JPH01143341A - Superconductive connecting body device and manufacture thereof - Google Patents

Superconductive connecting body device and manufacture thereof

Info

Publication number
JPH01143341A
JPH01143341A JP62302247A JP30224787A JPH01143341A JP H01143341 A JPH01143341 A JP H01143341A JP 62302247 A JP62302247 A JP 62302247A JP 30224787 A JP30224787 A JP 30224787A JP H01143341 A JPH01143341 A JP H01143341A
Authority
JP
Japan
Prior art keywords
thin film
ribbon
groove
superconducting
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62302247A
Other languages
Japanese (ja)
Inventor
Yutaka Iwasaki
裕 岩崎
Shuichi Kameyama
亀山 周一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62302247A priority Critical patent/JPH01143341A/en
Publication of JPH01143341A publication Critical patent/JPH01143341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain an integrated superconductive connecting-body device by forming the first and second ribbon-like thin films on a substrate and by taking out current from the side surface of groove of the first ribbon-like thin film to the second ribbon-like thin film. CONSTITUTION:A ribbon-like superconductive first thin film wiring 110, grooves 140A and 140B which were opened from the surface of a silicon oxidation film 120, and the second superconductive thin film wiring 160A and 160B connected to a groove 140 are formed on a substrate 100. Current which has flowed from the wiring 160A, where current flows isotropically, uniformly flows from a side surface 150A of the groove part 140A which was formed on the aeolotropical wiring 110, and is taken out of the side surface 150B of the groove part 140B into the wiring 160B in a good condition. Thus, an integrated superconductive connecting-body device can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超伝導体等を用いた超伝導接続体装置に関す
るもので、特に化合物等の超伝導体薄膜を組入れた超伝
導接続体装置の構造ならびにその製造方法に係るもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a superconducting connector device using a superconductor etc., and in particular to a structure of a superconducting connector device incorporating a superconductor thin film such as a compound. and its manufacturing method.

従来の技術 従来、比較的高温の臨界転移温度を有する超伝導体とし
て、窒化ニオブ(NbN)やゲルマニウムニオブ(Nb
3Ge)などが知られていたが、これらの素材の超伝導
転移温度はたかだか24°にであった。さらに高い転移
温度が期待されるものとして、ペロブスカイト系3元化
合物のBa−La−Cu−0系などが提案されていた。
Conventional technology Conventionally, niobium nitride (NbN) and germanium niobium (Nb
3Ge), but the superconducting transition temperature of these materials was at most 24°. A Ba-La-Cu-0 system of perovskite ternary compounds has been proposed as a material expected to have an even higher transition temperature.

しかしながら、最近の研究によれば、Y−Ba−Cu−
0系の材料が液体窒素温度を越える可能性が示唆され(
M、に、Wu  等、フィジカル レビュー レターズ
(Pysical  Review  Letters
) Vol、 58、No、 9、PP、 908−9
10(1987)) 、現実に、900に以上の転移温
度を有する超伝導化合物が報告されてきている。
However, according to recent research, Y-Ba-Cu-
It has been suggested that 0-based materials may exceed liquid nitrogen temperatures (
M., Ni, Wu et al., Physical Review Letters.
) Vol, 58, No. 9, PP, 908-9
10 (1987)), superconducting compounds having a transition temperature of 900 or higher have actually been reported.

