JP2691344B2 - Corrosion protection for heat transfer tubes. Mechanical cleaning control method and equipment - Google Patents

Corrosion protection for heat transfer tubes. Mechanical cleaning control method and equipment

Info

Publication number
JP2691344B2
JP2691344B2 JP63037305A JP3730588A JP2691344B2 JP 2691344 B2 JP2691344 B2 JP 2691344B2 JP 63037305 A JP63037305 A JP 63037305A JP 3730588 A JP3730588 A JP 3730588A JP 2691344 B2 JP2691344 B2 JP 2691344B2
Authority
JP
Japan
Prior art keywords
pipe
coolant
measuring
detector
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63037305A
Other languages
Japanese (ja)
Other versions
JPS63302299A (en
Inventor
ツゾルコス ボルフギャンク
アイマー クラウス
シルトマン ハンスーヴェルナー
Original Assignee
タポロギー ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タポロギー ゲーエムベーハー filed Critical タポロギー ゲーエムベーハー
Publication of JPS63302299A publication Critical patent/JPS63302299A/en
Application granted granted Critical
Publication of JP2691344B2 publication Critical patent/JP2691344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B11/00Controlling arrangements with features specially adapted for condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、分極抵抗を測定し、抵抗限界値を下回る
と防食を向上する化学手段または電気手段を活性化しま
たは強め、抵抗限界値を上回ると前記手段を非活性化し
または弱め、そして/または、蒸気から冷却剤への熱伝
達率を測定後、限界値を下回る場合清浄体の清浄循環を
開始させ、そして限界値を上回ると停止させ、または清
浄循環を強めそして弱めて伝熱管、特に発電所冷却管の
防食および/または清浄体により行う機械的清浄を制御
する方法に関する。
Description: FIELD OF THE INVENTION This invention measures polarization resistance and activates or enhances chemical or electrical means to improve corrosion protection below a resistance limit above the resistance limit. And deactivating or weakening said means and / or after measuring the heat transfer coefficient from the steam to the coolant, start a clean circulation of the cleaning body below the limit value and stop it above the limit value, Alternatively, it relates to a method for controlling the mechanical cleaning performed by corrosion protection and / or cleaning bodies of heat transfer tubes, in particular power plant cooling tubes, by strengthening and weakening the clean circulation.

この発明は更に、単管または管群の管内壁の受動層ま
たは他の保護層を点検するため分極抵抗を測定する少く
とも1つの装置と、熱交換器の入口範囲にあって保護層
の形成を促進する物質を混和する計量装置または管内壁
の浸食を防ぐ電気式陰極保護装置および/または蒸気か
ら冷却剤への熱伝達率を測定する装置と、管内壁のデポ
ジットを取り除くため清浄体を冷却剤中に装入して循環
させる装置と、各装置の投入頻度、投入時間、投入強度
を決定する制御系とを備え伝熱管、特に発電所冷却管の
防食および/または清浄体により行う機械的清浄を制御
する設備に関する。
The invention further provides at least one device for measuring the polarization resistance for inspecting a passive layer or other protective layer on the inner wall of a tube of a single tube or a group of tubes and the formation of a protective layer in the inlet area of the heat exchanger. A metering device that mixes substances that promote heat transfer, or an electric cathodic protection device that prevents erosion of the inner wall of the pipe and / or a device that measures the heat transfer coefficient from steam to the coolant, and the cleaning body is cooled to remove the deposit on the inner wall of the pipe. A mechanical system that is equipped with a device for charging and circulating in the agent and a control system that determines the charging frequency, charging time, and charging strength of each device. It relates to equipment for controlling cleaning.

