JPS63302299A - Method and facility for controlling corrosionproofing and mechanical cleaning of heat transfer tube - Google Patents
Method and facility for controlling corrosionproofing and mechanical cleaning of heat transfer tubeInfo
- Publication number
- JPS63302299A JPS63302299A JP3730588A JP3730588A JPS63302299A JP S63302299 A JPS63302299 A JP S63302299A JP 3730588 A JP3730588 A JP 3730588A JP 3730588 A JP3730588 A JP 3730588A JP S63302299 A JPS63302299 A JP S63302299A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- measuring
- detector
- coolant
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004140 cleaning Methods 0.000 title claims description 39
- 238000012546 transfer Methods 0.000 title claims description 28
- 238000000034 method Methods 0.000 title claims description 11
- 238000001816 cooling Methods 0.000 claims description 43
- 239000002826 coolant Substances 0.000 claims description 34
- 238000005259 measurement Methods 0.000 claims description 24
- 230000007797 corrosion Effects 0.000 claims description 21
- 238000005260 corrosion Methods 0.000 claims description 21
- 239000000126 substance Substances 0.000 claims description 19
- 230000010287 polarization Effects 0.000 claims description 18
- 239000012530 fluid Substances 0.000 claims description 9
- 238000004210 cathodic protection Methods 0.000 claims description 6
- 238000009434 installation Methods 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 5
- 230000003313 weakening effect Effects 0.000 claims description 5
- 230000003628 erosive effect Effects 0.000 claims description 4
- 239000011241 protective layer Substances 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 239000010410 layer Substances 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims 4
- 230000005494 condensation Effects 0.000 claims 2
- 238000009833 condensation Methods 0.000 claims 2
- 230000003213 activating effect Effects 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000003990 capacitor Substances 0.000 claims 1
- 230000002708 enhancing effect Effects 0.000 claims 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims 1
- 239000002344 surface layer Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 6
- 238000011109 contamination Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 230000003750 conditioning effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000009529 body temperature measurement Methods 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910000358 iron sulfate Inorganic materials 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000011538 cleaning material Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012407 engineering method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- -1 iron ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B11/00—Controlling arrangements with features specially adapted for condensers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/704—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
- G01F1/708—Measuring the time taken to traverse a fixed distance
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、分極抵抗を測定し、抵抗限界値を下回ると
防食を向上する化学手段または電気手段を活性化しまた
は強め、抵抗限界値を上回ると前記手段を非活性化しま
たは弱め、そして/または、蒸気から冷却剤への熱伝達
率を測定後、限界値を下回る場合清浄体の清浄循環を開
始させ、そして限界値を上回ると停止烙せ、または清浄
循環を強めそして弱めて伝熱管、特に発電所冷却管の防
食および/または清浄体により行う機械的清浄を制御す
る方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention measures the polarization resistance and activates or intensifies chemical or electrical means to improve corrosion protection when the resistance limit is exceeded. and/or deactivating or weakening said means and/or after measuring the heat transfer coefficient from the steam to the coolant, starting a cleaning cycle of the cleaning body if it is below a limit value and stopping it if it is above a limit value. or to a method for controlling corrosion protection and/or mechanical cleaning by means of a cleaning body of heat exchanger tubes, in particular power plant cooling tubes, by strengthening and weakening the cleaning circulation.
この発明は更に、単管または管群の管内壁の受動層また
は他の保護層を点検するだめ分極抵抗を測定する少くと
も1つの装置と、熱交換器の入口範囲にあって保護層の
形成を促進する物質を混和する計量装置または管内壁の
浸食を防ぐ電気式陰極保護装置および/または蒸気から
冷却剤への熱伝達率を測定する装置と、管内壁のデポジ
ットを取り除くため清浄体を冷却剤中に装入して循環さ
せる装置と、各装置の投入頻度、投入時間、投入強度を
決定する制御系とを備え伝熱管、特に発電所冷却管の防
食および/または清浄体により行う機械的清浄を制御す
る設備に関する。The invention further provides at least one device for measuring the polarization resistance for checking the passive layer or other protective layer on the inner wall of a tube or tube group, and for forming a protective layer in the inlet region of the heat exchanger. metering devices to mix in substances that promote oxidation or electrical cathodic protection devices to prevent erosion of the inner pipe walls and/or devices to measure the heat transfer rate from the steam to the coolant and cooling of the cleaning body to remove deposits on the inner pipe walls. Mechanical protection and/or cleaning of heat exchanger tubes, especially power plant cooling pipes, and a control system that determines the charging frequency, charging time, and charging strength of each device. Concerning equipment for controlling cleanliness.
(従来の技術)
防食部のない類似種類の設備が例えば欧州特許出願第3
0459号により知られている。この設備では全復水器
の熱勘定が測定工学的に検出して理想状態と比較される
。両状態間に差異が検出されると清浄体の清浄循環が開
始され、理想状態への十分な接近が達成されるまで継続
される。そこでは復水器の入口と出口、そして蒸気室で
測定が行われる。蒸気室内でのこれらの測定の一つが単
一冷却管の蒸気側での熱、量測定である。(Prior art) A similar type of equipment without a corrosion protection part is disclosed, for example, in European patent application no.
It is known from No. 0459. In this installation, the heat account of all condensers is measured using measurement technology and compared with the ideal state. When a difference is detected between the two conditions, a cleaning cycle of the cleaning body is initiated and continues until a sufficient approach to the ideal condition is achieved. There, measurements are taken at the inlet and outlet of the condenser and at the steam room. One of these measurements within the steam chamber is a heat, quantity measurement on the steam side of a single cooling pipe.
実際の汚れ度について一層正確な手懸りを得るには復水
器の一括検出では間に合わないことが判明した。特に汚
れはしばしば不均一であるので一括検出法は不適である
。それゆえ、復水器の管巣を部分に細分し、1部分内部
で熱勘定を作成することがすでに試みられた(特公昭5
7−14193号、%願昭55−89708 )。そこ
では冷却管の外側、各領域内にやはシ熱量計が設けられ
、復水器の入口および出口内で入口温度、出口温度が一
括して測定される。管巣を介し汚れ度合細分化して測定
することに基づき、測定領域に付属した各種の計量装置
が操作され、これが清浄体を実質的に領域ごとに供給す
る。It was found that batch detection of condensers was not sufficient to obtain a more accurate clue as to the actual degree of contamination. In particular, stains are often non-uniform, making bulk detection methods unsuitable. Therefore, attempts have already been made to subdivide the tube nest of the condenser into parts and create a heat account for each part (Special Publications Publication No. 5).
No. 7-14193, % Application No. 55-89708). There, a calorimeter is installed outside the cooling pipe in each area, and the inlet temperature and outlet temperature are measured at the same time at the inlet and outlet of the condenser. Based on the subdivided measurement of the degree of contamination via the tube nests, various metering devices associated with the measurement area are operated, which supply the cleaning material substantially area by area.
特定の使用条件の下で生物デポジットを駆除することの
できる化学的処理が知られている。Chemical treatments are known that can eliminate biological deposits under certain conditions of use.