発明が解決しようとする問題点 単結晶性の超伝導薄膜は、多結晶性の超伝導薄膜に比べ
て、その配線等の臨界電流密度が大きく取れること、さ
らに、配線等の受動素子ではなく能動素子の活性領域と
しても使用され、その実用化が急がれていた。Y−Ba
−Cu−0系の化合物の薄膜は、焼結法あるいはスパッ
タリング法で形成しても、超伝導性を示すセラミックの
粉体、塊状体などが比較的得られやすいが、臨界電流の
大きい結晶軸のそろった単結晶性の強い薄膜が得られに
くかった。しかしながら、本発明者等の知りえたところ
では、スパッタリング法においても、結晶を堆積させる
基体として、高温に加熱されたサファイア(α−AI2
03)、酸化マグネシウム、スピネル、シリコン、ガリ
ウムひ素等の単結晶を用いることが、単結晶性の良い超
伝導薄膜を形成するために、非常に有効であることを見
いだした。
Problems to be Solved by the Invention Single-crystalline superconducting thin films have a higher critical current density in their interconnects than polycrystalline superconducting thin films, and furthermore, they are active rather than passive elements such as interconnects. It was also used as the active region of devices, and its practical application was urgently needed. Y-Ba
- Even if thin films of Cu-0-based compounds are formed by sintering or sputtering, it is relatively easy to obtain ceramic powders or lumps that exhibit superconductivity, but the crystal axis with a large critical current It was difficult to obtain a thin film with uniform single crystallinity. However, to the knowledge of the present inventors, even in the sputtering method, sapphire (α-AI2
03) found that using single crystals such as magnesium oxide, spinel, silicon, gallium arsenide, etc. is very effective for forming superconducting thin films with good single crystallinity.

さらに、このように形成された薄膜は基体の平面に対し
て、その結晶のC軸が垂直に立ちやすく、しかも、この
平面方向(C軸に垂直な方向)に流れる超伝導電流のキ
ャリア密度が、C軸に沿った方向(C軸に平行な方向)
に流れる超伝導電流のキャリア密度よりも数倍大きいこ
とが見いだされた。すなわち、C軸に垂直な方向に超伝
導電流を流しやすく、C軸に平行な方向には、超伝導電
流を取り出しにくかった。さらには、超伝導のコヒーレ
ンス長もC軸に垂直な方向には、数十ナノ・メータ、C
軸に平行な方向には、数ナノ・メータ程度で、同じく、
数倍の差があることが知られた。
Furthermore, in the thin film formed in this way, the C axis of the crystal tends to be perpendicular to the plane of the substrate, and the carrier density of the superconducting current flowing in this plane direction (direction perpendicular to the C axis) is , direction along the C-axis (direction parallel to the C-axis)
It was found that the carrier density is several times larger than the carrier density of the superconducting current flowing in the . That is, it was easy to flow a superconducting current in a direction perpendicular to the C-axis, and it was difficult to extract a superconducting current in a direction parallel to the C-axis. Furthermore, the coherence length of superconductivity is several tens of nanometers in the direction perpendicular to the C axis, and C
In the direction parallel to the axis, on the order of several nanometers, similarly,
It is known that there is a difference of several times.

このように、Y−Ba−Cu−0系等の化合物の薄膜超
伝導体を、例えば、集積回路超伝導接続体装置の配線等
の用途に用いたとき、基体の水平面方向に流れやすい超
伝導電流の異方性がみられやすく、平面に垂直な方向に
電流を取り出しにくいという問題が有った。
In this way, when a thin film superconductor made of a compound such as Y-Ba-Cu-0 is used, for example, for wiring of an integrated circuit superconducting connection device, superconductivity tends to flow in the horizontal direction of the substrate. There was a problem that anisotropy of the current was easily observed and it was difficult to extract the current in a direction perpendicular to the plane.

問題点を解決するための手段 この問題点を解決するために本発明は、基体上に形成さ
れ、基体に平行な平面方向に流れやすい導電性の異方性
がみちれる第1のリボン状薄膜と、前記第1のリボン状
薄膜の表面から形成された溝部と、前記溝部に接続して
形成された、導電性の異方性がみられない等方性の第2
のリボン状薄膜とから構成され、第1のリボン状薄膜の
溝部の側面から第2のリボン状薄膜へ電流を取り出すこ
とを特徴とする超伝導接続体装置と、基体上に、基体に
対して平行な平面方向に流れやすい導電性の異方性がみ
られる第1のリボン状薄膜を形成する工程と、前記第1
のリボン状薄膜の表面がら溝部を形成する工程と、前記
溝部に接続した、導電性の異方性がみられない等方性の
第2のリボン状薄膜を形成する工程とからなり、第1の
リボン状薄膜の溝部の側面から第2のリボン状薄膜へ電
流を取り出すことを特徴とする超伝導接続体装置の製造
方法を提供する。
Means for Solving the Problem In order to solve this problem, the present invention provides a first ribbon-shaped thin film formed on a substrate and full of conductive anisotropy that easily flows in a plane parallel to the substrate. , a groove formed from the surface of the first ribbon-shaped thin film, and an isotropic second groove formed in connection with the groove and having no conductive anisotropy.
A superconducting connector device comprising: a ribbon-like thin film; forming a first ribbon-shaped thin film having conductive anisotropy that tends to flow in parallel plane directions;
forming a groove in the surface of the ribbon-shaped thin film; and forming a second isotropic ribbon-shaped thin film with no conductive anisotropy, which is connected to the groove; Provided is a method for manufacturing a superconducting connector device, characterized in that a current is taken out from the side surface of the groove of the ribbon-like thin film to a second ribbon-like thin film.

