JPH01139998A - Control of performance of condenser tube made of copper alloy - Google Patents

Control of performance of condenser tube made of copper alloy

Info

Publication number
JPH01139998A
JPH01139998A JP29715387A JP29715387A JPH01139998A JP H01139998 A JPH01139998 A JP H01139998A JP 29715387 A JP29715387 A JP 29715387A JP 29715387 A JP29715387 A JP 29715387A JP H01139998 A JPH01139998 A JP H01139998A
Authority
JP
Japan
Prior art keywords
cleanliness
condenser
performance
cleaning
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29715387A
Other languages
Japanese (ja)
Other versions
JPH0660797B2 (en
Inventor
Koji Nagata
公二 永田
Takao Hamamoto
浜元 隆夫
Tetsuo Atsumi
哲郎 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP29715387A priority Critical patent/JPH0660797B2/en
Publication of JPH01139998A publication Critical patent/JPH01139998A/en
Publication of JPH0660797B2 publication Critical patent/JPH0660797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/12Fluid-propelled scrapers, bullets, or like solid bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B11/00Controlling arrangements with features specially adapted for condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To eliminate the damage due to corrosion and an increase in the fuel cost accompanying lowered heat transfer performance by keeping a specified polarization resistance value so it will not fall below it and starting the cleaning operation of sponge balls when it reaches the lower limit of a set cleanness buffer width of the cleanness and stopping the cleaning operation of sponge balls when it reaches the upper limit of the set cleanness buffer width of the cleanness. CONSTITUTION:In the control of the performance of a condenser made of a copper alloy its operation is based on cleanness, and the buffer width set up for a standard value (85%) of cleanness is specified to be within + or -15% of the value in the upper and lower ranges and the upper limit of the buffer width to be 95%. And, the control operation for ON-OFF of a sponge ball cleaning device within this buffer width is executed. Furthermore, the ON-OF control operation is made so as to keep the polarization resistance value of the condenser not lower than 3000OMEGA.cm<2>, and in the case in which the polarization resistance value is below 3000OMEGA.cm<2>, the operation of the sponge ball cleaning is stopped.

Description

【発明の詳細な説明】 (技術分野) 本発明は銅合金製復水器管の性能管理方法に係り、特に
測定される分極抵抗値及び清浄度に基づいて、かかる復
水器管の性能管理を行なうシステムにおいて、防食皮膜
を形成するための鉄イオン注入が不可或いは制約されて
いる場合に、かかるシステムを効果的に運用して、より
精度よく管内面の状態を維持する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for managing the performance of a condenser tube made of a copper alloy, and in particular to a method for managing the performance of a condenser tube based on measured polarization resistance and cleanliness. This invention relates to a method for effectively operating such a system and maintaining the condition of the inner surface of a pipe with more precision when iron ion implantation for forming an anti-corrosion film is not possible or restricted. .

(従来技術とその問題点) 従来より、火力発電所や化学工場、或いは船舶等の復水
器には、伝熱管たる復水器管として、黄銅にアルミニウ
ム、砒素、その他ケイ素等を添加した、所謂特殊黄銅管
や、銅、ニッケル、鉄よりなるキュプロニッケルの如き
銅合金管が広く使用されているが、それら復水器におい
ては、海水、河海水、河水等が冷却水として用いられ、
それが復水器管内に流通せしめられることによって、該
復水器管の外表面に接する高温の流体(蒸気)と該復水
器管内を流通せしめられる冷却水との間にて熱交換が行
なわれるようになっているところから、各種の問題が惹
起されている。即ち、復水器管内には海水等の冷却水が
流される関係上、長期。
(Prior art and its problems) Conventionally, condensers for thermal power plants, chemical factories, ships, etc. have been made of brass with aluminum, arsenic, or other silicon added to it as a condenser tube, which is a heat transfer tube. So-called special brass tubes and copper alloy tubes such as cupronickel made of copper, nickel, and iron are widely used, but in these condensers, seawater, river seawater, river water, etc. are used as cooling water.
By allowing it to flow through the condenser pipe, heat exchange takes place between the high temperature fluid (steam) in contact with the outer surface of the condenser pipe and the cooling water that is made to flow within the condenser pipe. This has led to various problems. In other words, because cooling water such as seawater flows through the condenser pipes, it takes a long time.

間の使用により、かかる冷却水質に応じた種々の物質、
例えば土砂等のスラッジ、鉄錆、腐食生成物、或いはス
ライム等が内面に付着し、これによって熱貫流率(伝熱
性能)が低下し、復水器の熱効率を悪化せしめているの
である。
Depending on the use of the cooling water, various substances depending on the quality of the cooling water,
For example, sludge such as earth and sand, iron rust, corrosion products, slime, etc. adhere to the inner surface, which reduces the heat transmission coefficient (heat transfer performance) and deteriorates the thermal efficiency of the condenser.

このために、従来より、冷却水として海水等を使用した
復水器における銅合金製の復水器管の管理は、(イ)冷
却水による腐食の防止と、(ロ)種々の懸濁物の付着や
腐食生成物の堆積による伝熱性能の低下防止の両面から
為されてきている。
For this reason, the management of copper alloy condenser pipes in condensers that use seawater, etc. as cooling water has traditionally been carried out to (a) prevent corrosion caused by the cooling water, and (b) prevent various suspended particles. This has been done to prevent deterioration in heat transfer performance due to the adhesion of corrosion products and the accumulation of corrosion products.

即ち、前者については、鉄イオンとしての硫酸第一鉄の
注入が、また後者については、スポンジボール(S B
)による洗浄が極めて有効であることが判明しており、
それらの対策が適宜に採用されているのである。
That is, for the former, injection of ferrous sulfate as iron ions is used, and for the latter, sponge balls (S B
) has been found to be extremely effective.
These measures are being adopted as appropriate.

