JPH01129212A - Bidirectional optical tuner - Google Patents

Bidirectional optical tuner

Info

Publication number
JPH01129212A
JPH01129212A JP28782487A JP28782487A JPH01129212A JP H01129212 A JPH01129212 A JP H01129212A JP 28782487 A JP28782487 A JP 28782487A JP 28782487 A JP28782487 A JP 28782487A JP H01129212 A JPH01129212 A JP H01129212A
Authority
JP
Japan
Prior art keywords
lens
diffraction grating
optical
optical fiber
half mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28782487A
Other languages
Japanese (ja)
Inventor
Kiyokazu Hagiwara
萩原 清和
Hiroyuki Asakura
宏之 朝倉
Masanori Iida
正憲 飯田
Minoru Nishioka
稔 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28782487A priority Critical patent/JPH01129212A/en
Publication of JPH01129212A publication Critical patent/JPH01129212A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29308Diffractive element having focusing properties, e.g. curved gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29313Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response
    • G02B6/29314Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response by moving or modifying the diffractive element, e.g. deforming
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To enable bidirectional communication by providing a half mirror and a rotating mechanism to a holographic diffraction grating and projecting signal light directly to a photodetecting element, then directly executing opto electric conversion. CONSTITUTION:A lens 2 disposed in the front space of an input/output optical fiber 3 and a piece of the photodetecting element 4, and the diffraction grating 1 disposed diagonally with the optical axis of the input/output optical fiber 3 in the front space of the lens 2 are provided. The half mirror 7 is provided between the lens 2 and the diffraction grating 1. A lens 8 and a light source 9 are disposed in the direction symmetrical with the optical axis with the normal of the half mirror 7 as an axis. The rotating mechanism 5 is provided to the diffraction grating 1. Only the light of a required wavelength from plural wavelength is, therefore, received in a piece of the photodetecting element 4 by providing the rotating mechanism 5 to the holographic diffraction grating 1. In addition, an up signal is condensed and transmitted to the input fiber by the half mirror. The bidirectional tuner having the simple structure is thereby formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光フアイバ通信において、光波長多重伝送の
受信側に用いる双方向光チューナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a bidirectional optical tuner used on the receiving side of optical wavelength division multiplexing transmission in optical fiber communications.

従来の技術 近年、光波長多重伝送技術は、光フアイバ伝送に・おい
て、一本の光ファイバを有効に活用して、複数の信号を
異なった波長にのせて送り、信号の伝送容量の増大を図
る手段として注目され、利用されている。
Conventional technology In recent years, optical wavelength division multiplexing transmission technology has increased the transmission capacity of signals by effectively utilizing a single optical fiber to transmit multiple signals on different wavelengths. It is attracting attention and being used as a means to achieve this goal.

従来、上述の光波長多重伝送においては、受信側では、
光を波長分割するものとして光分波器が用いられていた
Conventionally, in the above-mentioned optical wavelength division multiplexing transmission, on the receiving side,
Optical demultiplexers were used to split light into wavelengths.

以下、図面を参照しながら、この光分波器の一例につい
て説明する。
An example of this optical demultiplexer will be described below with reference to the drawings.

第2図は従来の光分波器を示すものである。第2図にお
いて、21は平面直線回折格子、22はレンズ、23は
入力光ファイバ、24,25゜26.27.28は出力
光ファイバ、29.30゜31,32.33は光−電気
変換器を示し、前記レンズ22は前記平面直線回折格子
21と、前記入力光ファイバ23および前記出力光ファ
イバ24.25,26,27.28の間に配置されてい
る。
FIG. 2 shows a conventional optical demultiplexer. In Fig. 2, 21 is a planar linear diffraction grating, 22 is a lens, 23 is an input optical fiber, 24, 25° 26, 27, 28 is an output optical fiber, 29.30° 31, 32.33 is an optical-to-electrical converter. The lens 22 is arranged between the planar linear diffraction grating 21, the input optical fiber 23 and the output optical fiber 24.25, 26, 27.28.

以上のように構成された光分波器について以下その動作
について説明する。
The operation of the optical demultiplexer configured as described above will be explained below.

前記入力光ファイバ23から、5つの異なる波長からな
る光を、前記レンズ22を介して平面直線回折格子に入
射することによって、前記光は波長分散を受け、波長ご
とに異なる角度で反射されるとともに前記レンズで収束
され、各々波長の異なる光は出力光ファイバ24,25
,26,27゜28で受光され光−電気変換器29,3
0,31゜32.33でそれぞれ電気信号に変換される
By inputting light consisting of five different wavelengths from the input optical fiber 23 to the plane linear diffraction grating through the lens 22, the light undergoes wavelength dispersion and is reflected at different angles for each wavelength. The lights converged by the lens and having different wavelengths are output to optical fibers 24 and 25.
, 26, 27° 28 and the optical-to-electrical converter 29, 3
0.31 degrees and 32.33 degrees, respectively, are converted into electrical signals.