作用 本発明の方法により、例えば、基体に平行な平面方向に
流れやすい導電性の異方性がみられるY−Ba−Cu−
0系の材料のリボン状薄膜において、この異方性のリボ
ン状薄膜の表面から溝部を形成することにより、この溝
部の側面から、基体に平行な平面方向に流れる電流を取
り出すことが容易になる。したがって、この溝部の側面
に接して異方性のないリボン状薄膜の導電膜を形成すれ
は良いことになる。この時、これら2つのリボン状薄膜
が超伝導性を示せば、電気抵抗のない多層配線が実現で
きる。また、溝部の幅がリボン状薄膜の他の部分の幅に
比べて大きくなっている場合、電流引出し領域の断面積
を大きく取ることができるので、電流密度の大きい幅の
狭い配線部分から電流密度の低い異方性のない薄膜への
接続が可能となる。この点から考えても、溝部の幅がリ
ボン状薄膜の他の配線部分の幅に比べて大きくすること
が好ましい。さらに、溝部の側面から最大限に電流を取
り出すためには、異方性のリボン状薄膜の底面まで溝部
をエツチングして側面の面積を最大にしておくことが好
ましい。一方、異方性の薄膜の平面に対して垂直な方向
の薄膜のコヒーレンス長が、薄膜の厚みに対して比較的
大きい場合、必ずしも、薄膜の底面に達するまで溝部を
エツチングする必要はない。すなわち、溝部の下に、コ
ヒーレンス長程度あるいはそれ以下の薄膜が残っていて
も溝部の底部から超伝導電流を取り出すことが可能なた
めである。
Function: By the method of the present invention, for example, Y-Ba-Cu-
By forming a groove from the surface of the anisotropic ribbon-like thin film of a zero-based material, it becomes easy to extract current flowing in a plane parallel to the substrate from the side surface of the groove. . Therefore, it is a good idea to form a conductive film in the form of a ribbon-like thin film without anisotropy in contact with the side surfaces of this groove. At this time, if these two ribbon-like thin films exhibit superconductivity, multilayer wiring without electrical resistance can be realized. In addition, if the width of the groove is larger than the width of other parts of the ribbon-like thin film, the cross-sectional area of the current extraction region can be increased, so that the current density can be reduced from the narrow wiring part with high current density. This enables connection to thin films with low anisotropy. Considering this point as well, it is preferable that the width of the groove is larger than the width of other wiring portions of the ribbon-shaped thin film. Furthermore, in order to extract the maximum amount of current from the side surfaces of the groove, it is preferable to etch the groove to the bottom of the anisotropic ribbon-like thin film to maximize the area of the side surfaces. On the other hand, if the coherence length of the thin film in the direction perpendicular to the plane of the anisotropic thin film is relatively large compared to the thickness of the thin film, it is not necessarily necessary to etch the groove until it reaches the bottom surface of the thin film. In other words, even if a thin film with a thickness equal to or less than the coherence length remains under the groove, superconducting current can be extracted from the bottom of the groove.

実施例 以下、本発明の方式による超伝導配線を用いた超伝導接
続体装置の構造を、第1の実施例として、第1図を参照
して詳細に説明する。
EXAMPLE Hereinafter, the structure of a superconducting connector device using superconducting wiring according to the method of the present invention will be described in detail as a first example with reference to FIG.

