JPH0114200B2 - - Google Patents

Info

Publication number
JPH0114200B2
JPH0114200B2 JP58105357A JP10535783A JPH0114200B2 JP H0114200 B2 JPH0114200 B2 JP H0114200B2 JP 58105357 A JP58105357 A JP 58105357A JP 10535783 A JP10535783 A JP 10535783A JP H0114200 B2 JPH0114200 B2 JP H0114200B2
Authority
JP
Japan
Prior art keywords
single crystal
gas
gallium garnet
iridium
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58105357A
Other languages
Japanese (ja)
Other versions
JPS605094A (en
Inventor
Arata Sakaguchi
Kazuyoshi Watanabe
Masahiro Ogiwara
Ken Ito
Toshihiko Nagareo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP58105357A priority Critical patent/JPS605094A/en
Publication of JPS605094A publication Critical patent/JPS605094A/en
Publication of JPH0114200B2 publication Critical patent/JPH0114200B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明はガリウムガーネツト単結晶の製造方
法、特に磁気パブルメモリや磁気冷凍機用作業物
質に用いられる直径が75mm以上の大直径の結晶欠
陥の少ない、ガリウムガーネツト単結晶の工業的
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a gallium garnet single crystal, particularly a gallium garnet single crystal having a large diameter of 75 mm or more and having few crystal defects, which is used as a working material for magnetic bubble memories and magnetic refrigerators. This invention relates to an industrial manufacturing method.

すでに知られているように、磁気バブルメモリ
用基板材料としてのガリウムガーネツト単結晶に
は、結晶欠陥の少ないきわめて高品質のものが要
求される。特に最近は磁気バブルメモリの記憶容
量を増大させるために1Mbit/cm2以上の高集積度
のデバイスが製造されるにおよび、基板の品質に
対する要求はきびしく、転位をはじめ結晶中の微
小介在物および加工にもとづく表面の微細なきず
や局部的歪等の結晶欠陥がきわめて少ないものが
要求される。この理由は基板上に磁気バブルの生
成、駆動を行なうための希土類鉄系の磁性ガーネ
ツト薄膜を液相エピタキシヤル成長させる際基板
表面の欠陥が磁性薄膜中の欠陥の原因となり、磁
気バブルの駆動を妨害したり、あるいは不要な磁
気バブルの湧き出しを誘発して磁気バブルメモリ
デバイス不良の重大な原因となることに起因す
る。特にデバイスの高密度化はより小さい径のバ
ブルによつて達成されるため、このような高密
度、高集積度のデバイス用の磁性ガーネツト薄膜
中に許容される欠陥の大きさや数はバブル径に対
応して益々小さく、かつ少ないことが要求され
る。
As is already known, a gallium garnet single crystal used as a substrate material for a magnetic bubble memory is required to be of extremely high quality with few crystal defects. In particular, recently, highly integrated devices of 1 Mbit/cm 2 or more have been manufactured to increase the storage capacity of magnetic bubble memories, and requirements for substrate quality have become stricter. It is required that crystal defects such as minute scratches and local distortions on the surface due to processing are extremely low. The reason for this is that when a rare earth iron-based magnetic garnet thin film is liquid-phase epitaxially grown to generate and drive magnetic bubbles on a substrate, defects on the substrate surface cause defects in the magnetic thin film, making it difficult to drive the magnetic bubbles. This is due to interference or inducing the outflow of unnecessary magnetic bubbles, which becomes a serious cause of failure of magnetic bubble memory devices. In particular, since higher device densities are achieved with bubbles of smaller diameter, the size and number of defects that can be tolerated in magnetic garnet thin films for such high-density, high-integration devices depends on the bubble diameter. Correspondingly, smaller and smaller quantities are required.

さらにこのような高集積度デバイスを安価に生
産するため、最近では75mm以上の大直径の単結晶
ウエーハが必要とされ、このような大直径の高品
質単結晶を商業的に安定生産することは極めて重
要である。
Furthermore, in order to produce such highly integrated devices at low cost, single crystal wafers with a large diameter of 75 mm or more are recently required, and stable commercial production of high quality single crystals with such large diameters is difficult. extremely important.

希土類ガリウムガーネツト単結晶はまた磁気冷
凍機の作業物質としてその有用性が実験的に立証
され、この新しい冷凍機の実用機の開発が進みつ
つある。作業物質としての材料には基本物性とし
ての磁気特性のほかに極低温における熱伝導度の
高いことが求められる。極低温における熱伝導度
はその材料中の結晶格子欠陥によつて影響され、
欠陥が多いほど熱伝導度は低下することが知られ
ている。したがつてこの目的に用いる希土類ガリ
ウムガーネツト単結晶には欠陥の少ない完全結晶
に近いものが要求される。
The usefulness of the rare earth gallium garnet single crystal as a working material for magnetic refrigerators has also been experimentally demonstrated, and the development of practical machines for this new refrigerator is progressing. Materials used as working substances are required to have high thermal conductivity at extremely low temperatures in addition to magnetic properties as basic physical properties. Thermal conductivity at cryogenic temperatures is influenced by crystal lattice defects in the material,
It is known that the more defects there are, the lower the thermal conductivity. Therefore, the rare earth gallium garnet single crystal used for this purpose is required to be close to a perfect crystal with few defects.