類似の処理を利用して硬質沈殿物を減少させることもで
きる。冷却剤の化学的状態調節と並んで、管材料の浸食
を防止する電気系も使用することができる。特に重要な
のは、復水器の管が良好な耐食性のため受動層または表
層を特徴とする特定の材料である場合に腐食作用から保
祷されるのに寄与する水の化学的状態調節である。Similar treatments can also be used to reduce hard precipitates. Along with chemical conditioning of the coolant, electrical systems can also be used to prevent erosion of the tubing. Of particular importance is the chemical conditioning of the water, which contributes to being protected from corrosive effects if the condenser tubes are of certain materials that feature a passive layer or surface layer for good corrosion resistance.
但し表層が厚すぎると勿論熱伝達にとって有害であり、
この点で表層の厚さは防食上必要な最低限に抑えねばな
らない。このことは特に、管内壁に鉄分の多い表層を形
成する鉄イオンを添加する場合に当てはまる。However, if the surface layer is too thick, it is of course harmful to heat transfer.
In this respect, the thickness of the surface layer must be kept to the minimum necessary for corrosion protection. This is particularly true when adding iron ions, which form an iron-rich surface layer on the inner pipe wall.
表層状態の測定KFi特に個々の管について行うことの
できる分極抵抗の測定が有効である。Measuring the surface state KFi In particular, it is useful to measure the polarization resistance, which can be carried out on individual tubes.
その際結果的に冷却剤から管材料内への導電抵抗が測定
される。これまでは冷却剤の化学的状態調節または電気
防食と清浄体を使った機械的清浄とが別々に行われてき
た。As a result, the electrical conduction resistance from the coolant into the tube material is measured. Up to now, chemical conditioning or cathodic protection of the coolant and mechanical cleaning using cleaning bodies have been carried out separately.
(発明が解決しようとする課題)
復水器の領域をW頭述べたように測定工学式に検出する
ことは熱量計を備えた冷却管の流速が未知であることか
ら成果をもたらすことがなかった。例えば熱移動量が測
定される管が不都合な領域にある場合冷却剤は当該管を
ゆっくり流れるだけであり、冷却剤は比較的強く暖めら
れる。それゆえ、管の熱伝達状態に全く問題がないにも
拘らず熱量計は悪い値を表示するととKなる。それに対
し被測定管をごく迅速に貫流する場合には、清浄を必要
とするデポジットをこの管がすでに含み得るにも拘らず
、当該測定信号を惹き起こす大きな熱移動が生ずる。(Problem to be solved by the invention) Detecting the area of the condenser using a measurement engineering method as described above has not yielded results because the flow velocity of the cooling pipe equipped with the calorimeter is unknown. Ta. For example, if the tube in which the heat transfer is to be measured is located in an unfavorable region, the coolant will only flow slowly through the tube and will be warmed up relatively strongly. Therefore, if the calorimeter displays a bad value even though there is no problem with the heat transfer state of the tube, it will be K. If, on the other hand, the flow passes through the tube to be measured very quickly, large heat transfers occur that give rise to the measurement signal, even though this tube may already contain deposits that require cleaning.
そこで本発明の目的は、個々の冷却管の実際の状態を測
定し、そしてその後に設備を稼働するよう冒頭述べた種
類の方法を改善することである。設備に係る目的は、運
転中熱交換器内で管の性状を一層正確に定量する適宜な
測定法を提供することである。The object of the invention is therefore to improve a method of the type mentioned at the outset for determining the actual state of the individual cooling pipes and subsequently operating the installation. The purpose of the equipment is to provide a suitable measurement method for more accurately quantifying the properties of the tubes within the heat exchanger during operation.
(課題を解決するための手段)
方法に関し前記目的の解決は、実質的に管巣面全体に均
等配分した所定本数の管について分極抵抗および/また
は熱伝達率を測定し、腐食の危険の最も強い管の一定結
果に応じて防食向上手段を領域ごとにまたは一括して装
入し、および/または熱伝達率の毫も悪い管の一定結果
に応じて清浄循環を制御することKある。(Means for Solving the Problem) The above objective is solved by measuring the polarization resistance and/or heat transfer coefficient of a predetermined number of tubes distributed evenly over substantially the entire tube nest surface, and measuring the polarization resistance and/or heat transfer coefficient of the tubes with the highest risk of corrosion. Corrosion protection enhancement measures can be applied zone by region or all at once depending on the results of strong pipes, and/or cleaning circulation can be controlled depending on the results of pipes with poor heat transfer coefficients.
設備に関し本発明は前記目的を達成するため、複数本の
好ましくは管巣面全体に均等配分した管(12)に各測
定装置を配設し、防食に役立つ装置を制御系により分極
抵抗の一定結果に依存して領域ごとにまたは最も不都合
な一定結果に応・じて一括して投入可能とし、そして清
浄体循環装置を制御系により最も悪い熱伝達率の測定値
に応じて投入可能とするよう提案する。Regarding the equipment, in order to achieve the above object, the present invention arranges each measuring device in a plurality of tubes (12) preferably evenly distributed over the entire surface of the tube nest, and controls the device useful for corrosion prevention to maintain a constant polarization resistance by a control system. Depending on the result, it can be turned on area by area or all at once depending on the most unfavorable fixed result, and the purifying body circulation device can be turned on by the control system according to the measured value of the worst heat transfer coefficient. I suggest that.
(作用・効果)
つまシ本発明は、先行技術とは異なり全パラメータの測
定を熱交換器の個々の管で直接行い、その熱伝達率を定
量して所定の目標値または基準値と比較することを教え
る。基準値として冷却管の新規状態を測定し、この基準
値を基にその後の汚れをいわゆる汚れ係数または清浄度
により判定することができる。それとは別に1酸処理後
に特別の清浄体を使うかま九は機械的清浄後例えば手直
しの過程で手で行うことのできる管の根本的清浄の後に
得られる測定値を基準値とすることもできる。最後に、
管の寸法および材質データを基に定量可能な理論計算可
能な値も基準値とすることができる。(Function/Effect) Unlike the prior art, the present invention measures all parameters directly on each individual tube of the heat exchanger, quantifies the heat transfer coefficient, and compares it with a predetermined target value or reference value. Teach me things. The new state of the cooling pipe is measured as a reference value, and based on this reference value, subsequent contamination can be determined by a so-called contamination factor or cleanliness. Alternatively, for kettles using a special cleaning body after acid treatment, the reference value can also be the measured value obtained after mechanical cleaning and a fundamental cleaning of the pipe, which can be carried out by hand, for example during rework. . lastly,
A theoretically calculable value that can be quantified based on pipe dimensions and material data can also be used as a reference value.
各被測定管の入口温度、出口温度、単位時間当たり流量
または流速、そして蒸気温度は連続運転中に測定しなけ
ればならない。冷却剤の前記2つの温度は従来通り温度
検出器を使って検出される一方、本発明は流速の測定と
蒸気温度の測定では新しい道を歩む。The inlet temperature, outlet temperature, flow rate or flow rate per unit time, and steam temperature of each tube to be measured must be measured during continuous operation. While the two temperatures of the refrigerant are conventionally detected using temperature detectors, the present invention takes a new path in flow rate measurement and vapor temperature measurement.