結晶性のサファイア(α−A12o3)の基体100上
に、700−10000cの基体温度で形成されたC軸
がほぼ基体の平面に垂直な方向に配列されたY−Ba−
Cu−o系結晶の厚さ約1000ナノ・メータのリボン
状の超伝導性の第1の薄膜配線110と、この薄膜の表
面を被覆するシリコン酸化膜120の表面から開口され
た溝部140A、140Bと、この溝部140に接続さ
れた多結晶状(基体温度200−5000Cで形成)の
Y−Ba−Cu−0系結晶の厚さ約1500ナノ・メー
タの第2の超伝導薄膜配線160A、160Bが形成さ
れている。ここで、薄膜配線110に垂直な方向のコヒ
ーレンス長以下の厚みの部分が、溝部140A、140
Bの低部に残されていてもよい。ここに、超伝導配線1
60Cは、超伝導配線110上を通過する配線である。
Y-Ba- formed on a substrate 100 of crystalline sapphire (α-A12o3) at a substrate temperature of 700-10000c and with the C axis aligned in a direction substantially perpendicular to the plane of the substrate.
A ribbon-shaped superconducting first thin film wiring 110 made of Cu-O based crystal with a thickness of approximately 1000 nanometers, and grooves 140A and 140B opened from the surface of a silicon oxide film 120 covering the surface of this thin film. And second superconducting thin film wirings 160A and 160B of polycrystalline Y-Ba-Cu-0 system crystal (formed at a substrate temperature of 200-5000 C) and having a thickness of about 1500 nanometers are connected to this groove 140. is formed. Here, the portions having a thickness equal to or less than the coherence length in the direction perpendicular to the thin film wiring 110 are the groove portions 140A, 140.
It may be left in the lower part of B. Here, superconducting wiring 1
60C is a wiring that passes over the superconducting wiring 110.

本発明の構造によれば、等方向に電流を流せる配線16
0Aから流れ込んだ電流は、異方性の超伝導配線110
に形成された溝部140Aの側面150Aから一様に流
れ込み、溝部140Bの側面150Bから配線160B
に、良好に、取り出された。もし、この様な配置におい
て配線160Cの下の酸化膜120に開口を設け、配線
110に溝部を形成せずに、配線110と配線160C
とを接続したとしても、配線160Aから流れ込んだ電
流は、配線160Cには流れ込まずに、大部分の電流が
溝部140Bの側面150Bから配線160Bに取り出
される。
According to the structure of the present invention, the wiring 16 allows current to flow in the same direction.
The current flowing from 0A flows through the anisotropic superconducting wiring 110.
The wiring 160B flows uniformly from the side surface 150A of the groove portion 140A formed in the
It was taken out in good condition. In such an arrangement, if an opening is formed in the oxide film 120 under the wiring 160C and a groove is not formed in the wiring 110, the wiring 110 and the wiring 160C
Even if the wiring 160A is connected to the wiring 160A, most of the current is extracted from the side surface 150B of the groove 140B to the wiring 160B without flowing into the wiring 160C.

本発明の方式による超伝導配線を用いた超伝導=8− 接続体装置の構造を、第2の実施例として、第2図を参
照して詳細に説明する。
The structure of a superconducting=8-connector device using superconducting wiring according to the method of the present invention will be described in detail as a second embodiment with reference to FIG. 2.

第2図の上面図に示されているように、第1図の第1の
実施例とばば同じ構成であるが、配線110に形成され
た溝部の幅が広く従って側面150A、150Bが、大
きくなっている。この大きな側面の溝部により、次のよ
うな効果が得られた。
As shown in the top view of FIG. 2, it has the same configuration as the first embodiment of FIG. It has become. The large side grooves provided the following effects.