ガリウムガーネツト単結晶は、工業的にはチヨ
クラルスキー法で引上げられるが、この単結晶中
の欠陥としては結晶転位のほかにるつぼ材料に起
因するイリジウムの微小介在物、ガーネツトと結
晶構造の異なる酸化物の微小介在物、ボイドや酸
素空孔等が知られている。原料の希土類酸化物と
酸化ガリウムをイリジウムるつぼ中で加熱融解
し、単結晶を引上げる際に高温のために原料物質
の分解、蒸発によつて生じる低級酸化物や、イリ
ジウムの酸化還元に起因するイリジウム微粒子が
単結晶中に取り込まれて微小介在物となる。これ
らは一般にその大きさがおよび1μから大きいも
のでは数十μに達し、それ自身が結晶欠陥である
だけでなく、大きい介在物は結晶転位の原因とな
り、単結晶の品質を低下させる。
Gallium garnet single crystals are industrially pulled using the Czyochralski method, but defects in these single crystals include crystal dislocations, micro-inclusions of iridium caused by the crucible material, and defects that have a different crystal structure from garnet. Microscopic inclusions of oxides, voids, oxygen vacancies, etc. are known. Raw materials rare earth oxides and gallium oxide are heated and melted in an iridium crucible, and when pulling a single crystal, lower oxides are generated due to decomposition and evaporation of the raw material materials due to the high temperature, and lower oxides are generated due to redox of iridium. Iridium fine particles are incorporated into the single crystal and become minute inclusions. These generally range in size from 1 μ to several tens of μ, and not only are they crystal defects themselves, but large inclusions cause crystal dislocations and degrade the quality of single crystals.

このため、このような微小介在物を抑制する方
法が従来から種々検討されてきた。例えば上述し
た原料融解物を3.8〜19.4mmHgの酸素を含む雰囲
気中に1〜10時間曝してから、同じ雰囲気ガスの
下で単結晶の引上げを行なうという方法(特公昭
52―46198号公報参照)、0.25〜1.5%の酸素を含
む気体をオゾン化処理し、このオゾンを含有する
雰囲気の下で単結晶の引上げを行なう方法(特公
昭54―1278号公報参照)、0.5〜3%の酸素を含む
窒素ガス雰囲気下で単結晶の引上げを行なう方法
(特開昭55―136200号公報参照)などが提案され
ている。
For this reason, various methods for suppressing such minute inclusions have been studied. For example, there is a method in which the above-mentioned raw material melt is exposed to an atmosphere containing oxygen at 3.8 to 19.4 mmHg for 1 to 10 hours, and then a single crystal is pulled under the same atmospheric gas (Tokuko Showa).
52-46198), a method in which a gas containing 0.25 to 1.5% oxygen is ozonized and a single crystal is pulled in an atmosphere containing this ozone (see Japanese Patent Publication No. 1278/1978), A method has been proposed in which a single crystal is pulled in a nitrogen gas atmosphere containing 0.5 to 3% oxygen (see Japanese Patent Laid-Open No. 136200/1983).

これらの方法はいずれも微量の酸素存在下で原
料を融解したのち単結晶を引上げることを特徴と
している。すなわち高温において酸化ガリウムが
次式 Ga2O3(液)→Ga2O(ガス)+O2(ガス) ……(1) によつて分解し、発生した酸素がるつぼ材のイリ
ジウムを酸化して酸化イリジウムとなること、 Ir(固体)+O2(ガス)→IrO2(ガス) ……(2) またこのIrO2(ガス)が次式 IrO2(ガス)+Ga2O(ガス) →Ir(固体)+Ga2O3(液体) ……(3) あるいは、 IrO2(ガス)→Ir(固体)+O2(ガス) ……(4) の反応によつてイリジウムに還元され、微粒子状
のイリジウムとなる。また前記したGa2Oが単結
晶中に取り込まれ異種の酸化物の微小介在物とな
るため、原料融液中ならびに単結晶引上げのさい
の雰囲気中に少量の酸素を存在させることによつ
てGa2O3の分解を抑制し、結果としてイリジウム
微粒子及び異種酸化物の生成を防止しようとする
ものである。
All of these methods are characterized by melting raw materials in the presence of a trace amount of oxygen and then pulling a single crystal. That is, at high temperatures, gallium oxide decomposes according to the following formula: Ga 2 O 3 (liquid) → Ga 2 O (gas) + O 2 (gas) ... (1), and the generated oxygen oxidizes the iridium of the crucible material. It becomes iridium oxide, Ir (solid) + O 2 (gas) → IrO 2 (gas) ...(2) Also, this IrO 2 (gas) is converted to the following formula IrO 2 (gas) + Ga 2 O (gas) → Ir( Solid) + Ga 2 O 3 (liquid) ...(3) Or, IrO 2 (gas) → Ir (solid) + O 2 (gas) ...(4) is reduced to iridium by the reaction, and fine particles of iridium are formed. becomes. In addition, since the Ga 2 O mentioned above is incorporated into the single crystal and becomes microscopic inclusions of different oxides, Ga 2 The purpose is to suppress the decomposition of 2 O 3 and, as a result, prevent the production of iridium fine particles and foreign oxides.