(従来の技術) 防食部のない類似種類の設備が例えば欧州特許出願第
30459号により知られている。この設備では全復水器の
熱勘定が測定工学的に検出して理想状態と比較される。
両状態間に差異が検出されると清浄体の清浄循環が開始
され、理想状態への十分な接近が達成されるまで継続さ
れる。そこでは復水器の入口と出口、そして蒸気室で測
定が行われる。蒸気室内でのこれらの測定の一つが単一
冷却管の蒸気側での熱流測定である。
(Prior Art) A similar type of equipment without an anticorrosion part is disclosed in European Patent Application
Known by No. 30459. In this facility, the heat balance of all condensers is detected by measurement engineering and compared with the ideal condition.
When a difference is detected between the two states, the clean circulation of the cleaning body is started and continued until a sufficient approach to the ideal state is achieved. There, measurements are taken at the inlet and outlet of the condenser and the steam room. One of these measurements in the steam chamber is the heat flow measurement on the steam side of a single cooling tube.

実際の汚れ度について一層正確な手懸りを得るには復
水器の一括検出では間に合わないことが判明した。特に
汚れはしばしば不均一であるので一括検出法は不適であ
る。それゆえ、復水器の管巣を部分に細分し、1部分内
部で熱勘定を作成することがすでに試みられた(特開昭
57-14193号公報)。そこでは冷却管の外側、各領域内に
やはり熱流計が設けられ、復水器の入口および出口内で
入口温度、出口温度が一括して測定される。管巣を介し
汚れ度を細分化して測定することに基づき、測定領域に
付属した各種の計量装置が操作され、これが清浄体を実
質的に領域ごとに供給する。
It was found that batch detection of the condenser was not enough to obtain a more accurate cue about the actual degree of fouling. Especially, since the stains are often non-uniform, the batch detection method is not suitable. Therefore, it has already been attempted to subdivide the tube nest of the condenser into parts and create a heat balance inside one part (Japanese Patent Laid-Open Publication No. Sho.
57-14193 publication). There, a heat flow meter is also provided outside the cooling pipe and in each region, and the inlet temperature and the outlet temperature are collectively measured at the inlet and outlet of the condenser. On the basis of subdividing and measuring the degree of contamination via the tube nest, various metering devices associated with the measuring area are operated, which supply the cleaning body substantially area by area.

特定の使用条件の下で生物デポジットを駆除すること
のできる化学的処理が知られている。類似の処理を利用
して硬質沈殿物を減少させることもできる。冷却剤の化
学的状態調節と並んで、管材料の浸食を防止する電気系
も使用することができる。特に重要なのは、復水器の管
が良好な耐食性のため受動層または表層を必要とする特
定の材料である場合に腐食作用から保護されるのに寄与
する水の化学的状態調節である。但し表層が厚すぎると
勿論熱伝達にとって有害であり、この点で表層の厚さは
防食上必要な最低限に抑えねばならない。このことは特
に、管内壁に鉄分の多い表層を形成する鉄イオンを添加
する場合に当てはまる。
Chemical treatments are known which are capable of combating biological deposits under certain conditions of use. Similar treatments can also be used to reduce hard precipitates. Along with chemical conditioning of the coolant, electrical systems that prevent erosion of tubing can also be used. Of particular importance is the chemical conditioning of the water, which contributes to being protected from corrosive action when the tubes of the condenser are certain materials which require a passive or surface layer for good corrosion resistance. However, if the surface layer is too thick, it is of course detrimental to heat transfer. From this point, the thickness of the surface layer must be kept to the minimum necessary for corrosion protection. This is especially true when adding iron ions which form a surface layer rich in iron on the inner wall of the tube.

表層状態の測定には特に個々の管について行うことの
できる分極抵抗の測定が有効である。その際結果的に冷
却剤から管材料内への導電抵抗が測定される。これまで
は冷却剤の化学的状態調節または電気防食と清浄体を使
った機械的清浄とが別々に行われてきた。
For the measurement of the surface state, it is particularly effective to measure the polarization resistance that can be performed for each tube. As a result, the resistance of the coolant to the tube is measured. Heretofore, chemical conditioning of the coolant or cathodic protection and mechanical cleaning with a cleaning body have been carried out separately.