幅の狭い配線部分から断面積の大きい溝部へは、配線部
分の電導性の異方性によって損なわれることなく電流が
流れるので、電流密度の大きい薄膜部から電流密度の低
い異方性のない薄膜への大電流の接続が可能となる。
Current flows from the narrow wiring part to the groove part with a large cross-sectional area without being affected by the anisotropy of conductivity in the wiring part, so the current flows from the thin film part with high current density to the thin film with low current density and no anisotropy. It is possible to connect large currents to

本発明の方式による超伝導配線を用いた超伝導接続体装
置の製造方法を、第3の実施例として、第3図(a)〜
(C)を参照して詳細に説明する。
A third embodiment of the method for manufacturing a superconducting connected body device using superconducting wiring according to the method of the present invention is shown in FIGS. 3(a) to 3(a).
This will be explained in detail with reference to (C).

第3図(a>のごとく、結晶性のサファイア(α−A1
203)の基体100上に、700−1000°Cの基
体温度で、C軸がほぼ基体の平面に垂直な方向に配列さ
れるようにY−Ba−Cu−0系結晶の厚さ約1000
ナノ・メータのリボン状の超伝導性の薄膜を形成し、通
常のホトエツチング工程とアルゴン等を用いた物理的エ
ツチングにより、リボン状の配線110を形成し、さら
に、全面に、シリコン酸化膜等の絶縁膜120を形成し
た。
As shown in Figure 3 (a), crystalline sapphire (α-A1
On the substrate 100 of 203), at a substrate temperature of 700-1000°C, a Y-Ba-Cu-0-based crystal with a thickness of about 1000° C. is placed such that the C axis is aligned in a direction substantially perpendicular to the plane of the substrate.
A nanometer ribbon-shaped superconducting thin film is formed, a ribbon-shaped wiring 110 is formed by a normal photoetching process and physical etching using argon, etc., and then a silicon oxide film or the like is coated on the entire surface. An insulating film 120 was formed.

第3図(b)のごとく、通常のホトエツチング工程とア
ルゴン等を用いた物理的エツチングにより、深さ約80
0ナノ・メータのほぼ垂直な側面を有する溝部14OA
、140Bを形成し、全面に、多結晶状(基体温度20
0−5006Cで形成)のY−Ba−Cu−○系結晶の
厚さ約1500ナノ・メータ超伝導薄膜160を堆積さ
せ、さらに、通常のホトエツチング工程により、レジス
ト・パターン180A、180B、180Cを形成した
As shown in Fig. 3(b), a depth of about 80 mm is etched by a normal photoetching process and physical etching using argon, etc.
Groove 14OA with nearly vertical sides of 0 nanometers
, 140B is formed on the entire surface, polycrystalline (substrate temperature 20
A superconducting thin film 160 of approximately 1500 nanometers thick is deposited using a Y-Ba-Cu-○ system crystal (formed with 0-5006C), and resist patterns 180A, 180B, and 180C are further formed by a normal photoetching process. did.

第3図(C)のごとく、レジスト・パターン180A、
180B、180Cをマスクとして、超伝導薄膜160
をアルゴン等を用いた物理的エツチングにより、リボン
状の超伝導配線160A。
As shown in FIG. 3(C), resist pattern 180A,
Using 180B and 180C as masks, superconducting thin film 160
A ribbon-shaped superconducting wiring 160A is formed by physical etching using argon or the like.

160B、160Cを形成し、レジスト180A等を除
去した。ここに、超伝導配線160Cは、超伝導配線1
10上を通過する配線である。
160B and 160C were formed, and the resist 180A and the like were removed. Here, superconducting wiring 160C is superconducting wiring 1
This is a wiring that passes over 10.

以上のように、本発明の製造方法によれば、等方的に電
流を流せる配線160Aから流れ込んだ電流は、配線1
10に形成された溝部140Aの側面から一様に流れ込
み、溝部140Bの側面150Bから配線160Bに、
良好に、取り出された。なお、基体100としてはシリ
コン半導体結晶等化のものでもよい。
As described above, according to the manufacturing method of the present invention, the current flowing from the wiring 160A through which the current can flow isotropically is
10, uniformly flows from the side surface of the groove 140A formed in the groove 140B, and flows from the side surface 150B of the groove 140B to the wiring 160B.
It was taken out in good condition. Note that the base body 100 may be made of silicon semiconductor crystal.