本発明者らも開発初期における小直径のガリウ
ムガーネツト単結晶引上げにおいてこれらの方法
がある程度の効果のあることを確認しているが、
酸素を雰囲気中に存在させることは、一方におい
て(2)式によるIrO2の発生をうながし、これがイリ
ジウムの介在物の原因となること、また、上述し
たように介在物を生ずるときの反応機構は複雑で
微妙なバランスの上に成り立つものであるから原
料組成のわずかな変動や単結晶引上げ装置、特に
るつぼをとりまく保温構造や雰囲気ガスの流し方
などの条件によつては全く効果が認められない。
したがつて上記した公知の方法では、必ずしも介
在物を完全に抑止することが困難であり、特に直
径が75mm以上の欠陥の極めて少ないガリウムガー
ネツト単結晶を商業的に生産するには極めて困難
なことが本発明者らの実験によつて明らかとなつ
た。
The present inventors have also confirmed that these methods are effective to some extent in pulling small-diameter gallium garnet single crystals in the early stages of development.
On the one hand, the presence of oxygen in the atmosphere promotes the generation of IrO 2 according to equation (2), which causes iridium inclusions, and as mentioned above, the reaction mechanism that produces inclusions is Because it is based on a complex and delicate balance, it may not be effective at all depending on conditions such as slight variations in the raw material composition, single crystal pulling equipment, especially the heat insulation structure surrounding the crucible, and the flow of atmospheric gas. .
Therefore, with the above-mentioned known methods, it is difficult to completely suppress inclusions, and in particular, it is extremely difficult to commercially produce gallium garnet single crystals with a diameter of 75 mm or more and extremely few defects. This has become clear through experiments conducted by the present inventors.

すなわち、高集積度バブルメモリ用や磁気冷凍
機用の大型ガリウムガーネツト単結晶、例えば直
径75mm以上、長さ250mm以上のガドニウムガリウ
ムガーネツト単結晶の引上げを行う際には直径約
150mm以上のイリジウムるつぼを用い、一回の原
料使用量も13Kg以上に達するため、るつぼの温度
は小型のときより上昇し、そのため酸化ガリウム
の分解やIrの酸化が促進される結果、単結晶の肩
部から直胴部にかけて多数の介在物が見出され、
公知の介在物抑制法では目的とする介在物のほと
んどない単結晶をうることができないことが明ら
かとなつた。
In other words, when pulling large gallium garnet single crystals for highly integrated bubble memories or magnetic refrigerators, for example, gadonium gallium garnet single crystals with a diameter of 75 mm or more and a length of 250 mm or more, the diameter is approximately
Since an iridium crucible of 150 mm or more is used and the amount of raw material used at one time is more than 13 kg, the temperature of the crucible is higher than when it is small, which accelerates the decomposition of gallium oxide and the oxidation of Ir, resulting in a single crystal Numerous inclusions were found from the shoulder to the trunk.
It has become clear that known inclusion suppression methods cannot produce the desired single crystal with almost no inclusions.

本発明は従来の方法におけるこのような不利を
解決し、大直径の極めて欠陥の少ないガリウムガ
ーネツト単結晶を製造する方法に関するものであ
る。すなわちチヨクラルスキー法による75mm以上
の直径を有するガリウムガーネツト単結晶を製造
において、酸化ガリウムと希土類金属酸化物とか
らなる原料物質をイリジウムるつぼ中で加熱融解
したのち、単結晶を引上げるに際し、その全工程
を通して酸素およびCO2を含有する雰囲気ガスを
常に酸素分圧20〜100mmHgに維持しかつ結晶介在
物の原因となる、同酸素分圧の下で生成する酸化
イリジウムを原料融液および単結晶成長近傍より
を系外に強制排出させることを特徴とするもので
ある。
The present invention overcomes these disadvantages of conventional methods and relates to a method for producing large diameter, extremely defect-free gallium garnet single crystals. That is, in producing a gallium garnet single crystal with a diameter of 75 mm or more by the Czyochralski method, after heating and melting a raw material consisting of gallium oxide and a rare earth metal oxide in an iridium crucible, when pulling the single crystal, Throughout the entire process, the atmospheric gas containing oxygen and CO 2 is always maintained at an oxygen partial pressure of 20 to 100 mmHg, and the iridium oxide produced under the same oxygen partial pressure, which causes crystal inclusions, is mixed into the raw material melt and the monomer. This method is characterized by forcibly discharging liquid from the vicinity of crystal growth to the outside of the system.