ところで、防食性能は、硫酸第一鉄等の添加によって生
じる鉄イオンによって形成される水酸化第二鉄からなる
皮膜(防食皮膜)によって著しく向上せしめられ得るが
、同時に伝熱性能が低下することが知られており、一方
伝熱性能は、スポンジボール洗浄によって向上せしめら
れ得るが、上記防食皮膜を除去し過ぎると、防食性能が
低下して、腐食の発生を招くという不安定さがあり、信
軌性に欠ける問題があることが広く認められている。
By the way, anticorrosion performance can be significantly improved by a film made of ferric hydroxide (anticorrosion film) formed by iron ions generated by the addition of ferrous sulfate, etc., but at the same time, heat transfer performance may be reduced. On the other hand, heat transfer performance can be improved by sponge ball cleaning, but if the anti-corrosion coating is removed too much, the anti-corrosion performance will decrease and corrosion may occur, resulting in instability. It is widely acknowledged that there are problems with poor trajectory.

このため、従来では、これら両性能を満足させるため、
ラボテストや実機運転実績に基づき、予め設定した硫酸
第一鉄注入条件とスポンジボール洗浄条件の下に復水器
の運転を行ない、そして定期検査等の結果によって漸次
修正していく方式を採用しているのであるが、冷却水と
しての海水等の水質の性状は必ずしも一定したものでは
な(、それ故、予め設定した条件下で運転を継続するこ
とは、管内面状態を耐食性と伝熱性に関し、最適状態に
維持する上において適当とは言えるものではなかったの
である。
For this reason, conventionally, in order to satisfy both of these performances,
Based on laboratory tests and actual operating results, we operate the condenser under preset ferrous sulfate injection conditions and sponge ball cleaning conditions, and then make adjustments gradually based on the results of periodic inspections. However, the quality of water used as cooling water, such as seawater, is not necessarily constant (therefore, continuing operation under preset conditions will affect the inner surface condition of the pipes in terms of corrosion resistance and heat transfer properties). It could not be said to be suitable for maintaining the optimum condition.

そこで、本発明者らは、先に、特願昭60−26769
9号等として、復水器に装着されている銅合金製の復水
器管の耐食性と防汚性(伝熱性)を、それぞれ分極抵抗
値及び清浄度によって評価することとし、かかる分極抵
抗値を直接に且つ連続的に検出して、その経時的変化を
知ると共に、その清浄度の経時的な変化を検出し、復水
器管の伝熱性能を直接的に測定して、それら両特性値を
第1図におけるY軸、Y軸にプロットし、そして冷却水
水質に応じて予め設定した図中の斜線部、即ち最適性能
範囲に維持するために、復水器に設備されている鉄イオ
ン注入装置及びスポンジボール(SB)洗浄装置を作動
せしめるようにした性能管理システムを提案した。
Therefore, the present inventors first applied the patent application No. 60-26769.
As No. 9, etc., the corrosion resistance and antifouling property (heat conductivity) of the copper alloy condenser tube installed in the condenser are evaluated by the polarization resistance value and cleanliness, respectively. Directly and continuously detects the change in its cleanliness over time, detects the change in cleanliness over time, directly measures the heat transfer performance of the condenser tube, and determines both of these characteristics. The values are plotted on the Y-axis and Y-axis in Figure 1, and the iron installed in the condenser is plotted in the shaded area in the diagram, which is preset according to the cooling water quality, in order to maintain the optimal performance range. We proposed a performance management system that operates an ion implanter and a sponge ball (SB) cleaning device.

要するに、かかる復水器管の性能管理システムは、鉄イ
オン注入により分極抵抗値を高め、またスポンジボール
洗浄にて清浄度を高めるものであうで、従って両防食・
防汚設備を有するプラントの復水器において有利に採用
し得るシステムであったのである。
In short, such a performance management system for condenser tubes increases the polarization resistance value by iron ion implantation, and increases the cleanliness by sponge ball cleaning.
This system could be advantageously employed in condensers of plants equipped with antifouling equipment.

しかしながら、今日における海水等の冷却水についての
水処理の規制の関係から、鉄イオン注入の出来ない、或
いは極めて低濃度の注入しか許可されていない、鉄イオ
ン注入量の制約されたプラントが存在し1.今後、その
ようなプラントが増える傾向にある。而して、このよう
なプラントに対して、上記の性能管理システムを適用し
た場合においては、実際上、管理可能となるのはY軸の
清浄度だけであって、Y軸の分極抵抗値については充分
管理出来るとは言い難い。
However, due to current water treatment regulations regarding cooling water such as seawater, there are plants that are unable to implant iron ions, or are only allowed to implant iron ions at extremely low concentrations, and are restricted in the amount of iron ions that can be implanted. 1. The number of such plants is likely to increase in the future. Therefore, when the above performance management system is applied to such a plant, in reality, only the cleanliness of the Y-axis can be managed, and the polarization resistance value of the Y-axis can be controlled. It is difficult to say that it can be adequately managed.