発明の効果 本発明による構造と製造方法によれば、特に、電流の異
方性のある超伝導体薄膜どうしを良好に接続しながら配
線、素子等を形成し、集積化された超伝導接続体装置の
提供が可能となった。
Effects of the Invention According to the structure and manufacturing method of the present invention, in particular, superconducting thin films having anisotropy of current can be well connected to each other while wiring, elements, etc. are formed, and an integrated superconducting connection body can be produced. We are now able to provide the equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置の第1の実施例を示す断面図
、第2図は本発明による装置の第2の実施例を示す要部
平面図、第3図(a)〜(c)は本発明による製造方法
の実施例を示す一連の工程断面図である。 100・・・基体、110.200・・・異方性超伝導
膜、120、220・・絶縁膜、140・・・溝部、1
50・・・溝部の側面、160・・・等方性超伝導膜、
180・・・レジスト。
FIG. 1 is a sectional view showing a first embodiment of the device according to the present invention, FIG. 2 is a plan view of main parts showing the second embodiment of the device according to the present invention, and FIGS. 3(a) to (c) 1 is a series of process cross-sectional views showing an example of the manufacturing method according to the present invention. 100...Base, 110.200...Anisotropic superconducting film, 120, 220...Insulating film, 140...Groove, 1
50... Side surface of the groove, 160... Isotropic superconducting film,
180...Resist.

Claims (7)

【特許請求の範囲】[Claims] (1)基体上に形成され、基体に平行な平面方向に流れ
やすい導電性の異方性がみられる第1のリボン状薄膜と
、前記第1のリボン状薄膜の表面から形成された溝部と
、前記溝部に接続して形成された、導電性の異方性がみ
られない等方性の第2のリボン状薄膜とから構成され、
第1のリボン状薄膜の溝部の側面から第2のリボン状薄
膜へ電流を取り出すことを特徴とする超伝導接続体装置
(1) A first ribbon-shaped thin film formed on a substrate and exhibiting conductive anisotropy that tends to flow in a plane parallel to the substrate; and a groove formed from the surface of the first ribbon-shaped thin film. , an isotropic second ribbon-shaped thin film with no conductive anisotropy formed in connection with the groove,
A superconducting connector device characterized in that a current is taken out from a side surface of a groove of a first ribbon-like thin film to a second ribbon-like thin film.
(2)第1のリボン状薄膜の溝部の幅が前記第1のリボ
ン状薄膜の他の部分の幅に比べて大きくなっていること
を特徴とする特許請求の範囲第1項記載の超伝導接続体
装置。
(2) The superconductor according to claim 1, wherein the width of the groove of the first ribbon-like thin film is larger than the width of other parts of the first ribbon-like thin film. Connection body device.
(3)溝部の電流の流れに垂直な側面が第1のリボン状
薄膜を、少なくとも、横断していることを特徴とする特
許請求の範囲第1項または第2項いずれか記載の超伝導
接続体装置。
(3) A superconducting connection according to claim 1 or 2, characterized in that a side surface of the groove section perpendicular to the current flow crosses at least the first ribbon-shaped thin film. body equipment.
(4)溝部の底面が第1のリボン状薄膜を、少なくとも
、突き抜けていることを特徴とする特許請求の範囲第1
項または第2項いずれか記載の超伝導接続体装置。
(4) Claim 1, characterized in that the bottom surface of the groove penetrates at least the first ribbon-shaped thin film.
2. A superconducting connector device according to any one of Item 2 and Item 2.
(5)溝部の側面と第1のリボン状薄膜の端部との間に
残された薄膜の厚み、および溝部の底面と第1のリボン
状薄膜の底部との間に残された薄膜の厚みが、少なくと
も、基体に垂直な方向のコヒーレンス長と同程度以下で
あることをを特徴とする特許請求の範囲第3項または第
4項記載の超伝導接続体装置。
(5) Thickness of the thin film left between the side surface of the groove and the end of the first ribbon-like thin film, and thickness of the thin film left between the bottom of the groove and the bottom of the first ribbon-like thin film. The superconducting connector device according to claim 3 or 4, wherein the coherence length in the direction perpendicular to the substrate is at least equal to or less than the coherence length.
(6)基体上に、基体に対して平行な平面方向に流れや
すい導電性の異方性がみられる第1のリボン状薄膜を形
成する工程と、前記第1のリボン状薄膜の表面から溝部
を形成する工程と、前記溝部に接続した、導電性の異方
性がみられない等方性の第2のリボン状薄膜を形成する
工程とからなり、第1のリボン状薄膜の溝部の側面から
第2のリボン状薄膜へ電流を取り出すことを特徴とする
超伝導接続体装置の製造方法。
(6) forming a first ribbon-shaped thin film on the substrate, which exhibits conductive anisotropy that easily flows in a plane direction parallel to the substrate, and forming grooves from the surface of the first ribbon-shaped thin film; and a step of forming an isotropic second ribbon-shaped thin film with no conductive anisotropy connected to the groove, the side surface of the groove of the first ribbon-shaped thin film being connected to the groove. A method for manufacturing a superconducting connector device, characterized in that a current is extracted from a second ribbon-shaped thin film.
(7)リボン状薄膜が超伝導膜であることを特徴とする
特許請求の範囲第6項記載の超伝導接続体装置の製造方
法。
(7) The method for manufacturing a superconducting connector device according to claim 6, wherein the ribbon-shaped thin film is a superconducting film.
JP62302247A 1987-11-30 1987-11-30 Superconductive connecting body device and manufacture thereof Pending JPH01143341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62302247A JPH01143341A (en) 1987-11-30 1987-11-30 Superconductive connecting body device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62302247A JPH01143341A (en) 1987-11-30 1987-11-30 Superconductive connecting body device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01143341A true JPH01143341A (en) 1989-06-05

