JPH01142505A - Bidirectional optical tuner - Google Patents

Bidirectional optical tuner

Info

Publication number
JPH01142505A
JPH01142505A JP30075187A JP30075187A JPH01142505A JP H01142505 A JPH01142505 A JP H01142505A JP 30075187 A JP30075187 A JP 30075187A JP 30075187 A JP30075187 A JP 30075187A JP H01142505 A JPH01142505 A JP H01142505A
Authority
JP
Japan
Prior art keywords
light
optical fiber
diffraction grating
output optical
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30075187A
Other languages
Japanese (ja)
Inventor
Kiyokazu Hagiwara
萩原 清和
Hiroyuki Asakura
宏之 朝倉
Masanori Iida
正憲 飯田
Minoru Nishioka
稔 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30075187A priority Critical patent/JPH01142505A/en
Publication of JPH01142505A publication Critical patent/JPH01142505A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29308Diffractive element having focusing properties, e.g. curved gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29313Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response
    • G02B6/29314Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response by moving or modifying the diffractive element, e.g. deforming
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To obtain a wavelength selection effect by providing a rotating mechanism to a holographic diffraction grating. CONSTITUTION:Five different signals from an input/output optical fiber 3 are entrained in the rays of light consisting of five different wavelengths and these rays of the light are projected diagonally via a lens 2 on the holographic diffraction grating 1. These rays of the light are reflected at the angle varying with each wavelength by receiving wavelength dispersion and are condensed by the lens 2. Only one wavelength N among the rays of the light which are different in the wavelengths is focused onto the end face of an output optical fiber 4 and the rays of the light of the other wavelengths are not projected on the output optical fiber 4. The holographic diffraction grating 1 is rotated by using a rotating mechanism 5 to project the light of the required wavelengths on the output optical fiber 4 in the case of receiving the light of the other wavelengths. Only the light of the required wavelength among the plural wavelengths is thereby received by a piece of the output optical fiber 4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光フアイバ通信において、光波長多重伝送の
受信側に用いる双方向光チューナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a bidirectional optical tuner used on the receiving side of optical wavelength division multiplexing transmission in optical fiber communications.

従来の技術 近年、光波長多重伝送技術は、光フアイバ伝送において
、一本の光ファイバを有効に活用して、複数の信号を異
なった波長にのせて送り、信号の伝送容量の増大を図る
手段として注目され、利用されている。
Conventional technology In recent years, optical wavelength division multiplexing transmission technology has become a means of increasing signal transmission capacity by effectively utilizing a single optical fiber to transmit multiple signals on different wavelengths. It is attracting attention and being used as such.

従来、上述の光波長多重伝送においては、受信側では、
光を波長分割するものとして光分波器が用いられていた
Conventionally, in the above-mentioned optical wavelength division multiplexing transmission, on the receiving side,
Optical demultiplexers were used to split light into wavelengths.

以下、図面を参照しながら、この光分波器の一例につい
て説明する。
An example of this optical demultiplexer will be described below with reference to the drawings.

第2図は従来の光分波器を示すものである。第2図にお
いて、21は平面直線回折格子、22はレンズ、23は
入力光ファイバ、24,25゜26.27.28は出力
光ファイバ、29,30゜31.32.33は光−電気
変換器を示し、前記レンズ22は前記平面直線回折格子
21と、前記入力光ファイバ23および前記出力光ファ
イバ24.25.26,27.28の間に配置されてい
る。
FIG. 2 shows a conventional optical demultiplexer. In Fig. 2, 21 is a planar linear diffraction grating, 22 is a lens, 23 is an input optical fiber, 24, 25° 26, 27, 28 is an output optical fiber, 29, 30° 31, 32, 33 is an optical-to-electrical converter. The lens 22 is arranged between the planar linear diffraction grating 21, the input optical fiber 23 and the output optical fibers 24, 25, 26, 27, 28.

以上のように構成された光分波器について以下その動作
について説明する。
The operation of the optical demultiplexer configured as described above will be explained below.