従来使用された熱、置針は冷却管の外面に固着、例えば
接着または固定金具で保持される。The conventionally used heat indicator is secured to the outer surface of the cooling tube, for example by adhesive or by a fixture.
復水器部分の内部にある管を装備する場合、この復水器
部分の製造後これらの管には、隣接管の間隔が人間の手
または工具にとって十分な通路をもはや許さないので、
もはや接近することができない。この理由から修理、受
座点検等を行うことができない。本発明はこれから方向
転換する。When equipping the condenser part with pipes that are inside the condenser part, these pipes, after the manufacture of this condenser part, must be fitted with pipes, since the spacing of adjacent pipes no longer allows sufficient passage for human hands or tools.
It can no longer be approached. For this reason, repairs, seat inspections, etc. cannot be performed. The invention now takes a turn.
そうする代わシに本発明は、その熱fが測定される冷却
管の隣接管の一つを運転停止し、蒸気を流して肢管を蒸
気の温度にするよう提案する。運転停止は栓を使って、
つまり漏れを生じるようKなった冷却管において点検時
この障害を取り除くため現在すでに適用されている方法
を利用して行う。その際本来の温度検出器は両管板によ
って十分に押して離され、連続運転中に蒸気温度となる
箇所の温度が確実に検出される。Instead, the invention proposes to shut down one of the adjacent tubes of the cooling tube, whose heat f is being measured, and to flow steam to bring the limb to the temperature of the steam. To stop the operation, use the stopper.
In other words, when inspecting a cooling pipe that has developed a tendency to leak, it is carried out using methods that are already in use at present to eliminate this obstruction. In this case, the actual temperature sensor is sufficiently pushed away by the two tube plates, so that the temperature at the point where the steam temperature is reached during continuous operation is reliably detected.
流速の測定は好ましくは断続的に、つまりタービン羽根
車やピトープローブ等を使って行うのでなく、好ましく
は管入口、管出口の2測定箇所間の距離と遊離した冷却
剤成分が一方の測定箇所を通過して他方の測定箇所に至
るまでに経過する時間との商によって行う。遊離した冷
却剤量は管全体の内径よりその直径が小さい浮遊可能な
測定球の形の異物かまたは流体、っまシ第−測定箇所の
範囲または第一測定箇所に代わる範囲で微量装入される
液体物質またはガスのいずれかである。この流体はイン
ク、冷却剤とは電気伝導率の異なる塩溶液、またはその
他の例えば、その濁りまたは反射率が光電バリヤ等に作
用することのできる光学式に検出可能な物質であっても
よい。その際測定球は、被測定管を通過する特定の確率
が現れるほどその数が多いかぎり、復水器の入口範囲で
装入することもできる。特に、測定球が適宜に符号化し
てあり、つ″1シ測定装置がかかるものとして検出可能
となっているかぎり、清浄体と一緒に測定球を装入する
ことができる。これは簡単には、容量式または誘導式に
検出可能な金属粒体等を混入して行われる。この場合検
出器を使って管初端および管終端の通過を確認すること
ができる。The measurement of the flow rate is preferably carried out intermittently, i.e. not using a turbine impeller, pitot probe, etc., and preferably the distance between the two measuring points, pipe inlet and pipe outlet, and the free coolant component at one measuring point. It is calculated by quoting the time elapsed to reach the other measurement point. The amount of free coolant may be a foreign body or fluid in the form of a floating measuring sphere whose diameter is smaller than the internal diameter of the entire tube, which may be added in small amounts in the area of the first measuring point or in place of the first measuring point. It is either a liquid substance or a gas. This fluid may be an ink, a salt solution with a different electrical conductivity than the coolant, or any other optically detectable substance whose turbidity or reflectivity can affect, for example, a photoelectric barrier. The measuring balls can also be inserted in the inlet region of the condenser, as long as their number is so large that a certain probability of passing through the tube to be measured exists. In particular, it is possible to load the measuring sphere together with the cleaning body, as long as the measuring sphere is suitably coded and can be detected as such by a single measuring device. This is done by mixing capacitively or inductively detectable metal particles, etc. In this case, a detector can be used to confirm the passage of the beginning and end of the tube.
管入口で装入され冷却剤とは物理的および/または化学
的に相違した流体の通過を測定する検出器として適して
いるのは特に2個の流れ方向で相前後または互いに対向
配設した電極であシ、これを使って冷却剤について導電
抵抗が定常値として測定される。流体がかかる検出器を
例えば一層良好な伝導率または悪い伝導率で通過するや
導電抵抗が短時間変化し、これが測定に利用される。こ
の種の検出器でもって前述の測定球または通常の清浄体
の通過も検出することができる。というのもこれらは液
体排除または流れ効果により通過の瞬間に両電極間の導
線抵抗を変えるからである。Particularly suitable as a detector for measuring the passage of a fluid introduced at the pipe inlet and which differs physically and/or chemically from the coolant are two electrodes arranged one behind the other or opposite each other in the direction of flow. This is used to measure the conductive resistance of the coolant as a steady state value. When a fluid passes through such a detector, for example with better or worse conductivity, the conductive resistance changes for a short time, which is used for the measurement. With a detector of this kind it is also possible to detect the passage of the aforementioned measuring spheres or of ordinary cleaning bodies. This is because they change the conductor resistance between the two electrodes at the moment of passage due to liquid displacement or flow effects.
本発明の構成要素としてのかかる検出器の利点は特くい
検出器の構成要素でもある同じ電極を分極抵抗の測定に
使用することができる点にある。こうして被測定冷却管
の検出器に必要な支出が著しく減少する。冷却管は、そ
れとは絶縁して第二の電極が冷却管に続いて取付けた筒
内に、または冷却管に差し込んだいわゆるインサート内
に格納しである場合、それ自身を電極として利用するこ
とができる。The advantage of such a detector as a component of the invention is, in particular, that the same electrodes that are also a component of the blade detector can be used for measuring the polarization resistance. In this way, the expenditure required for the detector of the cooling pipe to be measured is significantly reduced. The cooling pipe itself can be used as an electrode if a second electrode is housed in a cylinder installed next to the cooling pipe or in a so-called insert inserted into the cooling pipe, insulated from the cooling pipe. can.
勿論かかる筒またはインサート内に残りの検出器も、つ
まり温度検出器、容量式、誘導式または光学式測定装置
も、そして更に測定機構全体の装備に応じて、しかも1
つの復水器の被測定管の管入口にも管出口にも、格納す
ることができる。Of course, in such a tube or insert there are also remaining detectors, i.e. temperature detectors, capacitive, inductive or optical measuring devices, and also, depending on the equipment of the entire measuring system, one
It can be stored at both the pipe inlet and the pipe outlet of the pipe to be measured in one condenser.