Family

ID=17906720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62302247A Pending JPH01143341A (en) 1987-11-30 1987-11-30 Superconductive connecting body device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01143341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744638A (en) * 1992-01-11 1998-04-28 Riedel-De Haen Aktiengesellschaft Process for the preparation of haloanthranilic acids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744638A (en) * 1992-01-11 1998-04-28 Riedel-De Haen Aktiengesellschaft Process for the preparation of haloanthranilic acids

Similar Documents

Publication Publication Date Title
EP0673073B1 (en) Method of manufacturing a superconducting device
JP3589656B2 (en) High Tc microbridge superconductor device using SNS junction between stepped edges
JPH08501416A (en) Improved barrier layer for oxide superconductor devices and circuits
US5439875A (en) Process for preparing Josephson junction device having weak link of artificial grain boundary
US5250506A (en) Superconductive switching element with semiconductor channel
US5422337A (en) Step-edged grain boundary Josephson junction with 5 to 30 degrees inclined angle
US5624885A (en) Josephson junction device of oxide superconductor and process for preparing the same
US5962866A (en) Microbridge superconductor device utilizing stepped junctions
JPH01143341A (en) Superconductive connecting body device and manufacture thereof
US5612290A (en) Josephson junction device formed of oxide superconductor
EP0524862B1 (en) Josephson junction device of oxide superconductor and process for preparing the same
JPH01780A (en) Connection body device and its manufacturing method
KR940003745B1 (en) Active device having an oxide super conductor and a fabrication process thereof
US5247189A (en) Superconducting device composed of oxide superconductor material
JPH01143342A (en) Superconductive connecting body device and manufacture thereof
JP2679610B2 (en) Superconducting element manufacturing method
JPH02194667A (en) Superconducting transistor and manufacture thereof
JP3379533B2 (en) Method for manufacturing superconducting device
JP2768276B2 (en) Oxide superconducting junction element
JP3950965B2 (en) Superconducting bulk manufacturing method and weakly coupled Josephson device manufacturing method using the superconducting bulk
JPH07106645A (en) Superconducting quantum interference element
JPH04284632A (en) Formation of superconductor line
Li et al. An improved multi-layer fabrication process for YBa/sub 2/Cu/sub 3/O/sub 7-x/-based circuits
JPH04318983A (en) Josephson junction element and manufacture thereof
Beasley Materials science of Josephson junctions