前記入力光ファイバ23から、5つの異なる波長からな
る光を、前記レンズ22を介して平面直線回折格子に入
射することによって、前記光は波長分散を受け、波長ご
とに異なる角度で反射されるとともに前記レンズで収束
され、各々波長の異なる光は出力光ファイバ24.25
.26.27゜28で受光され光−電気変換器29,3
0.31゜32.33でそれぞれ電気信号に変換される
By inputting light consisting of five different wavelengths from the input optical fiber 23 to the plane linear diffraction grating through the lens 22, the light undergoes wavelength dispersion and is reflected at different angles for each wavelength. The lights converged by the lens and having different wavelengths are sent to output optical fibers 24 and 25.
.. The light is received at 26.27°28 and the light-to-electrical converter 29,3
They are converted into electrical signals at angles of 0.31° and 32.33°, respectively.

(たとえば、r1978年度電子通信学会技術研究報告
、C378−166,37ページ〜42ベージ」) 発明が解決しようとする問題点 しかしながら上記のような構成では、−度に複数の広帯
域の信号を受信するのには適しているが、何チャンネル
ものテレビ信号を一本の光ファイバで伝送する放送型の
光波長多重伝送のように、−度には一つの信号すなわち
一つの波長しか必要としない場合には、光ファイバおよ
び光−電気変換器は一組あればよく、光−電気変換器の
コストが高いことから、新しい機能の商品がのぞまれて
いた。
(For example, 1978 Institute of Electronics and Communication Engineers Technical Research Report, C378-166, pages 37 to 42) Problems to be Solved by the Invention However, with the above configuration, multiple broadband signals are received at a time. However, it is suitable for cases where only one signal, or one wavelength, is required at a time, such as broadcast-type optical wavelength division multiplexing, which transmits many channels of television signals over a single optical fiber. Since only one set of optical fiber and optical-to-electrical converter is required, and the cost of the optical-to-electrical converter is high, products with new functions have been desired.

また、このような機能に加木で、データなどの信号を送
る双方向通信が可能な新しい部品の開発が望まれていた
Additionally, there was a desire to develop a new component capable of two-way communication to send data and other signals.

本発明は上記問題点を考慮し、放送型の光波長多重伝送
に最も適した光受信側の装置となる双方向通信が可能な
双方向光チューナを提供するものである。
The present invention takes the above-mentioned problems into consideration and provides a bidirectional optical tuner capable of bidirectional communication, which is an optical receiving side device most suitable for broadcast type optical wavelength division multiplexing transmission.

問題点を解決するための手段 上記問題点を解決するために本発明の双方向光チューナ
は、一本の入・出力光ファイバと、−木の出力光ファイ
バと、前記入・出力光ファイバと出力光ファイバの前方
空間に配置されたレンズと、前記レンズの前方空間に、
前記入・出力光ファイバの光軸に対して斜に配置された
回折格子を有し、前記レンズと回折格子の間にハーフミ
ラ−を付設し、前記ハーフミラ−の法線を軸として前記
光軸にたいして対称な方向にレンズおよび光源を配置し
、前記回折格子は回転機構を備えたものである。
Means for Solving the Problems In order to solve the above problems, the bidirectional optical tuner of the present invention includes one input/output optical fiber, a wooden output optical fiber, and the input/output optical fibers. a lens disposed in the space in front of the output optical fiber; and a space in front of the lens,
It has a diffraction grating arranged obliquely with respect to the optical axis of the input/output optical fiber, a half mirror is attached between the lens and the diffraction grating, and the normal line of the half mirror is the axis with respect to the optical axis. Lenses and light sources are arranged in symmetrical directions, and the diffraction grating is equipped with a rotation mechanism.