すでに先に述べたように、考えられる実施聾様の一つは
管入口および管出口でそれぞれ管板の軸方向前および後
で検出器支持体として働く支持体を含む。かかる支持体
は復水器の管仮に固着しておくことができ、或は隣接冷
却管の一つを運転停止するため蒸気温度の測定に使用さ
れる栓を使って保持を行う。この種の保持により管板は
全く手つかずのままであり、復水器側測定モジー一層全
体の設置が著しくW15gになる。As already mentioned above, one of the possible implementations includes supports that serve as detector supports axially in front and behind the tube sheet at the tube inlet and tube outlet, respectively. Such a support can be temporarily fixed to the condenser tubes, or retention can be achieved using a plug used to measure the steam temperature to shut down one of the adjacent cooling pipes. With this type of retention, the tubesheet remains completely untouched and the entire installation of the condenser side measurement module becomes significantly W15g.
こうして特に復水器の蒸気室、冷却剤室間で漏れの危険
が回避される。支持体は、特に管入口では、清浄体が管
内に流入する確率が管内の流れ条件をなお変化させない
よう構成しなければならない。この条件は後になお図示
実施例を基に説明する。In this way, the risk of leakage is avoided, especially between the steam and coolant compartments of the condenser. The support, especially at the tube inlet, must be constructed such that the probability that clean bodies will flow into the tube still does not change the flow conditions in the tube. These conditions will be explained later on the basis of the illustrated embodiment.
その内部で蒸気温度の測定が行われる運転停止した管は
特に有利には一方の復水器側の全測定端子を他方の復水
器側に導くのく利用することができ、一方の復水室には
全体として単一のダクトが必要なだけである。復水器の
入口室が特にこのため予定されている。従って少くとも
一方の室内では測定導線が流体の作用から十分く守られ
ており、この範囲では損傷の危険が十分に回避されてい
る。The out-of-service pipe in which the steam temperature measurement takes place can be used particularly advantageously to lead all measuring terminals on one condenser side to the other condenser side, and Only a single duct is required for the entire room. The inlet chamber of the condenser is specifically designed for this purpose. Therefore, in at least one of the chambers, the measuring conductor is well protected from the action of the fluid, and the risk of damage is largely avoided in this area.
総括して、本発明は冷却水の化学的状態調節にも冷却管
用陰極保護装置にも係るものであり、付加的に、蒸気か
ら冷却剤への熱伝達率に応じて清浄体の循環を制御する
設備と2つの復水器最適化方式の併用とく係るものであ
ると確認することができる。In general, the present invention relates both to the chemical conditioning of cooling water and to a cathodic protection device for cooling pipes, which additionally controls the circulation of the clean body depending on the rate of heat transfer from the steam to the coolant. It can be confirmed that the combination of the equipment and the two condenser optimization methods is related.
(実施例) 以下本発明の図示実施例を詳しく説明する。(Example) Hereinafter, illustrated embodiments of the present invention will be described in detail.
第1図に示した回路図は2つの測定装置とそれに付属し
九コントローラと測定値を処理する制御器とを概略示す
。例えば発電所の蒸気を復水する通常の復水器1の内部
(入口室2、出口室3、そしてその間に冷却管の管巣6
があり、冷却剤は入口4、出口5を介し冷却管を貫流す
ることができる。管の末端で管板7.8が蒸気室を冷却
剤室から分離する。蒸気室を通して冷却管への蒸気の給
排は図示省略しである。The circuit diagram shown in FIG. 1 schematically shows two measuring devices and nine associated controllers and a controller for processing the measured values. For example, the inside of a normal condenser 1 that condenses steam in a power plant (an inlet chamber 2, an outlet chamber 3, and a tube nest 6 of cooling pipes between them)
The coolant can flow through the cooling pipe via the inlet 4 and the outlet 5. At the end of the tube a tube plate 7.8 separates the steam chamber from the coolant chamber. The supply and discharge of steam to and from the cooling pipe through the steam chamber is not shown.
管巣6を冷却剤は一般に均−KM過するのでなく、高速
領域、低速領域、清浄体の流入する確率の大きい領域、
小さい領域、特に汚れた領域等が存在する。個々の領域
の代表的数値を検出するため所定の箇所に1非測定冷却
管11と並んで、その腐食状態および熱伝達率が持続的
にまたは間隔を置いて検出される被測定冷却管12が設
けである。In general, the coolant does not pass through the tube nest 6 uniformly, but rather in high-speed areas, low-speed areas, areas where there is a high probability of clean body flowing in,
There are small areas, especially dirty areas, etc. In order to detect representative values of individual regions, a cooling pipe 12 to be measured, the corrosion state and heat transfer coefficient of which are detected continuously or at intervals, is placed alongside the non-measured cooling pipe 11 at a predetermined location. It is a provision.
今日一般的な長方形断面の復水器の場合例えば9本の管
が測定され、管は3千面で上下に重ねて各3本の管が管
巣6全体の面全体に実質的に均等配分して配設しである
。この配置が6管で繰シ返されるので第1図には単一の
被測定冷却管12のみが単なる例として図示しである。In the case of a condenser with a rectangular cross-section, which is common today, for example, nine pipes are measured, and the pipes are stacked one on top of the other in 3,000 sides, so that each three pipes are distributed substantially evenly over the entire surface of the tube bank 6. It is arranged as follows. Since this arrangement is repeated for six tubes, only a single cooling tube 12 to be measured is shown in FIG. 1 by way of example only.
各被測定冷却管12に運転停止した冷却管15が付属し
ているが、この点はなお後に正確に説明する。運転停止
した冷却管13は両側が栓14で閉鎖される。Each of the cooling pipes 12 to be measured is associated with a cooling pipe 15 which is out of operation, which will be explained in more detail later. The cooling pipe 13 whose operation has been stopped is closed with plugs 14 on both sides.
被測定管12の各入口側と各出口側で、これらの箇所で
必要な検出器をそれぞれ含んだ筒状支持体18.19が
一種のインサートとして被測定管12に挿入しである。At each inlet side and each outlet side of the tube to be measured 12, a cylindrical support 18, 19, which respectively contains the necessary detectors at these points, is inserted into the tube to be measured 12 as a kind of insert.
両側のこれらの箇所で冷却剤入口温度、出口温度を測定
する温度検出器20.21がこれに付属しており、流量
と合わせて吸収熱量が検出される。これには蒸気温度を
知ることが不可欠である。これは運転停止した管13内
で温度検出器28により測定される。5つの温度測定値
がコントローラに入力され、そこで継続処理に利用され
る。Temperature detectors 20.21 are attached to this for measuring the coolant inlet temperature and outlet temperature at these points on both sides, and the amount of absorbed heat is detected together with the flow rate. Knowing the steam temperature is essential for this. This is measured by a temperature detector 28 in the tube 13 which has been shut down. Five temperature measurements are input to the controller where they are utilized for further processing.
図示実施例の場合単位体積あたりの流量の測定は以下の
如く行う。被測定管12の入口側、筒状支持体18の領
域に装入部22があり、計量ポンプ26によりタンクか
ら化学物質が装入部を介し流動冷却剤中に噴霧すること
ができる。In the illustrated embodiment, the flow rate per unit volume is measured as follows. On the inlet side of the tube 12 to be measured, in the region of the cylindrical support 18, there is a charge 22 through which chemicals can be sprayed from the tank into the flowing coolant by means of a metering pump 26.