本発明者らは75mm以上の大直径で、長さが250
mm以上であり、かつ介在物量が極端に少い良質の
ガリウムガーネツト単結晶を安定かつ工業的に生
産する方法について種々実験的に検討した結果、
従来の方法とは異なる作用効果によつて介在物の
ほとんどない良質の大直径かつ長尺のガリウムガ
ーネツト単結晶の製造方法を見出すに至つた。す
なわち、本発明者らは従来の方法では不利とされ
た雰囲気ガス中の酸素分圧を高くし、これによつ
て酸化ガリウムの分解をより一層効果的に抑制す
ることによつて低級酸化物に起因する介在物の発
生をほゞ完全に防止する。一方より高い酸素分圧
の下で生成するIrO2を原料融液および単結晶成長
近傍より系外に強制的に排出してIr介在物の融液
への取込みを防止し、これらの綜合効果によつて
単結晶中の介在物をほとんどなくすことに成功し
た。長期間にわたる数多くの実験によつて雰囲気
中に20mmHg(約2.6%)〜100mmHg(約13.2%)、さ
らに好ましくは20mmHg〜40mmHg(約5.3%)の酸
素を含むときに最も有効であることが明らかとな
つた。強制的に排出する手段としてはいくつかの
方法が有効であるが、例えば排気フアンや吸引ポ
ンプによる方法、引上炉内にガスを大量に導入
し、これによつて融液表面近傍の有害な物質を含
む雰囲気ガスを排出する方法が用いうる。雰囲気
ガスの成分としてCO2を用いるのは、これが高温
において分解して酸素を発生させるのでこの分解
によつて生じる酸素は本発明によつて必須とされ
る雰囲気ガス中の酸素として有効に作用するから
である。この他るつぼに対する保温構造を工夫
し、るつぼの上端の蓋とその上部保温円筒との間
にガスの通路となる隙間を設け、炉内に導入する
新鮮なガスと融液表面近傍のガスとの置換を容易
にすることも効果的である。このように種々の手
段が有効であるが本発明はここに述べた例に限定
されるものではなく、本発明は融液表面近傍の雰
囲気ガスを強制的に排出するためのいかなる手
段、方法でもよく、あくまでも有効な一定濃度の
酸素の存在の下(酸素分圧が20〜100mmHgの雰囲
気下)で融液表面近傍の雰囲気ガスを物理的に強
制置換することによつて有害な成分を系外に排出
することに思想がある。
The inventors found that the large diameter of 75 mm or more and the length of 250 mm
As a result of various experimental studies on how to stably and industrially produce high-quality gallium garnet single crystals with a diameter of 1 mm or more and an extremely small amount of inclusions, we found that:
We have discovered a method for producing high-quality, large-diameter, long-length gallium garnet single crystals with almost no inclusions, with different effects from conventional methods. In other words, the present inventors increased the oxygen partial pressure in the atmospheric gas, which was considered disadvantageous in conventional methods, and thereby more effectively suppressed the decomposition of gallium oxide, thereby converting it into lower oxides. The occurrence of inclusions caused by this process is almost completely prevented. On the other hand, IrO 2 generated under a higher oxygen partial pressure is forcibly discharged from the raw material melt and the vicinity of single crystal growth to prevent Ir inclusions from being taken into the melt, thereby reducing the overall effect of these. As a result, we succeeded in eliminating almost all inclusions in the single crystal. Numerous experiments over a long period of time have shown that it is most effective when the atmosphere contains 20 mmHg (approximately 2.6%) to 100 mmHg (approximately 13.2%), and more preferably 20 mmHg to 40 mmHg (approximately 5.3%). It became. Several methods are effective for forcibly discharging the liquid, such as using an exhaust fan or suction pump, or introducing a large amount of gas into the pulling furnace, thereby removing harmful substances near the surface of the melt. A method of exhausting the atmospheric gas containing the substance can be used. The reason why CO 2 is used as a component of the atmospheric gas is that it decomposes at high temperatures to generate oxygen, and the oxygen generated by this decomposition effectively acts as oxygen in the atmospheric gas, which is essential for the present invention. It is from. In addition, we have devised a heat insulation structure for the crucible, creating a gap between the lid at the top of the crucible and its upper heat insulation cylinder to serve as a gas passage, so that the fresh gas introduced into the furnace and the gas near the melt surface are separated. It is also effective to facilitate substitution. As described above, various means are effective, but the present invention is not limited to the examples described here. Harmful components are often removed from the system by physically forcibly replacing the atmospheric gas near the melt surface in the presence of a certain effective concentration of oxygen (in an atmosphere with an oxygen partial pressure of 20 to 100 mmHg). There is a philosophy in discharging

なお、酸素分圧が高いことは酸化ガリウムの分
解を防止するのに効果があるので引上中における
原料融液の組成変動を抑制し、これによつて長尺
単結晶の全長わたつて結晶の格子定数の変動を生
じないという効果を併せ有している。結晶格子定
数の変動の小さい基板はバブルメモリの品質向上
をもたらし商業的生産における技術的および経済
的な効果は著しい。
In addition, a high oxygen partial pressure is effective in preventing the decomposition of gallium oxide, so it suppresses compositional fluctuations in the raw material melt during pulling, and this allows the crystal to remain stable over the entire length of the long single crystal. It also has the effect of not causing fluctuations in the lattice constant. Substrates with small variations in crystal lattice constants can improve the quality of bubble memories and have significant technical and economical effects on commercial production.

本発明の方法は、例えば内径145mm以上のイリ
ジウムるつぼの中で原料組成物を融解した後単結
晶を引上げる。原料組成物は公知のものでよく、
純度が99.9955%以上の酸化ガリウム(Ga2O3
と、同じく純度が99.995%以上の酸化ガドリニウ
ム(Gd2O3)、酸化サマリウム(Sm2O3)、酸化ネ
オジム(Nd2O3)等のいずれかの希土類金属酸化
物を混合し、予め1450℃で焼成してガリウムガー
ネツト多結晶体としたものを使用する。
In the method of the present invention, for example, a raw material composition is melted in an iridium crucible with an inner diameter of 145 mm or more, and then a single crystal is pulled. The raw material composition may be a known one,
Gallium oxide (Ga 2 O 3 ) with purity greater than 99.9955%
and a rare earth metal oxide such as gadolinium oxide (Gd 2 O 3 ), samarium oxide (Sm 2 O 3 ), neodymium oxide (Nd 2 O 3 ), etc., which also has a purity of 99.995% or more, and pre-mix with 1450% or higher purity. A gallium garnet polycrystal obtained by firing at ℃ is used.

原料の加熱融解およびその後の単結晶引上げの
全工程を酸素分圧が20〜100mmHgとなる酸素と
CO2を含有する雰囲気ガス下で実施し、かつ雰囲
気ガス中に存在している介在物の原因となる有害
物質を連続的に外部に強制的に排出する。使用す
る酸素およびCO2以外のガス体としては、Ne,
Ar,He,N2等の不活性ガスが用いられる。
The entire process of heating and melting the raw materials and then pulling the single crystal is performed using oxygen with an oxygen partial pressure of 20 to 100 mmHg.
It is carried out under an atmospheric gas containing CO2 , and harmful substances that cause inclusions present in the atmospheric gas are continuously forcibly discharged to the outside. Gases other than oxygen and CO 2 used include Ne,
Inert gases such as Ar, He, N2 , etc. are used.

つぎにこれを添付の図面にもとづいて説明す
る。第1図は本発明方法を実施するための装置の
縦断面要図を示したものであり、原料組成物を融
解するイリジウムるつぼ1はジルコニアパウダー
を充填した耐火物壁2によつて囲まれており、加
熱コイル3からの高周波誘導電流によつて所定の
温度まで加熱されるようになつている。このイリ
ジウムるつぼ1中で融解されたガリウムガーネツ
ト多結晶融体4からはチヨクラルスキー法によつ
てガリウムガーネツト単結晶5が引上げられる。
イリジウムるつぼ1の上端部にはイリジウムの蓋
7が設けられるが、この開口面積は80cm2以上、好
ましくは80〜130cm2とすることが必要であり、そ
の上方にジルコニア製の保温用円筒8がおかれ
る。さらにこの8の上端部に開口部6を有するジ
ルコニア製リングが配置されるが、この開口面積
は40cm2以上とすることが必要であり、これら全体
はさらに外筒9に収納されている。ガリウムガー
ネツト多結晶の融解は外筒9の底部のガス導入口
10から全工程に渉つて酸素分圧を20〜100mmHg
となる酸素とCO2を含有した不活性ガスを主体と
する雰囲気ガスを導入してこの系内全体をこの雰
囲気ガスで充満させてから開始されるが、この開
始時からこの外筒上部に設けた強制排気装置12
を運転させて、系内の雰囲気ガスを強制的にガス
出口11から排気させると共に、ガス導入口10
から新鮮な雰囲気ガスを送入し、結晶介在物の原
因となる物質を含むガスを系外に排出させるよう
にする。
Next, this will be explained based on the attached drawings. FIG. 1 shows a schematic longitudinal cross-sectional view of an apparatus for carrying out the method of the present invention, in which an iridium crucible 1 for melting a raw material composition is surrounded by a refractory wall 2 filled with zirconia powder. The heating coil 3 is heated to a predetermined temperature by a high frequency induced current. A gallium garnet single crystal 5 is pulled from the gallium garnet polycrystalline melt 4 melted in the iridium crucible 1 by the Czochralski method.
An iridium lid 7 is provided at the upper end of the iridium crucible 1, and the opening area of this lid must be at least 80 cm 2 , preferably 80 to 130 cm 2 .A heat-retaining cylinder 8 made of zirconia is placed above it. be placed. Furthermore, a zirconia ring having an opening 6 is disposed at the upper end of this 8, but the opening area needs to be 40 cm 2 or more, and the entire ring is further housed in an outer cylinder 9. For melting the gallium garnet polycrystal, the oxygen partial pressure is maintained at 20 to 100 mmHg throughout the entire process from the gas inlet 10 at the bottom of the outer cylinder 9.
The system starts by introducing an atmospheric gas mainly consisting of an inert gas containing oxygen and CO 2 to fill the entire system with this atmospheric gas. Forced exhaust device 12
is operated to forcibly exhaust the atmospheric gas in the system from the gas outlet 11, and at the same time, the gas inlet 10 is operated.
Fresh atmospheric gas is introduced from the system, and gas containing substances that cause crystal inclusions is discharged from the system.

また、この雰囲気ガスの強制排出方法として、
第1図には機械的に吸引する強制排気方法を示し
たけれども、この他新鮮な酸素およびCO2を含有
する雰囲気ガスを5〜40℃の低温に保ち、これを
外筒上部のガス導入口13から導入し、イリジウ
ムるつぼ1およびその周囲からの伝熱および輻射
による加熱で軽くされた介在物の原因となる有害
物質を含む雰囲気ガスと交換して効果的に排出す
るようにしてもよい。
In addition, as a method for forcibly discharging this atmospheric gas,
Although Fig. 1 shows a forced exhaust method that uses mechanical suction, it is also possible to keep the atmospheric gas containing fresh oxygen and CO 2 at a low temperature of 5 to 40°C, and pass it through the gas inlet at the top of the outer cylinder. The gas may be introduced from the iridium crucible 1 and its surroundings, and may be effectively discharged by exchanging it with an atmospheric gas containing harmful substances that cause inclusions, which are lightened by heat transfer and radiation from the iridium crucible 1 and its surroundings.

なお、第2図はこれらガス排出方法の例を示し
たものであり、a)は排気フアン、b)は吸引ポ
ンプで強制排気するもの、c)は酸素およびCO2
を含有するガスを上部より導入する場合、d)は
ガス導入管を用いてガスを導入する場合、e)は
下部から新鮮なガスを導入する場合を例示したも
のである。第3図はイリジウム製の蓋7とその上
部の保温用円筒8との間に隙間14を設けて排出
をより有効に行なう方法を示したもので、f)は
下部からガスを導入する場合、g)は上部から酸
素およびCO2を含有するガスを導入する場合を例
示したものである(第2図および第3図中の矢印
は系内の主なガスの流れを示す)。
Fig. 2 shows examples of these gas exhaust methods; a) is an exhaust fan, b) is forced exhaust with a suction pump, and c) is oxygen and CO 2
d) is a case where the gas containing gas is introduced from the top, d) is a case where the gas is introduced using a gas introduction pipe, and e) is a case where fresh gas is introduced from the bottom. Figure 3 shows a method for more effectively discharging gas by providing a gap 14 between the iridium lid 7 and the heat-retaining cylinder 8 above it; g) exemplifies the case where a gas containing oxygen and CO 2 is introduced from the top (arrows in FIGS. 2 and 3 indicate the main gas flows in the system).

以上を要約すると、本発明方法はイリジウムる
つぼ中で原料組成物を融解し、この融液からガリ
ウムガーネツト単結晶を引上げる方法において、
雰囲気ガスとして酸素分圧が20〜100mmHgの酸素
とCO2を含むガスを使用することによつて、前記
(1)式によるガリウムの低級酸化物の発生を減少さ
せると共に、発生した介在物の原因となる物質を
強制的に系外に排出し、これによつて介在物数の
極めて少ないガリウムガーネツト単結晶を製造し
ようとするものであり、この発明の方法によれば
この介在物密度が0.2ケ/cm3以下の大直径のガリ
ウムガーネツト単結晶を容易に量産することがで
きる。
To summarize the above, the method of the present invention is a method of melting a raw material composition in an iridium crucible and pulling a gallium garnet single crystal from this melt.
By using a gas containing oxygen and CO 2 with an oxygen partial pressure of 20 to 100 mmHg as the atmospheric gas,
In addition to reducing the generation of lower oxides of gallium according to formula (1), the substances that cause the generated inclusions are forcibly discharged from the system. According to the method of the present invention, large diameter gallium garnet single crystals with an inclusion density of 0.2 particles/cm 3 or less can be easily mass-produced.

つぎに本発明方法の実施例と比較例をあげる。 Next, examples and comparative examples of the method of the present invention will be given.

実施例 1 純度が99.99%以上の酸化ガリウム粉末と同じ
く純度が99.99%以上の酸化ガドリニウム粉末と
をGd3Ga5O12となるような量で秤取したのち混合
し、成形して1450℃で5時間焼結した。
Example 1 Gallium oxide powder with a purity of 99.99% or more and gadolinium oxide powder with a purity of 99.99% or more were weighed out in amounts to give Gd 3 Ga 5 O 12 , then mixed, molded, and heated at 1450°C. It was sintered for 5 hours.

つぎにこの13000gを、第1図に示した単結晶
引上げ装置内の内径146mm、深さ148mmのイリジウ
ムるつぼ中に入れ、窒素ガスにその2.5容量%の
酸素ガスおよび50容量%の炭酸ガスを混合したガ
ス雰囲気としたのち、加熱融解する。融解がはじ
まると同時に新鮮な同組成ガスをガス導入口10
から12.5/分の流量で導入すると共に強制排気
装置12を運転し雰囲気ガスを連続的に置換しつ
つガリウムガーネツト多結晶体を完全に融解させ
たのちに、直径20mm、長さ250mmのガリウムガー
ネツト単結晶を引上げた。この単結晶体中の介在
物密度をしらべたところ、これは第4図のa曲線
に示すとおりであつた。
Next, this 13,000 g was placed in an iridium crucible with an inner diameter of 146 mm and a depth of 148 mm in the single crystal pulling apparatus shown in Figure 1, and 2.5% by volume of oxygen gas and 50% by volume of carbon dioxide gas were mixed with nitrogen gas. After creating a gas atmosphere, the mixture is heated and melted. At the same time as melting begins, fresh gas of the same composition is introduced into the gas inlet 10.
After introducing the gallium garnet at a flow rate of 12.5/min and operating the forced exhaust device 12 to continuously replace the atmospheric gas and completely melt the gallium garnet polycrystal, a gallium garnet with a diameter of 20 mm and a length of 250 mm was introduced. A net single crystal was pulled up. When the inclusion density in this single crystal was examined, it was as shown in curve a in FIG. 4.