作用 本発明は上記した構成によって、ホログラフインク回折
格子に回転機構を持たせることによって、複数の波長の
中から必要とする波長の光だけを、一本の出力光ファイ
バで受光することができ、かつ、ハーフミラ−によって
上りの信号をも送ることのできる、簡単な構造を持った
双方向光チューナを作成することができる。
Effect of the present invention With the above-described configuration, by providing the holographic ink diffraction grating with a rotation mechanism, only the light of the required wavelength from among a plurality of wavelengths can be received by a single output optical fiber. Moreover, it is possible to create a bidirectional optical tuner with a simple structure that can also send up signals using a half mirror.

実施例 以下本発明の一実施例の双方向光チューナについて図面
を参照しながら説明する。
EMBODIMENT A bidirectional optical tuner according to an embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明における双方向光チューナを示すもので
ある。第1図においてlはホログラフィック回折格子を
示す。2はレンズを示す。
FIG. 1 shows a bidirectional optical tuner according to the present invention. In FIG. 1, l indicates a holographic diffraction grating. 2 indicates a lens.

前述の構成において、前記入・出力光ファイバ3から5
つの異なる信号を、5つの異なる波長からなる光にのせ
て、前記レンズ2を介してホログラフィック回折格子I
に斜に入射することによって、前記5つの異なる波長か
らなる光は波長分散を受けて波長ごとに異なる角度で反
射されるとともに、レンズ2で集光され、各々波長の異
なる光の中の一つの波長Nの光だけが出力光ファイバ4
の端面上で焦点を結び、他の波長の光は出力光ファイバ
には入射されない。
In the above configuration, the input/output optical fibers 3 to 5
The holographic diffraction grating I transmits five different signals onto light consisting of five different wavelengths through the lens 2.
By obliquely entering the light, the light consisting of the five different wavelengths undergoes wavelength dispersion and is reflected at different angles for each wavelength, and is condensed by the lens 2. Only light with wavelength N is output from optical fiber 4
is focused on the end face of the optical fiber, and light of other wavelengths is not incident on the output optical fiber.

したがって、他の波長の光を受光する時は、回転機構5
を用いて前記ホログラフインク回折格子を回転させ、所
用の波長の光を出力光ファイバに入射すればよい、6は
光−電気変換器を示し、出力光ファイバ4に入射された
光を電気信号に変換する。
Therefore, when receiving light of other wavelengths, the rotating mechanism 5
The holographic ink diffraction grating is rotated using Convert.

一方、上りの信号を送るときは、光B9に電気信号を載
せて、レンズ8を介してハーフミラー7で反射させ、前
記レンズ2を介して入・出力光ファイバ3に集光する。
On the other hand, when transmitting an upward signal, an electric signal is added to the light B9, reflected by the half mirror 7 through the lens 8, and condensed into the input/output optical fiber 3 through the lens 2.

前記ハーフミラ−7は、入・出力光ファイバからの波長
の光に対しては透過し、光源からの波長の光に対しては
反射を行うような光学膜が付設されている。また、前記
ハーフミラ−7は固定されており、前記ホログラフイン
ク回折格子1の回転の如何に係わらず信号を送ることが
できる。
The half mirror 7 is provided with an optical film that transmits light of the wavelength from the input/output optical fiber and reflects light of the wavelength from the light source. Furthermore, the half mirror 7 is fixed and can send signals regardless of whether the holographic ink diffraction grating 1 rotates.

前記ホログラフィック回折格子の設定角度は、1次回折
光が入射光軸上に戻るいわゆるリトロ−角では、人・出
力光ファイバおよび出力光ファイバは接して配置するこ
とができ、小型化の点で有利である。
The setting angle of the holographic diffraction grating is the so-called Littrow angle, where the first-order diffracted light returns to the incident optical axis, so that the output optical fiber and the output optical fiber can be placed in contact with each other, which is advantageous in terms of miniaturization. It is.

ホログラフィック回折格子は、従来の機械刻線法の回折
格子に比べて容易に作成することができる。
Holographic diffraction gratings are easier to create than traditional mechanically scored diffraction gratings.

以上のように本実施例によればホログラフィ。As described above, according to this embodiment, holography is achieved.