咬持物質は瞬間的に流動冷却剤の速度となシ、こうして
比較的完全な液体飛領地として被測定管12内を送られ
る。被測定管12の出口側、筒状支持体19の内部に2
個の電極23が相前後して配設しである。The interstitial material instantaneously matches the velocity of the flowing coolant and is thus conveyed through the tube 12 as a relatively complete liquid enclave. 2 inside the cylindrical support 19 on the outlet side of the tube to be measured 12
The electrodes 23 are arranged one after the other.
噴霧物質、例えば塩溶液が電極23を通過すると電気の
流れが短時間変化し、この箇所で装入物質を検出するの
に利用される。装入部22で装入の時点が知られており
、また被測定管12の横断面積が事前に検出しであるの
で、物質が装入部22から流出してから電極23を通過
するまでの間の時間から体積流量を計算することができ
る。体積流量は横断面積に被測定冷却管の装入部22、
電極23間の長さと噴霧物質が被測定冷却管12を横切
る測定時間とを掛けた積から生じる商に等しい。従って
付属のコントローラに計量ポンプ26は装入時点のゆえ
に、そして電極23は最終時間測定のため接続しである
。管寸法は付属の流速用コントローラ内にしつかり記憶
しである。When the sprayed substance, for example a salt solution, passes through the electrode 23, the electrical current changes briefly and is used to detect the charge material at this point. Since the time of charging is known in the charging section 22 and the cross-sectional area of the tube to be measured 12 has been detected in advance, the time from when the substance flows out from the charging section 22 until it passes through the electrode 23 is The volumetric flow rate can be calculated from the time between. The volumetric flow rate is determined by the cross-sectional area of the cooling pipe to be measured.
It is equal to the quotient resulting from the product of the length between the electrodes 23 and the measurement time during which the sprayed substance traverses the cooling pipe 12 to be measured. Therefore, the metering pump 26 is connected to the attached controller for the charging time and the electrode 23 for the final time measurement. The tube dimensions are permanently stored in the attached flow rate controller.
上記の量、つまり冷却剤の単位体積あたりの流量、温度
差、比密度、熱容量、そして蒸気温度から、蒸気が被測
定管12の壁を通って冷却剤に伝達する熱伝達率を検出
することができる。From the above quantities, that is, the flow rate per unit volume of the coolant, the temperature difference, the specific density, the heat capacity, and the steam temperature, detecting the heat transfer coefficient at which the steam is transferred to the coolant through the wall of the pipe 12 to be measured. Can be done.
かかる測定を、摩耗性清浄体を使って金属が平滑になる
まで根本的に清浄し、酸洗しまたは手で清浄にした後、
まだ汚れていない新しい冷却管で行うことができるので
、この最初の測定を介し基準値を得、汚れによる各劣化
の尺度として利用することができる。それとの偏差は、
寸法と材質データが知られていて熱伝達率を計算するこ
とができるので、純金属管の理論値の基礎とすることも
できる。この基準値でもって、冷却管の熱工学的状態に
ついての一般的特性値をそれぞれ表す汚れ係数または清
浄度を検出することができる。Such measurements are carried out after radical cleaning of the metal with an abrasive cleaner until smooth, pickling or hand cleaning.
Since this can be done on new cooling pipes that are not yet contaminated, a reference value can be obtained through this first measurement and used as a measure of each deterioration due to contamination. The deviation from that is
Since the dimensions and material data are known and the heat transfer coefficient can be calculated, it can also be used as the basis for theoretical values for pure metal tubes. With this reference value, it is possible to determine the fouling factor or the cleanliness, which respectively represents a general characteristic value for the thermotechnical state of the cooling pipe.
冒頭すでに述べたように個々の冷却管11の清浄は清浄
体、例えばスポンジゴム球を規則的間隔で、または連続
して、場合によっては濃度を変えて冷却剤に添加しそし
て冷却管通過後出口5の領域で再び捕捉して行う。個々
の冷却管11の内壁を清浄体で過度に集中的に処理する
ことは特に、防食のため表層を設けるようKなっている
合金の場合否定的効果を有する。管壁が概ね平滑な場合
清浄体の循環は熱伝達をさして向上せず、しかもこの場
合表層が作用を受け、腐食の危険が高まる。As already mentioned at the outset, the individual cooling pipes 11 can be cleaned by adding cleaning bodies, for example sponge rubber balls, at regular intervals or in succession, possibly with varying concentrations, to the coolant and, after passing through the cooling pipes, at the outlet. Capture again in area 5. A too intensive treatment of the inner walls of the individual cooling pipes 11 with a cleaning agent has a negative effect, especially in the case of alloys which are K-treated to provide a surface layer for corrosion protection. If the tube walls are generally smooth, the circulation of the cleaning body does not significantly improve the heat transfer, and in this case the surface layers are affected, increasing the risk of corrosion.
この危険限界に接近していることを確認するため図示復
水器は本発明により分極抵抗を検出する測定装置を装備
している。このため筒状支持体18内に測定電極24、
そして装入部22に至る送り管内には、被測定管12の
管壁とともに動作電極としてこの管の分極抵抗の測定を
可能とする基準電極23がある。付属の制御器内でやは
シ測定値の評価が行われる。表層状態の尺度としての分
極抵抗は単位面積当た9オームで表される。経験値は十
分知られており、これから各使用条件について目標値を
設定することができる。In order to ensure that this critical limit is approached, the illustrated condenser is equipped according to the invention with a measuring device for detecting the polarization resistance. For this purpose, a measuring electrode 24,
In the feed tube leading to the charging section 22, there is a reference electrode 23 which serves as a working electrode together with the tube wall of the tube to be measured 12 and makes it possible to measure the polarization resistance of this tube. The evaluation of the measured values takes place in the attached controller. Polarization resistance as a measure of surface condition is expressed in 9 ohms per unit area. The experience values are sufficiently known and from this it is possible to set target values for each usage condition.
表層は復水器に流入する冷却剤の化学処理、例えば銅合
金製冷却管の場合硫酸鉄を装入して強めることができる
。それとは別に、いわゆる犠牲陽極または活性陰極保護
を利用することによっても、表層が損傷または浸食され
るにも拘らず冷却管の入口領域、出口領域で管器材の浸
食防止を達成することができる。The surface layer can be strengthened by chemical treatment of the coolant entering the condenser, for example by charging iron sulfate in the case of copper alloy cooling tubes. Alternatively, protection against erosion of the pipework in the inlet and outlet areas of the cooling pipes can also be achieved by using so-called sacrificial anodes or active cathodic protection, even though the surface layer is damaged or eroded.
測定した熱量と分極抵抗とから得られた測定値は本来の
制御器で表示される外、清浄設備および防食系の活性化
に利用される。測定と経験値とを基に清浄体の清浄循環
は持続時間と強さとが調整される。この清浄で表層の有
効性が損なわれることがあるが、これは適宜な化学処理
または電気防食の活性化によって補償することができる
。この処理は更に分極抵抗の測定値に依存させることが
でき、つまり害のある腐食を排除するのに十分安定した
表層が存在するときには終了させる。The measured values obtained from the measured amount of heat and polarization resistance are not only displayed on the original controller, but also used to activate the cleaning equipment and anticorrosion system. Based on measurements and empirical values, the duration and strength of the purifying circulation of the purifying body are adjusted. This cleaning may impair the effectiveness of the surface layer, but this can be compensated by appropriate chemical treatments or activation of cathodic protection. The process can also be made dependent on the measured value of the polarization resistance, ie terminated when a sufficiently stable surface layer exists to exclude harmful corrosion.