そのような状態下において、仮に、第1図の斜線で示さ
れる領域を与える条件のうち、清浄度を優先させて運転
した場合、SB洗浄による防食皮膜の破壊の結果、第1
図に示される、a−43、−)a2 ・・・−a、の如
き軌跡を辿りながら分極抵抗値の低い状態に至り、腐食
発生の危険性が高くなる問題を惹起する。なお、ここで
、a点は、初期防食皮膜形成時の値である。また、清浄
度の低下は、土砂の持ち込み、スライム質の付着、腐食
生成物の形成、マンガン酸化物の付着等によるものであ
る。一方、分極抵抗値を優先或いは維持する運転は、清
浄度の大幅な低下を招くため、上記の性能管理システム
の適用外となって、成立しなくなってしまうのである。
Under such conditions, if the operation is performed with priority given to cleanliness among the conditions that give the area shown by the diagonal lines in Fig. 1, the first
While following the trajectory shown in the figure, such as a-43, -) a2 . Note that here, point a is the value at the time of initial corrosion protection film formation. In addition, the decrease in cleanliness is due to the introduction of earth and sand, the adhesion of slime, the formation of corrosion products, the adhesion of manganese oxides, and the like. On the other hand, an operation that prioritizes or maintains the polarization resistance value causes a significant drop in cleanliness, and is therefore not applicable to the above-mentioned performance management system.

何れにしても、上記の如き3.+3t ・・・→a6の
パターンで運転した場合において、復水器管には、激し
い局部潰食の生じることが考えられるところから、上記
した如き制約された水処理条件下でのプラントについて
は、従来とは異なる運転パターンを確立する必要がある
ことが要請されているのである。
In any case, 3. +3t ...→a6 When operating in the pattern shown above, severe local erosion is likely to occur in the condenser pipes, so for plants under the restricted water treatment conditions described above, There is a need to establish a driving pattern different from the conventional one.

(解決手段) ここにおいて、本発明は、上記の如き事情を背景にして
、そこに内在する問題を解消すべく為されたものであっ
て、本発明者らによる鋭意研究の結果、海水、河海水、
河水等を冷却水とする銅合金製の復水器管において、(
a)スポンジボール(SB)の通過が潰食を生じさせる
こと、(b)SBの通過個数、洗浄間隔が潰食深さに影
響し、通過個数が多い程且つ洗浄間隔が短い程、潰食深
さが増大すること、(c)SB通過総数が同一の場合、
洗浄間隔が長く且つ一回の洗浄にて通過する38個数が
多い方が、洗浄間隔が短く且つ一回の洗浄にて通過する
38個数が少ない方より、潰食深さが浅いこと等の知見
を得て、完成されたものである。
(Solution Means) The present invention has been made in order to solve the problems inherent therein against the background of the above-mentioned circumstances, and as a result of intensive research by the present inventors, it has been found that seawater, river seawater,
In copper alloy condenser pipes that use river water, etc. as cooling water, (
a) The passage of sponge balls (SB) causes erosion; (b) The number of SBs passing through and the cleaning interval affect the depth of erosion; the larger the number of SBs passing and the shorter the cleaning interval, the more the erosion If the depth increases, (c) the total number of SB passes is the same,
Knowledge that the depth of erosion is shallower when the cleaning interval is longer and the number of 38 pieces that pass in one cleaning is greater than when the cleaning interval is short and the number of 38 pieces that pass in one cleaning is smaller. It has been completed by obtaining the following.

すなわち、本発明は、復水器に装着されて、管内に海水
、河海水、河水などが冷却水として流通せしめられる銅
合金製の復水器管の性能を維持、管理する方法において
、かかる復水器管の分極抵抗値及び清浄度をそれぞれ測
定する一方、設定された清浄度の基準値の上下に±15
%を越えない割合で且つ上限が95%を越えないように
清浄度緩衝幅を設け、そして前記測定される分極抵抗値
が3000Ω・elf”を下田ることがないようにして
、前記清浄度の測定値が該清浄度緩衝幅の下限に達した
ときに前記復水器管の内面に対するスポンジボール洗浄
操作を開始する一方、該清浄度緩衝幅の上限に達したと
きに該スポンジボール洗浄操作を停止せしめ、そしてそ
の停止状態を前記清浄度測定値が該清浄度緩衝幅の下限
に達するまで保持することを特徴とする銅合金製復水器
管の性能管理方法にある。
That is, the present invention provides a method for maintaining and managing the performance of a copper alloy condenser pipe that is attached to a condenser and allows seawater, river seawater, river water, etc. to flow through the pipe as cooling water. While measuring the polarization resistance value and cleanliness of the water pipe, ±15% above and below the set cleanliness standard value.
% and the upper limit does not exceed 95%, and the measured polarization resistance value does not fall below 3000 Ω・elf''. The sponge ball cleaning operation for the inner surface of the condenser tube is started when the measured value reaches the lower limit of the cleanliness buffer width, and the sponge ball cleaning operation is started when the upper limit of the cleanliness buffer width is reached. The present invention provides a performance management method for a copper alloy condenser tube, characterized by stopping the pipe and maintaining the stopped state until the measured cleanliness value reaches the lower limit of the cleanliness buffer width.