り回折格子に、回転機構を付けることによって、従来の
光分波器に波長選択効果を持たせるにとができ、また、
ハーフミラ−によって双方向の通信をも可能にする小型
で高性能な光波長多重伝送の新しい機能の部品を提供す
るものである。
By attaching a rotation mechanism to the diffraction grating, it is possible to add a wavelength selection effect to a conventional optical demultiplexer.
The present invention provides a small, high-performance component with a new function for optical wavelength division multiplexing transmission, which enables bidirectional communication using a half mirror.

なお、本実施例では反射型の回折格子について述べたが
、i3過型の回折格子やミラー系を含むものについても
同様の効果が得られる。
In this embodiment, a reflection type diffraction grating has been described, but similar effects can be obtained with an i3 type diffraction grating or one including a mirror system.

発明の効果 以上のように本発明は、ホログラフィック回折格子に回
転機構を設けることによって波長選択効果を持たせるこ
とができ、また、ハーフミラ−によって双方向の通信を
も可能にする、非常に単純な形状を有する光学部材で双
方向の光チューナを構成することができ、放送型光波長
多重伝送に適した新しい光部品を作成することができる
Effects of the Invention As described above, the present invention is a very simple system that can provide a wavelength selection effect by providing a rotation mechanism to a holographic diffraction grating, and also enables two-way communication using a half mirror. A bidirectional optical tuner can be constructed using an optical member having a shape, and a new optical component suitable for broadcast-type optical wavelength division multiplexing transmission can be created.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における双方向光チューナの平
面図、第2図は従来の光分波器の斜視図である。 1・・・・・・ホログラフインク回折格子、2・・・・
・・レンズ、3・・・・・・人・出力光ファイバ、4・
・・・・・出力光ファイバ、5・・・・・・回転機構、
6・・・・・・光−電気変換器、7・・・・・・ハーフ
ミラ−18・・・・・・レンズ、9・・・・・・光源。 代理人の氏名 弁理士 中尾敏男 はか1名1− ホロ
グラフィック回折格子 7、−・ハーフミラ− 8−・−レンス デー光 源 第1図
FIG. 1 is a plan view of a bidirectional optical tuner according to an embodiment of the present invention, and FIG. 2 is a perspective view of a conventional optical demultiplexer. 1... Holographic ink diffraction grating, 2...
・・Lens, 3・・・・Person・Output optical fiber, 4・・
...output optical fiber, 5...rotation mechanism,
6... Light-electric converter, 7... Half mirror 18... Lens, 9... Light source. Name of agent Patent attorney Toshio Nakao 1 person 1- Holographic diffraction grating 7, half mirror 8--Lensday light source Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)一本の入・出力光ファイバと、一本の出力光ファ
イバと、前記入・出力光ファイバと出力光ファイバの前
方空間に配置されたレンズと、前記レンズの前方空間に
、前記入・出力光ファイバの光軸に対して斜に配置され
た回折格子とを有し、前記レンズと回折格子の間にハー
フミラーを付設し、前記ハーフミラーの法線を軸として
前記光軸にたいして対称な方向にレンズおよび光源を配
置し、前記回折格子は回転機構を具備して成ることを特
徴とする双方向光チューナ。
(1) One input/output optical fiber, one output optical fiber, a lens disposed in a space in front of the input/output optical fiber and the output optical fiber, and a lens placed in the space in front of the lens.・It has a diffraction grating arranged obliquely to the optical axis of the output optical fiber, a half mirror is attached between the lens and the diffraction grating, and it is symmetrical about the optical axis with the normal line of the half mirror as the axis. 1. A bidirectional optical tuner, characterized in that a lens and a light source are arranged in the same direction, and the diffraction grating is equipped with a rotation mechanism.
(2)ハーフミラーは入・出力光ファイバからの波長の
光に対しては透過し、光源からの波長の光に対しては反
射を行うような光学膜を具備して成ることを特徴とする
特許請求の範囲第(1)項記載の双方向光チューナ。
(2) The half mirror is characterized by being equipped with an optical film that transmits light at the wavelength from the input/output optical fiber and reflects light at the wavelength from the light source. A bidirectional optical tuner according to claim (1).
(3)回折格子にホログラフィック回折格子を用いたこ
とを特徴とする特許請求の範囲第(1)項記載の双方向
光チューナ。
(3) The bidirectional optical tuner according to claim (1), characterized in that a holographic diffraction grating is used as the diffraction grating.
JP30075187A 1987-11-27 1987-11-27 Bidirectional optical tuner Pending JPH01142505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30075187A JPH01142505A (en) 1987-11-27 1987-11-27 Bidirectional optical tuner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30075187A JPH01142505A (en) 1987-11-27 1987-11-27 Bidirectional optical tuner