復水器の清浄と防食とを特に硫酸鉄の計量時本発明によ
り結び付けることにより、復水器の状態を常時監視しな
がら運転条件の変化に直ちに適合して復水器の最適運転
が可能となる。本発明提案により個々の冷却管の熱伝達
および分極抵抗を具体的に測定するので、測定品質が凌
駕されることはもはやない。これにより汚れ、腐食の分
布が検知可能となり、場合によっては管板の特定領域で
目標定めて対抗処理を取ることができる。By combining condenser cleaning and corrosion protection, especially when measuring iron sulfate, with the present invention, it is possible to constantly monitor the condition of the condenser and immediately adapt to changes in operating conditions for optimal operation of the condenser. Become. Since the heat transfer and polarization resistance of the individual cooling pipes are specifically measured with the proposal of the invention, the measurement quality is no longer compromised. This makes it possible to detect the distribution of dirt and corrosion and, if necessary, to take targeted countermeasures in specific areas of the tubesheet.
管巣の一方の側で検出器の配置変形を第2図に示した。A variation in the arrangement of the detector on one side of the tube nest is shown in Figure 2.
筒状支持体に代え、図示実施例の場合入口側に単一の電
極32を備えた板状支持体31が設けである。検出器を
形成するのに必要な第二の電極は被測定管12の形で設
けである。Instead of a cylindrical support, in the illustrated embodiment a plate-like support 31 is provided with a single electrode 32 on the inlet side. The second electrode necessary to form the detector is provided in the form of the tube 12 to be measured.
図示した電極32は支持体32の適宜な穴の周囲全体で
なく単に周囲の約6/4を満たしており、自由に残った
周囲部分に温度検出器(図示省略)を難なく格納するこ
とができる。The illustrated electrode 32 fills only about 6/4 of the circumference of the appropriate hole in the support 32, rather than the entire circumference, allowing a temperature sensor (not shown) to be housed without difficulty in the free surrounding area. .
板状支持体31は運転停止した(W13を閉鎖する栓5
4で保持されている。栓54はアンカーボルト35を使
って圧潰することのできる弾性壁領域を有しておシ、運
転停止した管13の内部に液密な固定受座が生じる。ア
ンカー固定部は板状支持体31を動くことのないようそ
れに固着できるほどしつかりしている。The plate-like support 31 has stopped operating (the stopper 5 that closes W13
It is held at 4. The plug 54 has an elastic wall area that can be collapsed using the anchor bolt 35, creating a liquid-tight fixed seat inside the out-of-service tube 13. The anchor fixing part is firm enough to fix the plate-shaped support 31 to the plate-shaped support 31 without movement.
それゆえ板状支持体31は板状支持体31の領域で清浄
体の流入する確率が影響を受けることのないよう比較的
面積が大きくかつ薄〈実施1゜である。言い換えるなら
清浄体は板状支持体31−の存在に左右されることなく
常に冷却管内に至る、統計的偶然法則により予想される
同じ進路を取るはずである。Therefore, the plate-shaped support 31 has a relatively large area and is thin (Example 1) so that the probability of the inflow of clean bodies in the area of the plate-shaped support 31 is not influenced. In other words, the cleaning body should always take the same path into the cooling pipe as predicted by the law of statistical chance, regardless of the presence of the plate-shaped support 31-.
第2図に示した板状支持体51は、冷却管の入口側でも
出口側でも、第1図に示す支持体19と容易に併用する
ことができる。肝心なことは各検出器が相互に調整して
あり、体積流量検出のため成る検出器と別の検出器との
距離が既知でめることだけでるる。The plate-shaped support 51 shown in FIG. 2 can be easily used together with the support 19 shown in FIG. 1 on either the inlet or outlet side of the cooling pipe. The important thing is that each detector is mutually aligned, and the only difference is that the distance between the detector for volume flow detection and another detector is known.
第1図は検出器用インサートを用いて伝熱管の防食およ
び清浄を制御する設備の回路図であリ、概略図示した復
水器を一部拡大して示す横断面図を含む。
第2図は被測定冷却管と合わせ検出器用支持体の使用を
明らかにするため第1図の拡大部分の横断面図である。
〔符号説明〕
11、12.13−・−・・・・冷却管。FIG. 1 is a circuit diagram of a facility for controlling corrosion protection and cleaning of heat exchanger tubes using a detector insert, and includes a cross-sectional view partially enlarging a schematically illustrated condenser. FIG. 2 is a cross-sectional view of an enlarged portion of FIG. 1 to clarify the use of the detector support in combination with the cooling pipe to be measured. [Explanation of symbols] 11, 12.13-... Cooling pipe.
Claims (1)
上する化学手段または電気手段を活性化しまたは強め、
抵抗限界値を上回ると前記手段を非活性化しまたは弱め
、そして/または、蒸気から冷却剤への熱伝達率を測定
後、限界値を下回る場合清浄体の清浄循環を開始させ、
そして限界値を上回ると停止させ、または清浄循環を強
めそして弱めて伝熱管、特に発電所冷却管の防食および
/または清浄体により行う機械的清浄を制御する方法に
おいて、実質的に管巣面全体に均等配分された所定本数
の管について分極抵抗および/また は熱伝達率を測定し、腐食の危険の最も強い管の一定結
果に応じて防食向上手段を領域ごとにまたは一括して装
入し、および/または熱伝達率の最も悪い管の測定結果
に応じて清浄循環を制御することを特徴とする方法。 2)限界値を上回るかまたは下回った後の信号と防食向
上手段および/または清浄循環を非活性化しまたは弱め
た後の信号との間で所定の後流時間の継続する間この信
号以前の切換状態を維持することを特徴とする特許請求
の範囲第1項に記載の方法。 3)冷却剤の入口温度、出口温度、流速を測定し、また
測定した管に隣接した冷却剤流の流れない管について蒸
気温度を測定することにより、個々の管の熱伝達率を検
出することを特徴とする特許請求の範囲第1項または第
2項に記載の方法。 4)管入口で冷却剤の流速を測定するため冷却剤とは化
学的または物理的に異種であることを確認することので
きる固体または流体を添加し、管出口で固体または流体
の存在を記録し、添加から存在測定までの測定した時間
を添加箇所から存在測定箇所までの距離に関係付けるこ
とを特徴とする特許請求の範囲第3項に記載の方法。 5)単管または管群の管内壁の受動層または他の保護層
を点検するため分極抵抗を測定する少くとも1つの装置
と、熱交換器の入口範囲にあって保護層の形成を促進す
る物質を混和する計量装置または管内壁の浸食を防ぐ電
気式陰極保護装置および/または蒸気から冷却剤への熱
伝達率を測定する装置と、管内壁のデポジットを取り除
くため清浄体を冷却剤中に装入して循環させる装置と、
各装置の投入頻度、投入時間、投入強度を決定する制御
系とを備え伝熱管、特に発電所冷却管の防食および/ま
たは清浄体により行う機械的清浄を制御する設備におい
て、各測定装置が複数本の好ましくは管巣面全体に均等
配分された管(12)に配設してあり、防食に役立つ装
置が制御系により分極抵抗の測定結果に依存して領域ご
とにまたは最も不都合な測定結果に応じて一括して投入
可能であり、そして清浄体循環装置が制御系により最も
悪い熱伝達率の測定値に応じて投入可能であることを特
徴とする設備。 6)各熱伝達率測定装置が管入口および管出口で冷却剤
の温度上昇を測定する各1個の温度検出器(20、21
)と運転を停止した隣接管(13)内で蒸気温度を測定
する温度検出器(28)と管(12)を流れる冷却剤量
を定量する流量計とからなることを特徴とする特許請求
の範囲第5項に記載の設備。 7)流量計が不連続的に測定することを特徴とする特許
請求の範囲第6項に記載の設備。 8)流量計が時間測定装置と管入口の装入部(22)と
管出口で固体を記録しまたは冷却剤の物理的および/ま
たは化学的変化を記録する検出器と固体または流体を断
続的に供給する計量装置(26)とからなり、時間測定
装置が装入信号と検出器信号との間の時間を検出するこ
とを特徴とする特許請求の範囲第7項に記載の設備。 9)流量計が時間測定装置と管初端の検出器と管終端の
検出器とからなり、冷却剤が検出器により検出可能な、
管(12)の内径より小さい直径の測定球を選択的に備
えることができ、時間測定装置が検出器信号間の時間を
検出することを特徴とする特許請求の範囲第7項に記載
の設備。 10)各検出器が2個の互いに距離を隔てて配設し電源
に接続した電極(23)からなり、流体が電極間を通過
する瞬間に測定球により惹き起こされる導電変化で時間
信号が発生されることを特徴とする特許請求の範囲第8
項または第9項に記載の設備。 11)各測定球が特に少くとも1個の金属体により、ま
たはその他の方法で容量式または誘導式に検出可能であ