比較例 1 第1図より強制排気装置を除いた装置を使用
し、実施例1と同じGd3Ga5O12の焼結体13000g
を内径146mm、深さ148mmのイリジウムるつぼに入
れ、この装置のガス導入口から窒素ガスにその2
容量%の酸素ガスを添加した雰囲気ガスを12.5
/分の流量で流し、これをガス排気口11から
排気させながら、この焼結体を1750℃で融解し、
この融液から直径80mm、長さ250mmのガリウムガ
ーネツト単結晶を引上げ、この単結晶中の介在物
密度をしらべたところ、第4図のb曲線に示すと
おりであつた。
Comparative Example 1 13,000 g of the same Gd 3 Ga 5 O 12 sintered body as in Example 1 was prepared using the device shown in Figure 1 except for the forced exhaust device.
was placed in an iridium crucible with an inner diameter of 146 mm and a depth of 148 mm, and nitrogen gas was added to it through the gas inlet of this device.
Atmosphere gas added with 12.5% oxygen gas by volume
The sintered body was melted at 1750°C while flowing at a flow rate of /min and exhausting it from the gas exhaust port 11.
A gallium garnet single crystal with a diameter of 80 mm and a length of 250 mm was pulled from this melt, and the density of inclusions in this single crystal was determined as shown in curve b in FIG. 4.

比較例 2 実施例1で得たGd3Ga5O12の焼結体420gを内
径47mm、深さ48.5mmのイリジウムるつぼに入れ、
窒素ガスにその3.5容量%の酸素ガスを添加した
雰囲気ガス下で融解し、この融液から直径25mm、
長さ70mmのガリウムガーネツト単結晶を引上げ、
この単結晶体中に含まれる介在物密度をしらべた
ところ、このものは結晶上部から10mmの位置まで
の介在物密度が200ケ/cm3,50〜60mmの位置での
それは50〜100ケ/cm3であつた。
Comparative Example 2 420 g of the sintered body of Gd 3 Ga 5 O 12 obtained in Example 1 was placed in an iridium crucible with an inner diameter of 47 mm and a depth of 48.5 mm.
It is melted in an atmosphere of nitrogen gas and 3.5% by volume of oxygen gas added to it, and from this melt a diameter of 25 mm is formed.
Pulling a gallium garnet single crystal with a length of 70 mm,
When we investigated the density of inclusions contained in this single crystal, we found that the inclusion density was 200 inclusions/cm 3 at a position 10 mm from the top of the crystal, and 50 to 100 inclusions/cm 3 at a position of 50 to 60 mm. It was warm at cm3 .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための単結晶引
上げ装置の縦断面図を例示したもの、第2図は第
1図の装置における雰囲気ガスの置換方法を示す
縦断面図、第3図は第1図の装置に隙間14を設
けた場合の雰囲気ガスの置換方法を示す縦断面図
でこのa〜fはいずれもそれらの実施態様を示し
たものである。また、第4図は本発明方法の実施
例により得られたガリウムガーネツト単結晶中の
介在物密度と結晶長さとの関係を図示したもので
ある。 1…イリジウムるつぼ、2…耐火壁、3…加熱
コイル、4…融体、5…単結晶体、6…開口部、
7…イリジウム製蓋、8…ジルコニア製円筒、9
…外筒、10,11,13…ガス導入・排気口、
12…強制排気装置、14…隙間、15…吸引ポ
ンプ。
FIG. 1 is a longitudinal cross-sectional view of a single crystal pulling apparatus for carrying out the method of the present invention, FIG. 2 is a longitudinal cross-sectional view showing a method of replacing atmospheric gas in the apparatus of FIG. 1, and FIG. FIG. 1 is a vertical cross-sectional view showing a method of replacing atmospheric gas when a gap 14 is provided in the apparatus shown in FIG. Furthermore, FIG. 4 illustrates the relationship between inclusion density and crystal length in a gallium garnet single crystal obtained by an example of the method of the present invention. DESCRIPTION OF SYMBOLS 1... Iridium crucible, 2... Fireproof wall, 3... Heating coil, 4... Melt, 5... Single crystal, 6... Opening,
7...Lid made of iridium, 8...Cylinder made of zirconia, 9
...Outer cylinder, 10, 11, 13...Gas inlet/exhaust port,
12... Forced exhaust device, 14... Gap, 15... Suction pump.

Claims (1)

【特許請求の範囲】 1 チヨクラルスキー法による75mm以上の直径を
有するガリウムガーネツト単結晶の製造方法にお
いて、酸化ガリウムと希土類金属酸化物とからな
る原料物質をイリジウムるつぼ中で加熱溶融した
のち単結晶を引き上げるに際し、この全工程を通
して酸素およびCO2を含有する雰囲気ガスを常に
酸素分圧20〜100mmHgに維持、かつ結晶介在物の
原因となる。同酸素分圧の下で生成する酸化イリ
ジウムを原料融液および単結晶成長近傍より系外
に強制排出させることを特徴とするガリウムガー
ネツト単結晶の製造方法。 2 雰囲気ガスの強制排出を排気フアンまたは吸
引ポンプで行なう特許請求の範囲第1項記載のガ
リウムガーネツト単結晶の製造方法。 3 炉内に大量のガスを導入し、融液表面近傍の
雰囲気ガスを強制排出させる特許請求の範囲第1
項記載のガリウムガーネツト単結晶の製造方法。 4 イリジウムるつぼ蓋とその上部に配置した保
温用円筒との間に隙間を設け、炉内に導入するガ
スによつて融液表面近傍の雰囲気ガスを強制排出
するようにした特許請求の範囲第1項記載のガリ
ウムガーネツト単結晶の製造方法。
[Claims] 1. A method for producing a gallium garnet single crystal having a diameter of 75 mm or more by the Czyochralski method, in which a raw material consisting of gallium oxide and a rare earth metal oxide is heated and melted in an iridium crucible, and then the single crystal is melted in an iridium crucible. When pulling the crystal, the atmospheric gas containing oxygen and CO 2 is always maintained at an oxygen partial pressure of 20 to 100 mmHg throughout this entire process, which causes crystal inclusions. A method for producing a gallium garnet single crystal, characterized in that iridium oxide produced under the same oxygen partial pressure is forcibly discharged from the raw material melt and the vicinity of the single crystal growth. 2. The method for producing a gallium garnet single crystal according to claim 1, wherein the atmospheric gas is forcibly discharged using an exhaust fan or a suction pump. 3. Claim 1 in which a large amount of gas is introduced into the furnace and atmospheric gas near the melt surface is forcibly discharged.
A method for producing a gallium garnet single crystal as described in . 4. Claim 1: A gap is provided between the iridium crucible lid and a heat-retaining cylinder placed above the lid, and atmospheric gas near the surface of the melt is forcibly discharged by gas introduced into the furnace. A method for producing a gallium garnet single crystal as described in .
JP58105357A 1983-06-13 1983-06-13 Production of gallium garnet single crystal Granted JPS605094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58105357A JPS605094A (en) 1983-06-13 1983-06-13 Production of gallium garnet single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58105357A JPS605094A (en) 1983-06-13 1983-06-13 Production of gallium garnet single crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12985688A Division JPH02175685A (en) 1988-05-27 1988-05-27 Production of gallium garnet single crystal

Publications (2)

Publication Number Publication Date
JPS605094A JPS605094A (en) 1985-01-11
JPH0114200B2 true JPH0114200B2 (en) 1989-03-09

Family

ID=14405469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58105357A Granted JPS605094A (en) 1983-06-13 1983-06-13 Production of gallium garnet single crystal

Country Status (1)

Country Link
JP (1) JPS605094A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687055B2 (en) * 2004-09-29 2011-05-25 日立化成工業株式会社 Method and apparatus for producing single crystal
CN102634848A (en) * 2011-12-20 2012-08-15 元亮科技有限公司 Pumping device for growth of garnet type single crystals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136200A (en) * 1979-04-12 1980-10-23 Union Carbide Corp Manufacture of gadolinium garnet
JPS57175799A (en) * 1981-04-17 1982-10-28 Hitachi Metals Ltd Method of producing ggg single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136200A (en) * 1979-04-12 1980-10-23 Union Carbide Corp Manufacture of gadolinium garnet
JPS57175799A (en) * 1981-04-17 1982-10-28 Hitachi Metals Ltd Method of producing ggg single crystal

Also Published As

Publication number Publication date
JPS605094A (en) 1985-01-11

Similar Documents

Publication Publication Date Title
JP5476637B2 (en) Polycrystalline Group III Metal Nitride by Getter and Method of Fabrication
EP2330236B1 (en) METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL FILM
JPH0776151B2 (en) Method for forming silicon single crystal
KR100912219B1 (en) Apparatus for producing semiconductor single crystal
US4534821A (en) Single crystal growing of rare earth-gallium garnet
JP4905138B2 (en) Method for producing aluminum oxide single crystal
JP6445283B2 (en) Method for producing gallium nitride crystal
JPH0114200B2 (en)
JPH02175685A (en) Production of gallium garnet single crystal
JP2019163187A (en) Single crystal growth method of iron gallium alloy
JP4904862B2 (en) Method for producing aluminum oxide single crystal and obtained aluminum oxide single crystal
JPH107491A (en) High-purity single crystal copper and its production and production unit therefor
JP2001240497A (en) Method and equipment for manufacturing single crystal fluoride
Tyutyunnik et al. Lithium hydride single crystal growth by bridgman-stockbarger method using ultrasound
JP2004256392A (en) Method of manufacturing compound semiconductor crystal and compound semiconductor crystal
JP2006347834A (en) Method for producing metal fluoride single crystal
JP4399631B2 (en) Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same
JP2020050544A (en) Seed crystal for iron gallium alloy single crystal growth
JP2021138592A (en) METHOD FOR MANUFACTURING FeGa ALLOY SINGLE CRYSTAL, AND LID
JP2017036180A (en) Manufacturing method of group xiii nitride crystal, and manufacturing apparatus of group xiii nitride crystal
TWI793167B (en) Gallium Arsenide Compound Semiconductor Crystal and Wafer Group
JP2011502941A (en) A method for reducing air pockets in silicon crystals by preventing the insoluble gas from dissolving into the melt.
JPH02196082A (en) Production of silicon single crystal
CN114959868A (en) Crystal growth method with active atmosphere adjustment
CN117626405A (en) Gallium oxide single crystal growth device and gallium oxide single crystal growth method