(構成の具体的な説明) ところで、復水器の運転初期において、かかる復水器に
装着される復水器管としての銅合金管の海水等の冷却水
に対する耐食性は、冷却水の通水初期に防食皮膜が形成
された場合、著しく向上することが知られており、また
かかる防食皮膜は、単なる海水等の冷却水の通水によっ
て形成され得る他、好適には冷却水に対する鉄イオンの
注入、実際には硫酸第一鉄等の水溶性鉄化合物の添加、
溶解によって有利に形成され、そしてそのような注入操
作によって、一般に5000Ω・(Jll”以上、好適
には10000Ω・02以上の分極抵抗値を有する皮膜
が、有効な防食皮膜として形成されるものであって、本
発明にあっても、有利には、運転初期に、そのような有
効な防食皮膜が、先ず復水器管の内面に形成されること
となる。なお、このときの復水器管の伝熱特性としての
清浄度は、一般に、対新管比で95%以上に維持される
ように適宜SB洗浄等が施されることとなる。
(Specific explanation of the configuration) By the way, in the initial stage of operation of a condenser, the corrosion resistance of the copper alloy pipe as a condenser pipe installed in such a condenser against cooling water such as seawater is determined by the passage of cooling water. It is known that when an anti-corrosion film is formed in the initial stage, the improvement is markedly improved, and such an anti-corrosion film can be formed simply by passing cooling water such as seawater, or preferably by adding iron ions to the cooling water. injection, actually the addition of water-soluble iron compounds such as ferrous sulfate,
Advantageously formed by melting, and by such injection operations, a coating having a polarization resistance value of generally 5000 Ω·(Jll” or more, preferably 10000 Ω·02 or more) is formed as an effective anticorrosion coating. Therefore, even in the present invention, such an effective anti-corrosion film is advantageously first formed on the inner surface of the condenser tube at the initial stage of operation. In general, cleanliness as a heat transfer property of pipes is maintained at 95% or more compared to new pipes by performing SB cleaning or the like as appropriate.

そして、本発明にあっては、復水器管の内面に上記の如
く運転初期において有効な防食皮膜を適宜に形成した後
、かかる復水器管の分極抵抗値及び清浄度(伝熱特性)
を検出しつつ、平常運転を行ない、その際、本発明に従
って、清浄度基準にて、次のような性能管理運転を行な
うようにしたのである。
In the present invention, after appropriately forming an effective anti-corrosion film on the inner surface of the condenser tube at the initial stage of operation as described above, the polarization resistance value and cleanliness (heat transfer characteristics) of the condenser tube are determined.
While detecting this, normal operation is carried out, and at that time, according to the present invention, the following performance management operation is carried out based on cleanliness standards.

ここにおいて、かかる本発明における分極抵抗値(R:
Ω・cfiI”)は、本発明者らが先に提案した特願昭
60−267699号にも明らかにされているように、
次の(1)式にて定義されるものである。
Here, the polarization resistance value (R:
Ω・cfiI"), as disclosed in Japanese Patent Application No. 60-267699 proposed earlier by the present inventors,
This is defined by the following equation (1).

R= (Eo / ro )t(2yc”a’ / ρ
)・・・ (1) 但し、E6=電気防食電位と自然電位との差(mV):
通常、200mV程度 に設定される ■。=上記電位設定時の復水器管1本当たりの電流(m
A) a −復水器管の内半径(cra ) ρ =冷却水の比抵抗(Ω・am) また、対象となる復水器管の伝熱特性を知る一つの目安
である清浄度(C)は、復水器管の基準熱貫流率(K、
)と実熱貫流率(K1)との比で、次の(2)式にて算
出されるものである。
R= (Eo/ro)t(2yc"a'/ρ
)... (1) However, E6 = difference between cathodic protection potential and natural potential (mV):
Normally, it is set to about 200mV. = Current per condenser tube at the above potential setting (m
A) a - Inner radius of condenser tube (cra) ρ = Specific resistance of cooling water (Ω・am) In addition, cleanliness (C ) is the standard heat transfer coefficient (K,
) and the actual heat transfer coefficient (K1), which is calculated using the following equation (2).

c= (Kt /Ko)xloo (%)・・・ (2
) なお、ここで、基準熱貫流率(Ko)は、次の(3)式
にて求められたものである。
c= (Kt /Ko)xloo (%)... (2
) Here, the reference thermal conductivity (Ko) is determined by the following equation (3).

K0=ct x/V      ・・・ (3)但し、
C,=復水器管の材質及び厚さより決まる定数 ■=復水器管内平均流速 また、実熱貫流率(K、)は、次の(4)式にて計算さ
れることとなる。
K0=ct x/V... (3) However,
C,=constant determined by the material and thickness of the condenser tube ■=average flow velocity in the condenser tube Also, the actual heat transfer coefficient (K,) is calculated by the following equation (4).

K1− (wx rXCpX(tz  L+))/(A
s×θ、)・・・ (4) 但し、W=冷却水流量 r=冷却管用道 C,=冷却水比熱 t2−冷却水出口温度 り、=冷却入口温度 A、=冷却面積 θ0=対熱平均温度差 さらに、かかる(4)式におけるθ1は、次の(5)式
にて計算されることとなる。
K1- (wx rXCpX(tz L+))/(A
s×θ, )... (4) However, W = Cooling water flow rate r = Cooling pipe path C, = Cooling water specific heat t2 - Cooling water outlet temperature R, = Cooling inlet temperature A, = Cooling area θ0 = Heat counter Furthermore, the average temperature difference θ1 in the equation (4) is calculated using the following equation (5).

θ@ =(tz−11)/れ((t s−t +)/(
’t s−t z))・・・ (5) 但し、1.=ホットウェル温度 なお、かかる清浄度に代わる伝熱性能に関する尺度(目
安)として、復水器に装着された復水器管の外側の復水
部の真空度を用いることも可能であり、この真空度の低
下の度合を清浄度の値として代用することも可能である
。何れにせよ、清浄度、ひいては伝熱性能の変化の状態
は、機器に通常取り付けられている温度計、真空計、流
量計等によって把握可能である。
θ@ = (tz-11)/re((t s-t +)/(
't s-t z))... (5) However, 1. = Hot well temperature Note that it is also possible to use the degree of vacuum of the condensate section outside the condenser tube attached to the condenser as a measure (guideline) regarding heat transfer performance in place of the cleanliness. It is also possible to substitute the degree of decrease in the degree of vacuum as the value of cleanliness. In any case, changes in cleanliness and heat transfer performance can be ascertained using thermometers, vacuum gauges, flow meters, etc. that are normally attached to equipment.