り、各検出器が測定コンデンサまたは測定コイルからな
ることを特徴とする特許請求の範囲第8項または第9項
に記載の設備。 12)測定球が清浄体と同時に循環することを特徴とす
る特許請求の範囲第11項に記載の設備。 13)電極(23)が分極抵抗測定装置の構成要素であ
ることを特徴とする特許請求の範囲第10項に記載の設
備。 14)一方の電極がそれぞれ管(12)そのものである
ことを特徴とする特許請求の範囲第10項または第13
項に記載の設備。 15)各管入口、管出口の温度検出器(20)、装入部
(22)または検出器がそれぞれ筒状支持体(18、1
9)内に格納してあることを特徴とする特許請求の範囲
第6〜14項のいずれかに記載の設備。 16)筒状支持体(18、19)が一種のインサートと
して各管(12)に差し込んであることを特徴とする特
許請求の範囲第15項に記載の設備。 17)各管入口、管出口の温度検出器(20)、装入部
(22)または検出器が各管(12)の前または後でホ
ルダにより位置調整してあり、ホルダ(32)が運転停
止した隣接管(13)内でボルトで固定してあることを
特徴とする特許請求の範囲第6〜14項のいずれかに記
載の設備。 18)運転停止した隣接管(13)が一方の復水室(3
)の各測定装置の導線(30)を他方の復水室に導くの
に役立ち、全測定導線の導線ダクトが他方の復水室の壁
に設けてあることを特徴とする特許請求の範囲第6〜1
7項のいずれかに記載の設備。 19)各検出器が光電バリヤからなり、その暗部が信号
発生のため測定球または濁り物質に通されることを特徴
とする特許請求の範囲第9項または第10項に記載の設
備。[Claims] 1) Measuring the polarization resistance and activating or intensifying chemical or electrical means to improve corrosion protection when the resistance falls below a resistance limit;
deactivating or weakening said means if a resistance limit value is exceeded, and/or starting a cleaning cycle of the cleaning body if the resistance limit value is below the limit value after measuring the heat transfer coefficient from the steam to the coolant;
and in a method of controlling corrosion protection of heat transfer tubes, in particular power plant cooling tubes and/or mechanical cleaning carried out by means of a cleaning body, by shutting down or intensifying and weakening the cleaning circulation when a limit value is exceeded, substantially over the entire tube nest surface. measuring the polarization resistance and/or heat transfer coefficient for a predetermined number of tubes evenly distributed in the area, and depending on the fixed results for the tubes with the highest risk of corrosion, applying corrosion protection improvement means zone by zone or all at once; and/or a method characterized in that the cleaning circulation is controlled according to the measurement result of the tube with the worst heat transfer coefficient. 2) switching before this signal for the duration of a predetermined wake time between the signal after exceeding or falling below the limit value and the signal after deactivating or weakening the corrosion protection enhancing means and/or the cleaning circulation; The method according to claim 1, characterized in that the state is maintained. 3) Detecting the heat transfer coefficient of an individual tube by measuring the coolant inlet temperature, outlet temperature, flow rate, and measuring the steam temperature for a tube without coolant flow adjacent to the measured tube. A method according to claim 1 or 2, characterized in that: 4) Add a solid or fluid that can be confirmed to be chemically or physically different from the coolant to measure the flow rate of the coolant at the pipe inlet, and record the presence of the solid or fluid at the pipe outlet. The method according to claim 3, wherein the measured time from addition to presence measurement is related to the distance from the addition point to the presence measurement point. 5) at least one device for measuring polarization resistance in order to check the passive layer or other protective layer on the inner wall of the tube or tube group and in the inlet region of the heat exchanger to promote the formation of the protective layer; A metering device to mix the substances or an electric cathodic protection device to prevent erosion of the pipe walls and/or a device to measure the heat transfer rate from the vapor to the coolant and a cleaning body placed in the coolant to remove deposits on the pipe walls. A device for charging and circulating;
In equipment that controls corrosion protection of heat transfer tubes, especially power plant cooling pipes, and/or mechanical cleaning performed by a cleaning body, each measuring device is equipped with a control system that determines the input frequency, input time, and input strength of each device. The device is arranged in the tubes (12), preferably evenly distributed over the tube surface, and the device serving for corrosion protection is controlled by the control system depending on the measurement result of the polarization resistance, region by region or the most unfavorable measurement result. A facility characterized in that it can be turned on all at once according to the heat transfer coefficient, and that the purifying body circulation device can be turned on according to the measured value of the worst heat transfer coefficient by a control system. 6) Each heat transfer coefficient measuring device has one temperature detector (20, 21) each measuring the temperature rise of the coolant at the pipe inlet and the pipe outlet.
), a temperature detector (28) for measuring the steam temperature in the adjacent pipe (13) whose operation has been stopped, and a flow meter for quantifying the amount of coolant flowing through the pipe (12). Equipment described in scope item 5. 7) The equipment according to claim 6, characterized in that the flow meter measures discontinuously. 8) The flow meter records solids or fluids intermittently with a time measuring device and a detector that records solids or records physical and/or chemical changes in the coolant at the charge (22) at the tube inlet and at the tube outlet. 8. Installation according to claim 7, characterized in that the time measuring device detects the time between the charging signal and the detector signal. 9) The flow meter consists of a time measuring device, a detector at the beginning of the tube, and a detector at the end of the tube, and the coolant can be detected by the detector.