(たとえば、r1978年度電子通信学会技術研究報告
・C378−166,37ページ〜42ページ」) 発明が解決しようとする問題点 しかしながら上記のような構成では、−度に複数の広帯
域の信号を受信するのには適しているが、何チャンネル
ものテレビ信号を一本の光ファイバで伝送する放送型の
光波長多重伝送のように、−度には一つの信号すなわち
一つの波長しか必要としない場合には、光ファイバおよ
び光−電気変換器は一組あればよく、光−電気変換器の
コストが高いことから、新しい機能の部品がのぞまれて
いた。
(For example, 1978 IEICE Technical Research Report C378-166, pages 37-42) Problems to be Solved by the Invention However, with the above configuration, multiple broadband signals are received at a time. However, it is suitable for cases where only one signal, or one wavelength, is required at a time, such as broadcast-type optical wavelength division multiplexing, which transmits many channels of television signals over a single optical fiber. For this, only one set of optical fiber and optical-to-electrical converter is required, and since the cost of the optical-to-electrical converter is high, parts with new functions have been desired.

また、この様な機能に加えて、データなどの信号を送る
双方向通信が可能な新しい部品の開発が望まれていた。
In addition to these functions, there was also a desire to develop new parts that could perform two-way communication to send signals such as data.

本発明は上記問題点を考慮し、放送型の光波長多重伝送
に最も適した光受信側の装置となる双方向通信が可能な
双方向光チェーナを提供するものである。
The present invention takes the above-mentioned problems into consideration and provides a bidirectional optical chainer capable of bidirectional communication, which is an optical receiving side device most suitable for broadcast type optical wavelength division multiplexing transmission.

問題点を解決するための手段 上記問題点を解決するために本発明の双方向光チューナ
は、一本の入・出力光ファイバと、一個の受光素子と、
前記入・出力光ファイバと一個の受光素子の前方空間に
配置されたレンズと、前記レンズの前方空間に、前記入
・出力光ファイバの光軸に対して斜に配置された回折格
子を存し、前記レンズと回折格子の間にハーフミラ−を
付設し、前記ハーフミラ−の法線を軸として前記光軸に
たいして対称な方向にレンズおよび光源を配置し、前記
回折格子は回転機構を備えたものである。
Means for Solving the Problems In order to solve the above problems, the bidirectional optical tuner of the present invention includes one input/output optical fiber, one light receiving element,
A lens arranged in a space in front of the input/output optical fiber and one light receiving element, and a diffraction grating arranged obliquely with respect to the optical axis of the input/output optical fiber in the space in front of the lens. , a half mirror is attached between the lens and the diffraction grating, the lens and the light source are arranged in a direction symmetrical to the optical axis with the normal line of the half mirror as an axis, and the diffraction grating is provided with a rotation mechanism. be.

作用 本発明は上記した構成によって、ホログラフィック、回
折格子に回転機構を持たせることによって、複数の波長
の中から必要とする波長の光だけを、一個の受光素子で
受光することができ、がっ、ハーフミラ−によって上り
の信号を入力ファイバに集光して送ることのできる、間
車な構造を持った双方向光チューナを作成することがで
きる。
Effect of the present invention With the above-described configuration, by providing the holographic or diffraction grating with a rotation mechanism, only the light of the required wavelength from among a plurality of wavelengths can be received by a single light receiving element. It is possible to create a bidirectional optical tuner with a sparse structure that can condense the upstream signal to the input fiber using a half mirror and send it to the input fiber.

実施例 以下本発明の一実施例の双方向光チューナについて図面
を参照しながら説明する。
EMBODIMENT A bidirectional optical tuner according to an embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明における双方向光チューナを示すもので
ある。第1図においてlはホログラフィック回折格子を
示す。2はレンズを示す。
FIG. 1 shows a bidirectional optical tuner according to the present invention. In FIG. 1, l indicates a holographic diffraction grating. 2 indicates a lens.

前述の構成において、入・出力光ファイバ3がら5つの
異なる信号を、5つの異なる波長からな、る光にのせて
、前記レンズ2を介してホログラフィック回折格子lに
斜に入射することによって、前記5つの異なる波長から
なる光は波長分散を受けて波長ごとに異なる角度で反射
されるとともに、レンズ2で集光され、各々波長の異な
る光の中の一つの波長Nの光だけが受光素子4の端面上
で焦点を結び、他の波長の光は受光素子4には入射され
ない。
In the above-mentioned configuration, by transmitting five different signals from the input/output optical fiber 3 onto light consisting of five different wavelengths and obliquely entering the holographic diffraction grating l via the lens 2, The light consisting of the five different wavelengths undergoes wavelength dispersion and is reflected at different angles for each wavelength, and is condensed by the lens 2, and only the light of one wavelength N among the lights of different wavelengths is transmitted to the light receiving element. The light of other wavelengths is not incident on the light receiving element 4.

従って、他の波長の光を受光する時は、回転機構5を用
いて前記ホログラフインク回折格子を回転させ、所用の
波長の光を受光素子に入射し電気信号に変換する。
Therefore, when receiving light of another wavelength, the rotation mechanism 5 is used to rotate the holographic ink diffraction grating, and the light of the desired wavelength enters the light receiving element and is converted into an electrical signal.

このとき、受光素子の形状は矩形にすることによって、
受光する光の波長通過特性は、平坦な特性にすることが
できる。
At this time, by making the shape of the light receiving element rectangular,
The wavelength passage characteristics of the received light can be made flat.

一方、上りの信号を送るときは、光源8に電気信号を載
せて、レンズ7を介してハーフミラー6で反射させ、前
記レンズ2を介して入・出力光ファイバ3に集光する。
On the other hand, when sending an upward signal, an electric signal is placed on the light source 8, reflected by the half mirror 6 through the lens 7, and condensed into the input/output optical fiber 3 through the lens 2.

前記ハーフミラ−6は、入・出力光ファイバからの波長
の光に対しては透過し、光源からの波長の光に対しては
反射を行うような光学膜が付設されている。また、前記
ハーフミラ−7は固定されており、前記ホログラフイン
ク回折格子1の回転の如何に係わらず信号を送ることが
できる。
The half mirror 6 is provided with an optical film that transmits light of the wavelength from the input/output optical fiber and reflects light of the wavelength from the light source. Furthermore, the half mirror 7 is fixed and can send signals regardless of whether the holographic ink diffraction grating 1 rotates.

前記ホログラフィック回折格子の設定角度は、1次回折
光が入射光軸上に戻るいわゆるリトロ−角では、入力光
ファイバおよび出力光ファイバは接して配置することが
でき、小型化の点で有利である。
The setting angle of the holographic diffraction grating is the so-called Littrow angle, where the first-order diffracted light returns to the incident optical axis, so that the input optical fiber and the output optical fiber can be disposed in contact with each other, which is advantageous in terms of miniaturization. .

ホログラフインク回折格子は、従来の機械刻線法の回折
格子に比べて容易に作成することができる。
Holographic ink diffraction gratings are easier to create than traditional mechanically scored diffraction gratings.

以上のように本実施例によればホログラフィック回折格
子に、回転機構を付けることによって、従来の光分波器
に波長選択効果を持たせることができ、また、ハーフミ
ラ−によって双方向の通信をも可能にする小型で高性能
な光波長多重伝送の新しい機能の部品を提供するもので
ある。
As described above, according to this embodiment, by attaching a rotation mechanism to the holographic diffraction grating, a conventional optical demultiplexer can have a wavelength selection effect, and the half mirror allows bidirectional communication. The aim is to provide components with new functions for compact, high-performance optical wavelength division multiplexing transmission.

なお、本実施例では反射型の回折格子について述べたが
、透過型の回折格子やミラー系を含むものについても同
様の効果が得られる。
In this embodiment, a reflection type diffraction grating has been described, but similar effects can be obtained with a transmission type diffraction grating or one including a mirror system.

発明の効果 以上のように本発明は、ホログラフィック回折格子に回
転機構を設けることによって、波長選択効果を持たせる
ことができ、また、受光素子に直接に信号光を入射し、
光−電気変換を直接行い、部品点数を凍らしている。ま
た、受光素子の形状は矩形にすることによって、受光す
る光の波長通過特性は、平坦な特性にすることができる
。また、ハーフミラ−によって双方向の通信をも可能に
する、非常に単純な形状を有する光学部材で双方向の光
チューナを構成することができ、放送型光波長多重伝送
に適した新しい光部品を作成することができる。
Effects of the Invention As described above, the present invention can provide a wavelength selection effect by providing a rotation mechanism to a holographic diffraction grating, and also allows signal light to be directly input to a light receiving element,
Optical-to-electrical conversion is performed directly, reducing the number of parts. Moreover, by making the shape of the light receiving element rectangular, the wavelength passage characteristics of the received light can be made flat. In addition, a bidirectional optical tuner can be constructed using a very simple optical member that enables bidirectional communication using a half mirror, creating a new optical component suitable for broadcast-type optical wavelength division multiplexing transmission. can be created.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における双方向光チューナの平
面図、第2図は従来の光分波器の斜視図である。 1・・・・・・ホログラフィック回折格子、2・・・・
・・レンズ、3・・・・・・入・出力光ファイバ、4・
・・・・・受光素子、5・・・・・・回転機構、6・・
・・・・ハーフミラ−17・・・・・・レンズ、8・・
・・・・光源。 代理人の氏名 弁理士 中尾敏男 はか1名ノ − ホ
ログラフィック回折格子 2− レンズ 3− 人・出力光ファイバ 4−受光*、) 5− 回に機構 6−バーフミラー 7−・レンス
FIG. 1 is a plan view of a bidirectional optical tuner according to an embodiment of the present invention, and FIG. 2 is a perspective view of a conventional optical demultiplexer. 1... Holographic diffraction grating, 2...
...Lens, 3...Input/output optical fiber, 4.
... Light receiving element, 5 ... Rotation mechanism, 6 ...
...half mirror 17...lens, 8...
····light source. Name of agent Patent attorney Toshio Nakao 1 name - Holographic diffraction grating 2 - Lens 3 - Person / Output optical fiber 4 - Light receiving*,) 5 - Mechanism 6 - Barf mirror 7 - Lens

Claims (3)

【特許請求の範囲】[Claims] (1)一本の入・出力光ファイバと、一個の受光素子と
、前記入・出力光ファイバと一個の受光素子の前方空間
に配置されたレンズと、前記レンズの前方空間に、前記
入・出力光ファイバの光軸に対して斜に配置された回折
格子とを有し、前記レンズと回折格子の間にハーフミラ
ーを付設し、前記ハーフミラーの法線を軸として前記光
軸にたいして対称な方向にレンズおよび光源を配置し、
前記回折格子は回転機構を具備して成ることを特徴とす
る双方向光チューナ。
(1) One input/output optical fiber, one light receiving element, a lens disposed in a space in front of the input/output optical fiber and one light receiving element, and a lens arranged in a space in front of the lens; a diffraction grating disposed obliquely with respect to the optical axis of the output optical fiber, a half mirror is attached between the lens and the diffraction grating, and the optical fiber is symmetrical with respect to the optical axis with the normal line of the half mirror as an axis. Place the lens and light source in the direction,
A bidirectional optical tuner characterized in that the diffraction grating is equipped with a rotation mechanism.
(2)ハーフミラーは入力光ファイバからの波長の光に
対しては透過し、光源からの波長の光に対しては反射を
行うような光学膜を具備して成ることを特徴とする特許
請求の範囲第(1)項記載の双方向光チューナ。
(2) A patent claim characterized in that the half mirror is equipped with an optical film that transmits light at a wavelength from an input optical fiber and reflects light at a wavelength from a light source. A bidirectional optical tuner according to item (1).
(3)受光素子は、矩形であることを特徴とする特許請
求の範囲第(1)項記載の双方向光チューナ。
(3) The bidirectional optical tuner according to claim (1), wherein the light receiving element is rectangular.
JP28782487A 1987-11-13 1987-11-13 Bidirectional optical tuner Pending JPH01129212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28782487A JPH01129212A (en) 1987-11-13 1987-11-13 Bidirectional optical tuner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28782487A JPH01129212A (en) 1987-11-13 1987-11-13 Bidirectional optical tuner

Publications (1)

Publication Number Publication Date
JPH01129212A true JPH01129212A (en) 1989-05-22

Family

ID=17722237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28782487A Pending JPH01129212A (en) 1987-11-13 1987-11-13 Bidirectional optical tuner

Country Status (1)

Country Link
JP (1) JPH01129212A (en)

Similar Documents

Publication Publication Date Title
JP3119540B2 (en) Light tap
CN213659025U (en) Light receiving assembly and optical module
JP2003202463A (en) Wavelength multiplex bidirectional optical transmission module
US6381052B1 (en) Multiplexors with a flat top spectral channel shape
JPS62115403A (en) Optical tuner
US6553160B2 (en) Method and apparatus for asymmetric multiplexing and demultiplexing of optical signals utilizing a diffraction grating
JPH01129212A (en) Bidirectional optical tuner
JPH01142505A (en) Bidirectional optical tuner
JPH01129211A (en) Bidirectional optical tuner
JPH01128010A (en) Bidirectional optical tuner
JPH01128006A (en) Optical tuner
US6987907B2 (en) Tunable holographic drop filter with quasi phase-conjugate fiber coupling
JPH01128009A (en) Optical tuner
JPS62284328A (en) Optical tuner
JPH01130108A (en) Optical tuner
JPH01128007A (en) Optical tuner
JPH01129210A (en) Optical tuner
JPH01128011A (en) Optical tuner
JPH01142507A (en) Optical tuner
JPH01202705A (en) Optical tuner
JPH01128008A (en) Optical tuner
JP2931905B2 (en) Bidirectional light receiving / emitting module
KR100518382B1 (en) High isolation WDM device using by mirror
JPH01129213A (en) Optical tuner
JPH0810285B2 (en) Optical wavelength multiplexer / demultiplexer