そして、本発明にあっては、予め、復水器に装着された
復水器管の清浄度の基準値が設定されるのである。この
清浄度の基準値とは、復水器管が付着物で成る程度汚れ
た場合にあっても、機器(復水器)の所定の性能が充分
発揮出来る値であって、通常新管の有する清浄度(伝熱
性能値)の75〜90%、多くは85%程度の値が採用
されることとなる。
According to the present invention, a reference value of the cleanliness of the condenser tube installed in the condenser is set in advance. This cleanliness standard value is a value that allows the equipment (condenser) to fully demonstrate the specified performance even if the condenser pipe is dirty with deposits, and is usually used for new pipes. A value of 75 to 90%, often about 85%, of the cleanliness (heat transfer performance value) is adopted.

本発明は、かかる清浄度の基準値に対して、その上下に
所定の緩衝幅を設けて、その下限において、スポンジボ
ール(S B)洗浄装置をONせしめ、SB洗浄操作が
開始されるようにする一方、SB洗浄操作の進行につれ
て清浄度が上昇し、緩衝幅の上限に達したときにSB洗
浄装置をOFFと為し、SB洗浄操作が停止せしめられ
るように為し、そしてその停止状態を清浄度の測定値が
緩衝幅の下限に達するまで続行、保持するようにしたの
である。
The present invention provides a predetermined buffer width above and below the cleanliness reference value, and at the lower limit, the sponge ball (SB) cleaning device is turned on and the SB cleaning operation is started. On the other hand, as the SB cleaning operation progresses, the cleanliness increases, and when the upper limit of the buffer width is reached, the SB cleaning device is turned off, the SB cleaning operation is stopped, and the stopped state is The test was continued and held until the measured cleanliness value reached the lower limit of the buffer width.

すなわち、本発明は、銅合金製の復水器管の性能管理に
際して、清浄度を基準にして運転し、そしてその際、S
B洗浄装置の0N−OFF間に所定の緩衝幅を設けるよ
うにしたものであって、それ成木発明手法では、第1図
に示されるY軸(分極抵抗値)の管理は行なわれず、X
軸(?ff浄度)のみの管理となるのである。そして、
第1図の如きtu浄度の設定値(ここでは85%)を挟
んでのSB洗浄装置の0N−OFF制御方式では、洗浄
間陪が短く、且つ一回の洗浄にて通過する38個数が少
ないSB洗浄パターンとなるのに対して、かかる設定値
を挟んで、その上下に緩衝ゾーンを設けることによって
洗浄間隔が長くなり、且つ一回の洗浄にて通過する38
個数も多くなるSB洗浄パターンにて運転することが可
能となるのである。要するに、本発明は、例えば、第2
図に示される如く、清浄度の設定値(85%)に対して
緩衝ゾーンの幅を±5%とした場合において、その下限
値の80%を下廻った時点でSB洗浄装置を作動(ON
)させ、そしてかかる設定値を越え、その上限値の90
%を越えた時点でSB洗浄装置をOFFとして、このパ
ターンを繰り返すようにしたものである。
That is, the present invention operates based on cleanliness in performance management of copper alloy condenser pipes, and at that time, S
A predetermined buffer width is provided between ON and OFF of the B cleaning device, and in the method of the invention, the Y axis (polarization resistance value) shown in FIG. 1 is not managed, and the X
Only the axis (?ff cleanliness) is managed. and,
In the ON-OFF control method of the SB cleaning device using the set value of tu cleanliness (here 85%) as shown in Fig. 1, the interval between cleaning is short and the number of particles passing through in one cleaning is 38. In contrast to the SB cleaning pattern with fewer SB cleaning patterns, by providing a buffer zone above and below the set value, the cleaning interval becomes longer and the SB cleaning pattern passes through in one cleaning.
This makes it possible to operate with the SB cleaning pattern, which increases the number of cleaning devices. In short, the present invention, for example,
As shown in the figure, when the width of the buffer zone is ±5% with respect to the cleanliness set value (85%), the SB cleaning device is activated (ON) when the width falls below 80% of the lower limit value.
), and exceeds the set value, and exceeds the upper limit of 90
%, the SB cleaning device is turned off and this pattern is repeated.

なお°、かかる本発明において、清浄度の基準値に対し
て設定される緩衝幅は、かかる基準値に対して、その上
下の115%以内である必要がある。
In addition, in the present invention, the buffer width set with respect to the standard value of cleanliness must be within 115% above and below the standard value.

この緩衝幅が余りにも広くなると、SB洗浄に、よる性
能回復に長時間を要し、−回の洗浄個数が増加するよう
になる上、性能不良期間が長くなることによって、復水
器の運転コスト上において不利となる問題が惹起される
。また、かかる緩衝幅は、一般に、基準値に対して±5
%程度以上となるような値において定められることが望
ましく、これによっ°ζ、本発明に従う有効な緩衝幅に
よるSB洗浄装置の0N−OFF制御が有利に行なわれ
得ることとなる。なお、清浄度の基準値が80%(75
%)の場合において、0N−OFF制御範囲は95〜6
5%(90〜60%)となって、その下限値は基準値に
対して相当低くなるが、そのような下限値は、復水器性
能からみて短期間であれば許容し得る値である。
If this buffer width becomes too wide, it will take a long time for performance recovery due to SB cleaning, the number of cleanings will increase, and the period of poor performance will become longer, resulting in lower condenser operation. This causes disadvantageous problems in terms of cost. In addition, the buffer width is generally ±5 relative to the reference value.
It is preferable that the value is set at a value of approximately % or more, and thereby the ON-OFF control of the SB cleaning device using the effective buffer width according to the present invention can be advantageously performed. The standard value of cleanliness is 80% (75%).
%), the 0N-OFF control range is 95 to 6
5% (90-60%), which is considerably lower than the standard value, but such a lower limit is an acceptable value for a short period of time in terms of condenser performance. .

また、本発明にあっては、上記の緩衝幅の上限は95%
とすることが必要である。けだし、清浄度の上昇と共に
SB洗浄個数を増加させても、清浄度は比例的には上昇
せず、一方腐食深さはSB洗浄個数と共に深くなるから
である。従って、かかる上限値が95%を越えるように
なると、腐食−伝熱性能のバランスからみて、不利とな
るのである。
Further, in the present invention, the upper limit of the buffer width is 95%.
It is necessary to do so. However, even if the number of SB cleaning increases as the cleanliness increases, the cleanliness does not increase proportionally, and on the other hand, the corrosion depth increases with the number of SB cleaning. Therefore, if this upper limit exceeds 95%, it will be disadvantageous from the viewpoint of the balance between corrosion and heat transfer performance.

さらに、本発明にあっては、上記の如き清浄度基準によ
る所定の緩衝幅内でのSB洗浄装置の0N−OFF制御
に際して、復水器管の分極抵抗値が3000Ω・cII
+2を下田ることがないようにして、そのような0N−
OFF制御操作が実施されて、測定された分極抵抗値が
3000Ω・cm2よりも低くなった場合においては、
清浄度の如何に拘わらず、SB洗浄操作が停止せしめら
れることとなる。この分極抵抗値が低くなり過ぎると、
激しい局部潰食が惹起される虞が生じるからである。
Furthermore, in the present invention, when performing ON-OFF control of the SB cleaning device within a predetermined buffer width according to the cleanliness standard as described above, the polarization resistance value of the condenser tube is 3000Ω·cII.
+2 should not be lowered and such 0N-
If the OFF control operation is performed and the measured polarization resistance value becomes lower than 3000Ω・cm2,
Regardless of the cleanliness level, the SB cleaning operation will be stopped. If this polarization resistance value becomes too low,
This is because there is a possibility that severe local ulceration may be induced.

なお、本発明にあっては、上記の如き操作において、−
回当たりのSB通過個数が復水器管の一本当たり50個
以上、または連続洗浄時間が5時間以上にも及ぶ場合に
あっては、腐食の進行が大となるところから、SB洗浄
操作を停止することが望ましく、また−日一回を越える
SB洗浄操作や一週間に4回を越えるSB洗浄操作は実
施しないことが望ましい。けだし、余りにも多数回のS
B洗浄操作は腐食の進行を大ならしめることとなるから
である。
In addition, in the present invention, in the above operation, -
If the number of SBs passing through each condenser pipe is 50 or more, or if the continuous cleaning time is 5 hours or more, the SB cleaning operation will increase the progress of corrosion. It is desirable to stop the SB cleaning operation, and it is also desirable not to perform the SB cleaning operation more than once a day or more than four times a week. Unfortunately, S too many times
This is because the cleaning operation B increases the progress of corrosion.

また、本発明に従うSB(スポンジボール)洗浄は、従
来から用いられているものと同様なスポンジボール、一
般に復水器管の管内径よりも2鰭程度大きな直径を有す
るスポンジボールを用いて、その適数個が海水等の冷却
水と共に復水器管内に流入、通過せしめられ、以て目的
とする管内面の清浄化を図るようにしたものである。
In addition, the SB (sponge ball) cleaning according to the present invention uses a sponge ball similar to that conventionally used, which generally has a diameter about two fins larger than the inner diameter of the condenser pipe. A suitable number of them are allowed to flow into and pass through the condenser pipe together with cooling water such as seawater, thereby cleaning the inner surface of the pipe.

(実施例) 以下に、本発明に従う幾つかの実施例を、比較例と共に
示して、本発明を更に具体的に明らかにするが、本発明
が、それらの実施例の記載によって、何等の制約をも受
けるものでないことは、言うまでもないところである。
(Examples) Below, some examples according to the present invention will be shown together with comparative examples to clarify the present invention more specifically. Needless to say, this is not something that can be accepted.

また、本発明には、以下の実施例の他にも、更には上記
の具体的記述以外にも、本発明の趣旨を逸脱しない限り
において、当業者の知識に基づいて種々なる変更、修正
、改良等を加え得るものであることが、理解され4べき
である。
In addition to the following examples and the above-mentioned specific description, the present invention includes various changes, modifications, and changes based on the knowledge of those skilled in the art, as long as they do not depart from the spirit of the present invention. It should be understood that improvements may be made.

外径:25.4mm、肉厚:1.245龍、長さ;15
00龍のアルミニウム黄銅管(JIS−H3300−C
6871;復水器用継目無黄銅管)を復水器管試料とし
て用いて、特願昭60−267699号と同様な復水器
モデルにセットせしめ、それぞれの供試管の分極抵抗値
及び清浄度を前記(1)式及び(2)式に従ってモニタ
ーしつつ、下記第1表に示される運転パターンの下に、
以下の如き海水水質及び期間にて運転せしめた。なお、
管内を通過せしめられたSB(スポンジボール)は、2
611φの中硬質のもの(タブロゲ社製)を用いた。ま
た、試料11h2〜5のものにあっては、運転中、1回
当りのSB通過個数が管1本当り50個以上、またはS
B洗浄装置運転時間が5時間以上に及ぶ場合にあっては
、SB洗浄操作を停止し、また1日1回を越える、また
1週4回を越えるSB洗浄操作は実施しないこととした
Outer diameter: 25.4 mm, wall thickness: 1.245 mm, length: 15
00 dragon aluminum brass tube (JIS-H3300-C
6871; Seamless Brass Pipe for Condenser) was used as a condenser tube sample and set in the same condenser model as in Japanese Patent Application No. 60-267699, and the polarization resistance and cleanliness of each test tube were determined. While monitoring according to formulas (1) and (2) above, under the driving pattern shown in Table 1 below,
It was operated under the following seawater quality and duration. In addition,
The SB (sponge ball) passed through the pipe is 2
A medium-hard one (manufactured by Tabloge) with a diameter of 611 was used. In addition, for samples 11h2 to 5, during operation, the number of SB passages per tube was 50 or more, or
If the operating time of the B cleaning device exceeds 5 hours, the SB cleaning operation will be stopped, and the SB cleaning operation will not be performed more than once a day or more than 4 times a week.

第   1   表 海水水質:管内面?R浄変度低下大きくするために、天
然の正常な自然海水(塩素無 処理)に1日2時間、粒径:5μm 以下のケイ砂を混入させた。ケイ砂 の濃度は500ppmであった。ま た、かかるケイ砂混入中を挟み、1 日5時間のみ流速0.5m/秒にて運 転し、スライムの付着を促した。な お、それ以外の時間帯には、天然海 水を2 m / sにて通水した。上記第1表にて示さ
れる運転パターンは、 流速:2m/sの時間帯を対象にし た。
Part 1: Surface seawater quality: Inside the pipe? In order to increase the reduction in R cleanliness, silica sand with a particle size of 5 μm or less was mixed into normal natural seawater (untreated with chlorine) for 2 hours a day. The concentration of silica sand was 500 ppm. In addition, during the time when the silica sand was being mixed, the system was operated at a flow rate of 0.5 m/sec for 5 hours a day to promote slime adhesion. At other times, natural seawater was passed through at a rate of 2 m/s. The operation pattern shown in Table 1 above was aimed at a time period where the flow velocity was 2 m/s.

期間:上記の諸条件下にて、3月より10月に至る7ケ
月間、略連続して通水した。
Period: Under the above conditions, water was passed almost continuously for 7 months from March to October.

その結果、下記第2表に示されるようなSB通過回数及
び個数、スライム付着量扮極抵抗値、清浄度、腐食深さ
を得た。そして、この結果から明らかなように、本発明
に従う運転パターンにて性能管理された試料11h2,
3.4、特に1lh3は2、耐食性、伝熱性共良好であ
ることが認められた。
As a result, the number and number of SB passages, amount of slime adhesion, ultimate resistance value, cleanliness, and corrosion depth as shown in Table 2 below were obtained. As is clear from this result, samples 11h2 and 11h2, whose performance was controlled using the operating pattern according to the present invention,
3.4, especially 1lh3 was found to have good corrosion resistance and heat conductivity of 2.

しかるに、比較例としての試料患1及び5は、腐食深さ
が大きく、実用不可であり、またSB無洗浄の試料隘6
は清浄度の低下が大きく、更に分極抵抗値・清浄度の測
定値に基づく運転が行なわれなかった試料N17にあっ
ては、本発明に従う階2〜4の何れのものに比しても、
清浄度、ひいては伝熱性能、更には腐食深さにおいて劣
るものであった。
However, Samples 1 and 5 as comparative examples had a large corrosion depth and were not practical.
In sample N17, which had a large decrease in cleanliness, and in which operation was not performed based on the measured values of polarization resistance and cleanliness, compared to any of the samples on floors 2 to 4 according to the present invention,
The cleanliness, heat transfer performance, and corrosion depth were poor.

第  2  表 (発明の効果) 以上の説明から明らかなように、本発明は、それぞれ測
定される分極抵抗値及び清浄度によって復水器管の内面
の耐食性や伝熱性能を評価し、管内面の性能乃至は状態
を維持するようにしたシステムにおいて、清浄度基準に
て運転するように為し、その際、所定の緩衝幅内におい
て、スポンジボール(SB洗浄設備)のオン−オフ(O
N−OFF)操作を行なわしめるようにしたものであっ
て、これにより、冷却水への鉄イオンの注入に厳しい制
約を受ける条件下においても、復水器管内面の表面状態
を防食性と伝熱性の面から最適状態に維持することが出
来ることとなり、以て腐食に伴なう損害や伝熱性能低下
に伴なう燃料費の増大の問題等を効果的に解消せしめ得
たものであって、そこに、本発明の大きな工業的意義が
存するのである。
Table 2 (Effects of the Invention) As is clear from the above explanation, the present invention evaluates the corrosion resistance and heat transfer performance of the inner surface of the condenser tube based on the measured polarization resistance value and cleanliness, and The system is designed to maintain the performance or condition of the sponge ball (SB cleaning equipment) and is operated according to the cleanliness standard, and at that time, the on-off (O
This allows the surface condition of the inner surface of the condenser tube to maintain corrosion resistance and conductivity even under conditions where iron ion injection into the cooling water is severely restricted. This makes it possible to maintain the optimum state from a thermal standpoint, effectively solving problems such as damage caused by corrosion and increased fuel costs due to decreased heat transfer performance. This is where the present invention has great industrial significance.