Equipment according to claim 7, characterized in that it can optionally be provided with a measuring sphere of a diameter smaller than the inner diameter of the tube (12), and the time measuring device detects the time between the detector signals. . 10) Each detector consists of two electrodes (23) arranged at a distance from each other and connected to a power source, the time signal being generated by the conductivity change caused by the measuring bulb at the moment the fluid passes between the electrodes. Claim 8 characterized in that
Equipment as described in paragraph or paragraph 9. 11) Patent claims characterized in that each measuring sphere is detectable, in particular by at least one metal body or otherwise capacitively or inductively, and each detector consists of a measuring capacitor or a measuring coil. The equipment described in item 8 or 9 of the scope. 12) The equipment according to claim 11, characterized in that the measuring bulb circulates simultaneously with the cleaning body. 13) Equipment according to claim 10, characterized in that the electrode (23) is a component of a polarization resistance measuring device. 14) Claim 10 or 13, characterized in that one of the electrodes is the tube (12) itself.
Equipment described in Section. 15) The temperature detector (20), charging section (22) or detector at each tube inlet and tube outlet is connected to a cylindrical support (18, 1), respectively.
9) The equipment according to any one of claims 6 to 14, characterized in that the equipment is housed in a container. 16) Installation according to claim 15, characterized in that the cylindrical support (18, 19) is inserted as a kind of insert into each tube (12). 17) The temperature sensor (20), charging section (22) or detector at each tube inlet and tube outlet is adjusted in position by a holder before or after each tube (12), and the holder (32) is operated. 15. Installation according to any one of claims 6 to 14, characterized in that it is bolted in a stopped adjacent pipe (13). 18) The adjacent pipe (13), which has stopped operating, is connected to one condensate chamber (3).
) serving to lead the conductors (30) of each measuring device into the other condensation chamber, the conductor ducts of all measuring conductors being provided in the wall of the other condensation chamber. 6-1
Equipment described in any of Section 7. 19) Equipment according to claim 9 or 10, characterized in that each detector consists of a photoelectric barrier, the dark part of which is passed through a measuring sphere or a turbid substance for signal generation.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3705240.3 | 1987-02-19 | ||
DE19873705240 DE3705240C2 (en) | 1987-02-19 | 1987-02-19 | Process and system for controlling corrosion protection and / or mechanical cleaning of heat exchanger tubes |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63302299A true JPS63302299A (en) | 1988-12-09 |
JP2691344B2 JP2691344B2 (en) | 1997-12-17 |
Family
ID=6321296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63037305A Expired - Fee Related JP2691344B2 (en) | 1987-02-19 | 1988-02-19 | Corrosion protection for heat transfer tubes. Mechanical cleaning control method and equipment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2691344B2 (en) |
DE (1) | DE3705240C2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101414291B1 (en) * | 2013-07-11 | 2014-07-01 | 한국정수공업 주식회사 | Cleaning Method and Apparatus of Heat Exchanger by Observing Corrosion Current |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3918531A1 (en) * | 1989-06-07 | 1990-12-13 | Taprogge Gmbh | METHOD AND DEVICE FOR MONITORING THE EFFICIENCY OF A CONDENSER |
DE4035242A1 (en) * | 1990-11-06 | 1992-05-07 | Siemens Ag | OPERATIONAL MONITORING OF A TUBE CONDENSER WITH MEASUREMENTS ON SELECTED TUBES |
DE102010040609A1 (en) * | 2010-09-13 | 2012-03-15 | Bayerische Motoren Werke Aktiengesellschaft | Repair method for removing deposits from e.g. heat exchanger for heating inner chamber of vehicle in automotive industry, involves accommodating fluid to container wall when fluid flows through container, and removing fluid from container |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5714193A (en) * | 1980-06-30 | 1982-01-25 | Hitachi Ltd | Distributing and controlling method of cleaning balls |
JPS5844200A (en) * | 1981-09-08 | 1983-03-15 | 日本綜合防水株式会社 | Waterproof execution method for tunnel |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5919273B2 (en) * | 1979-12-05 | 1984-05-04 | 株式会社日立製作所 | Condenser performance monitoring method |
-
1987
- 1987-02-19 DE DE19873705240 patent/DE3705240C2/en not_active Expired - Fee Related
-
1988
- 1988-02-19 JP JP63037305A patent/JP2691344B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5714193A (en) * | 1980-06-30 | 1982-01-25 | Hitachi Ltd | Distributing and controlling method of cleaning balls |
JPS5844200A (en) * | 1981-09-08 | 1983-03-15 | 日本綜合防水株式会社 | Waterproof execution method for tunnel |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101414291B1 (en) * | 2013-07-11 | 2014-07-01 | 한국정수공업 주식회사 | Cleaning Method and Apparatus of Heat Exchanger by Observing Corrosion Current |
Also Published As
Publication number | Publication date |
---|---|
DE3705240A1 (en) | 1988-09-01 |
DE3705240C2 (en) | 1995-07-27 |
JP2691344B2 (en) | 1997-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4762168A (en) | Condenser having apparatus for monitoring conditions of inner surface of condenser tubes | |
BR112020005049A2 (en) | methods and system. | |
Mohanty et al. | Use of C-factor for monitoring of fouling in a shell and tube heat exchanger | |
CN105229459A (en) | Use the apparatus and method of piezoelectricity microbalance sensors | |
JP6763630B2 (en) | Water quality management system for plants and circulating water systems and water quality management methods for circulating water systems | |
CN105209885A (en) | Device and methods of using piezoelectric microbalance sensor | |
JPS63302299A (en) | Method and facility for controlling corrosionproofing and mechanical cleaning of heat transfer tube | |
TWI599411B (en) | Chemical cleaning methods and chemical cleaning device | |
JPH03288586A (en) | Method for monitoring contamination of water system | |
JPS6219701B2 (en) | ||
CN112815767B (en) | Cleaning method of seawater desalination device | |
JP4167330B2 (en) | Channel corrosion resistance test apparatus and channel corrosion resistance test method using the same | |
JP4288018B2 (en) | Water quality evaluation method and water quality management system | |
JPH0296644A (en) | Fouling sensor | |
JPS5915800A (en) | Fouling preventing apparatus | |
JPH058360B2 (en) | ||
EP0224270B1 (en) | Method of monitoring the inner surface of copper-alloy condensor tubes | |
JP3314645B2 (en) | How to monitor pitting | |
CN108375525A (en) | A kind of device and method measuring performance of antisludging agent | |
RU2675573C9 (en) | Device and method for controlling deposit formation | |
JP5962134B2 (en) | Cooling water line contamination monitoring method and chemical injection control method | |
US5285162A (en) | Galvanic current measuring method and apparatus for monitoring build-up of biological deposits on surfaces of dissimilar metal electrodes immersed in water | |
JP2005024401A (en) | Corrosion measuring instrument | |
Young | | Water Handling Systems | |
CN109342258A (en) | A kind of evaluation method of heat exchange metal surface scale-inhibiting properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |