−ポレ−シヨン High gamma phase polyvinilidene fluoride piezoelectric material
JPS6074679A (en) * 1983-09-30 1985-04-26 Toshiba Corp Protection circuit for semiconductor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189A (en) * 1981-06-12 1983-01-05 ペンウオルト・コ−ポレ−シヨン High gamma phase polyvinilidene fluoride piezoelectric material
JPS6074679A (en) * 1983-09-30 1985-04-26 Toshiba Corp Protection circuit for semiconductor element

Similar Documents

Publication Publication Date Title
Heumann Basic principles of power electronics
US6744644B2 (en) Soft-start of DC link capacitors for power electronics and drive systems
EP0812487A1 (en) Protective circuit for series-connected power semiconductors
Shekar et al. Characteristics of the emitter-switched thyristor
US4791470A (en) Reverse conducting gate turn-off thyristor device
US5747841A (en) Circuit arrangement, and junction field effect transistor suitable for use in such a circuit arrangement
US4107551A (en) Thyristor turn-off system
JPS5855749B2 (en) Gate turn-off thyristor protection device
US20030201516A1 (en) Semiconductor power conversion apparatus
US6188589B1 (en) Inverter
JPH01143356A (en) Gto thyristor
JP3899450B2 (en) Semiconductor power converter
CN1078971C (en) Power converter wherein MOS gate semiconductor device is used
US4644240A (en) Method and apparatus for controlling reverse-conducting GTO thyristor
FI62916C (en) KORONAGENERATORANORDNING
JP2002044934A (en) Semiconductor power converter
KR100478690B1 (en) Method and Apparatus for Protecting against Load Short-circuit of a High Voltage Multi-level Converter
JPH06260661A (en) Free wheeling diode for gto thyristor
US6462968B2 (en) Reverse conducting GCT (Gate Commutated Thyristor) and application of such a GCT
JPH06276725A (en) Power conversion device
Sharma Power electronics
Vobecky On the Commutation of Thyristors for High-Voltage Direct Current Transmission (HVDC)
JPH098280A (en) Semiconductor device and inverter device using it
JPH07176720A (en) Reverse-conducting thyristor with field relaxation and isolation structure
JPS58202623A (en) Transistor switch circuit