そして、このような本発明に従う運転システムは、鉄イ
オン無注入プラント(初期防食皮膜形成は除く)或いは
鉄イオンの注入量がその有効限界を下田るプラント、例
えば1Qppb以下の注入濃度で連続的に注入されるプ
ラントや鉄イオン注入による防食皮膜形成が不良なプラ
ント等に有利に採用され得ることとなったのである。
The operating system according to the present invention is suitable for plants without iron ion implantation (excluding initial anticorrosive film formation) or plants where the amount of iron ion implanted exceeds its effective limit, for example, continuously at an implantation concentration of 1Qppb or less. This means that it can be advantageously employed in plants where iron ions are implanted or in which the formation of an anticorrosive film by iron ion implantation is poor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、分極抵抗値と清浄度によって復水器管の性能
管理を行なう一例を示すグラフであり、第2図は、本発
明に従う清浄度の緩衝幅の一例を示すグラフである。 出願人  住友軽金属工業株式会社 第1因 篤2区 1汁度(@ム)
FIG. 1 is a graph showing an example of performance management of a condenser tube based on polarization resistance value and cleanliness, and FIG. 2 is a graph showing an example of cleanliness buffer width according to the present invention. Applicant Sumitomo Light Metal Industries Co., Ltd. No. 1 Cause 2 Ward 1 Judo (@mu)

Claims (1)

【特許請求の範囲】[Claims] 復水器に装着されて、管内に海水、河海水、河水などが
冷却水として流通せしめられる銅合金製の復水器管の性
能を維持、管理する方法にして、かかる復水器管の分極
抵抗値及び清浄度をそれぞれ測定する一方、設定された
清浄度の基準値の上下に±15%を越えない割合で且つ
上限が95%を越えないように清浄度緩衝幅を設け、そ
して前記測定される分極抵抗値が3000Ω・cm^2
を下廻ることがないようにして、前記清浄度の測定値が
該清浄度緩衝幅の下限に達したときに前記復水器管の内
面に対するスポンジボール洗浄操作を開始する一方、該
清浄度緩衝幅の上限に達したときに該スポンジボール洗
浄操作を停止せしめ、そしてその停止状態を前記清浄度
測定値が該清浄度緩衝幅の下限に達するまで保持するこ
とを特徴とする銅合金製復水器管の性能管理方法。
A method for maintaining and managing the performance of a copper alloy condenser tube that is attached to a condenser and allows seawater, river seawater, river water, etc. to flow as cooling water in the tube, and to polarize the condenser tube. While measuring the resistance value and cleanliness, a cleanliness buffer width is provided above and below the set cleanliness standard value at a rate not exceeding ±15% and so that the upper limit does not exceed 95%, and the above measurement. The polarization resistance value is 3000Ω・cm^2
starts a sponge ball cleaning operation on the inner surface of the condenser tube when the measured cleanliness reaches the lower limit of the cleanliness buffer width, while A copper alloy condensate characterized in that the sponge ball cleaning operation is stopped when the upper limit of the width is reached, and the stopped state is maintained until the measured cleanliness value reaches the lower limit of the cleanliness buffer width. How to manage the performance of organs.
JP29715387A 1987-11-25 1987-11-25 Performance control method of condenser tube made of copper alloy Expired - Lifetime JPH0660797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29715387A JPH0660797B2 (en) 1987-11-25 1987-11-25 Performance control method of condenser tube made of copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29715387A JPH0660797B2 (en) 1987-11-25 1987-11-25 Performance control method of condenser tube made of copper alloy

Publications (2)

Publication Number Publication Date
JPH01139998A true JPH01139998A (en) 1989-06-01
JPH0660797B2 JPH0660797B2 (en) 1994-08-10

Family

ID=17842883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29715387A Expired - Lifetime JPH0660797B2 (en) 1987-11-25 1987-11-25 Performance control method of condenser tube made of copper alloy

Country Status (1)

Country Link
JP (1) JPH0660797B2 (en)

Also Published As

Publication number Publication date
JPH0660797B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
Kazi Fouling and fouling mitigation on heat exchanger surfaces
JPS62129698A (en) Anticorrosion and antidirt control device for condenser
SE1150545A1 (en) Dispersant application for cleaning recirculation paths of a power generating plant at startup
JPH01139998A (en) Control of performance of condenser tube made of copper alloy
JPH0561558B2 (en)
JP2009216289A (en) Plant protecting method
JP2005200721A (en) Treatment method for open circulating cooling water system
Kazi et al. Fiber-modified scaling in heat transfer fouling mitigation
Perez et al. Scale prevention at high LSI, high cycles, and high pH without the need for acid feed
Kahler et al. A New Method for the Protection of Metals Against Pitting, Tuberculation and General Corrosion
JP2004132636A (en) Corrosion inhibition method of iron-based metal
Kahler et al. Protection of Metals against Pitting, Tuberculation, and General Corrosion. Combined Phosphate-Chromate Treatment.
Liu et al. Combined use of an electronic antifouling technology and brush punching for scale removal in a water-cooled plain tube
Karlsdottir et al. Corrosion Testing of Heat Exchanger Tubes in Steam from the IDDP-1 Exploratory Geothermal Well in Krafla, Iceland.
TWI786339B (en) Anti-corrosion method for metal components of cooling water system
CN116062913A (en) Friction nano generator and copper-based catalyst alloy collaborative scale prevention device
Tianqing et al. Fouling induction period of CaCO3 on heated surface
JP4456387B2 (en) Anticorrosion method for copper water piping.
JP2005098694A (en) Heat exchanging system between solid and fluid
Shah Compact heat exchangers for the process industries
Sakai Cause of pitting corrosion in copper tubes of air-conditioning coils in open heat-storage water tank systems
JPS63302299A (en) Method and facility for controlling corrosionproofing and mechanical cleaning of heat transfer tube
Moradian et al. Investigation on the Water Index Stability in the Direct Reduced Iron (DRI) Plant-ARFA Iron and Steelmaking Company
JP4799151B2 (en) Pitting corrosion resistant copper or copper alloy tube
Cho et al. Experimental validation of electronic anti-fouling technology with a plate heat exchanger