Publications (1)

Publication Number Publication Date
JPH01142505A true JPH01142505A (en) 1989-06-05

Family

ID=17888656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30075187A Pending JPH01142505A (en) 1987-11-27 1987-11-27 Bidirectional optical tuner

Country Status (1)

Country Link
JP (1) JPH01142505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011394A1 (en) * 1999-08-11 2001-02-15 Lightconnect, Inc. Polarization independent grating modulator
EP1203247A1 (en) * 1999-08-11 2002-05-08 Luckoff Display Corporation Direction of optical signals by a movable diffractive optical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194011A (en) * 1982-05-10 1983-11-11 Nippon Telegr & Teleph Corp <Ntt> Optical demultiplexer of two-way transmission
JPS59159124A (en) * 1983-03-01 1984-09-08 Nippon Telegr & Teleph Corp <Ntt> Light demultiplexing coupler for two-way transmission
JPS62115403A (en) * 1985-11-15 1987-05-27 Matsushita Electric Ind Co Ltd Optical tuner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194011A (en) * 1982-05-10 1983-11-11 Nippon Telegr & Teleph Corp <Ntt> Optical demultiplexer of two-way transmission
JPS59159124A (en) * 1983-03-01 1984-09-08 Nippon Telegr & Teleph Corp <Ntt> Light demultiplexing coupler for two-way transmission
JPS62115403A (en) * 1985-11-15 1987-05-27 Matsushita Electric Ind Co Ltd Optical tuner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011394A1 (en) * 1999-08-11 2001-02-15 Lightconnect, Inc. Polarization independent grating modulator
EP1203247A1 (en) * 1999-08-11 2002-05-08 Luckoff Display Corporation Direction of optical signals by a movable diffractive optical element
US6501600B1 (en) 1999-08-11 2002-12-31 Lightconnect, Inc. Polarization independent grating modulator
EP1203247A4 (en) * 1999-08-11 2003-07-09 Luckoff Display Corp Direction of optical signals by a movable diffractive optical element

Similar Documents

Publication Publication Date Title
CN213659025U (en) Light receiving assembly and optical module
JP3909969B2 (en) Optical demultiplexer
CA2232666A1 (en) Multiplexors with a flat top spectral channel shape
JPS62115403A (en) Optical tuner
JPH01142505A (en) Bidirectional optical tuner
US6829096B1 (en) Bi-directional wavelength division multiplexing/demultiplexing devices
JPH01129212A (en) Bidirectional optical tuner
JPH01129211A (en) Bidirectional optical tuner
JPH01128006A (en) Optical tuner
JPH01128010A (en) Bidirectional optical tuner
JPH01128011A (en) Optical tuner
JPS62284328A (en) Optical tuner
JPH01128009A (en) Optical tuner
JPH01142507A (en) Optical tuner
JPH01129210A (en) Optical tuner
JPH01130108A (en) Optical tuner
JPH01128007A (en) Optical tuner
JPH01128008A (en) Optical tuner
JPH01202705A (en) Optical tuner
JPH0810285B2 (en) Optical wavelength multiplexer / demultiplexer
JP2931905B2 (en) Bidirectional light receiving / emitting module
JPH01129213A (en) Optical tuner
JPH01142506A (en) Optical tuner
JPH01129209A (en) Optical tuner
JP2003066271A (en) Optical wavelength demultiplexing element