(発明が解決しようとする課題) 復水器の領域を冒頭述べたように測定工学式に検出す
ることは熱流計を備えた冷却管の流速が未知であること
から成果をもたらすことがなかった。例えば熱移動量が
測定される管が不都合な領域にある場合冷却剤は当該管
をゆっくり流れるだけであり、冷却剤は比較的強く暖め
られる。それゆえ、管の熱伝達状態すなわち清浄度に全
く問題がないにも拘らず熱流計は悪い値を表示すること
になる。それに対し被測定管をごく迅速に貫流する場合
には、清浄を必要とするデポジットをこの管がすでに含
み得るにも拘らず、熱流計による測定データは良好な値
を表す。
(Problems to be solved by the invention) Detection of the condenser area by the measurement engineering method as described at the beginning did not bring any results because the flow velocity of the cooling pipe equipped with the heat flow meter is unknown. . For example, if the pipe whose heat transfer is to be measured is in an unfavorable area, the coolant will only slowly flow through it and the coolant will be warmed relatively strongly. Therefore, the heat flow meter displays a bad value despite the fact that there is no problem with the heat transfer condition of the tube, ie the cleanliness. On the other hand, if the pipe to be measured flows through very quickly, the data measured by the heat flow meter show good values, even though the pipe may already contain a deposit which requires cleaning.

そこで本発明の目的は、個々の冷却管の実際の状態を
測定し、そしてその後に設備を稼働するよう冒頭述べた
種類の方法を改善することである。設備に係る目的は、
運転中熱交換器内で管の性状を一層正確に定量する適宜
な測定手段を提供することである。
The object of the present invention is therefore to improve a method of the kind mentioned at the outset, in which the actual state of the individual cooling pipes is measured and subsequently the equipment is put into operation. The purpose of equipment is
The object of the present invention is to provide a suitable measuring means for more accurately determining the properties of the tube in the heat exchanger during operation.

(課題を解決するための手段) 方法に関し前記目的の解決は、実質的に管巣面全体に
均等配分した所定本数の管について分極抵抗および/ま
たは熱伝達率を測定し、前記熱伝達率の測定は冷却剤の
入口温度、出口温度および流速と蒸気の温度とから求
め、腐食の危険の最も強い管の測定結果に応じて防食向
上手段を領域ごとにまたは一括して装入し、および/ま
たは熱伝達率の最も悪い管の測定結果に応じて清浄循環
を制御することにある。
(Means for Solving the Problem) Regarding the method, the solution to the above object is to measure polarization resistance and / or heat transfer coefficient for a predetermined number of tubes substantially evenly distributed over the entire tube nest surface, The measurement is made from the coolant inlet temperature, outlet temperature and flow velocity and steam temperature, and corrosion protection improving means is charged in each region or collectively according to the measurement result of the pipe with the highest risk of corrosion, and / or Alternatively, the clean circulation is controlled according to the measurement result of the tube having the worst heat transfer coefficient.

設備に関し本発明は前記目的を達成するため、複数本
の好ましくは管巣面全体に均等配分した管(12)に各測
定装置を配設し、防食に役立つ装置を制御系により分極
抵抗の測定結果に依存して領域ごとにまたは最も不都合
な測定結果に応じて一括して投入可能とし、そして清浄
体循環装置を制御系により最も悪い熱伝達率の測定値に
応じて投入可能とするよう提案する。
Regarding the equipment, in order to achieve the above-mentioned object, the present invention arranges each measuring device in a plurality of pipes (12), preferably evenly distributed over the entire tube nest surface, and measures the polarization resistance of the device useful for corrosion prevention by a control system. Proposal to make it possible to make a batch injection depending on the area or according to the most inconvenient measurement result, and to make it possible to put the clean body circulation device according to the worst heat transfer coefficient measurement value by the control system To do.

(作用・効果) つまり本発明は、先行技術とは異なり全パラメータの
測定を熱交換器の個々の管で直接行い、その熱伝達率を
定量して所定の目標値または基準値と比較することを教
える。基準値として冷却管の新規状態を測定し、この基
準値を基にその後の汚れをいわゆる汚れ係数または清浄
度により判定することができる。それとは別に、酸処理
後に特別の清浄体を使うかまたは機械的清浄後例えば手
直しの過程で手で行うことのできる管の根本的清浄の後
に得られる測定値を基準値とすることもできる。最後
に、管の寸法および材質データを基に定量可能な理論計
算可能な値も基準値とすることができる。
(Operation / Effect) That is, the present invention is different from the prior art in that all the parameters are measured directly in the individual tubes of the heat exchanger, and the heat transfer coefficient thereof is quantified and compared with a predetermined target value or reference value. teach. As a reference value, the new state of the cooling pipe can be measured, and based on this reference value, subsequent contamination can be determined by the so-called contamination coefficient or cleanliness. Alternatively, it is also possible to use as reference the measured values obtained after a basic cleaning of the pipe, which can be carried out after acid treatment with a special cleaning body or after mechanical cleaning, for example by hand in the process of reconditioning. Finally, a theoretically quantifiable value that can be quantified based on the pipe size and material data can also be used as the reference value.

各被測定管の入口温度、出口温度、単位時間当たり流
量または流速、そして蒸気温度は連続運転中に測定しな
ければならない。冷却剤の前記2つの温度は従来通り温
度検出器を使って検出される一方、本発明は流速の測定
と蒸気温度の測定では新しい道を歩む。
The inlet temperature, outlet temperature, flow rate or flow rate per unit time, and steam temperature of each pipe to be measured must be measured during continuous operation. While the two temperatures of the coolant are conventionally detected using temperature detectors, the present invention takes a new path in flow velocity measurement and vapor temperature measurement.

従来使用された熱流計は冷却管の外面に固着、例えば
接着または固定金具で保持される。
Conventionally used heat flow meters are fixedly attached to the outer surface of the cooling pipe, for example, adhered or held by fixing metal fittings.

復水器部分の内部にある管を装備する場合、この復水
器部分の製造後これらの管には、隣接管の間隔が人間の
手または工具にとって十分な通路をもはや許さないの
で、もはや接近することができない。この理由から修
理、受座点検等を行うことができない。本発明はこれか
ら方向転換する。
When equipped with pipes inside the condenser part, these pipes are no longer accessible after the manufacture of this condenser part, as the spacing between adjacent pipes no longer allows sufficient passage for human hands or tools. Can not do it. For this reason, repairs and inspections cannot be performed. The present invention is about to turn.

そうする代わりに本発明は、その熱量が測定される冷
却管に隣接する管(隣接管)の一つを、冷却剤が流れな
いように封止し、蒸気を流して該管を蒸気の温度にする
よう提案する。運転停止は栓を使って、つまり漏れを生
じるようになった冷却管において点検時この障害を取り
除くため現在すでに適用されている方法を利用して行
う。その際本来の温度検出器は両管板によって十分に押
して離され、連続運転中に蒸気温度となる箇所の温度が
確実に検出される。
Instead, the present invention seals one of the pipes (adjacent pipes) adjacent to the cooling pipe whose calorific value is measured so that the coolant does not flow, and causes steam to flow to bring the temperature of the steam to the temperature of the steam. Suggest to do. Shutdowns are performed by means of plugs, that is to say in the cooling pipes which have become leaky, using the methods already in place to eliminate this obstacle during inspection. At that time, the original temperature detector is sufficiently pushed and separated by both tube plates, and the temperature of the portion which becomes the steam temperature during the continuous operation is surely detected.

流速の測定は好ましくは断続的に、つまりタービン羽
根車やピトープローブ等を使って行うのでなく、好まし
くは管入口、管出口の2測定箇所間の距離と遊離した冷
却剤成分が一方の測定箇所を通過して他方の測定箇所に
至るまでに経過する時間との商によって行う。遊離した
冷却剤量は管全体の内径よりその直径が小さい浮遊可能
な測定球の形の異物かまたは流体、つまり第一測定箇所
の範囲または第一測定箇所に代わる範囲で微量装入され
る液体物質またはガスのいずれかである。この流体はイ
ンク、冷却剤とは電気伝導率の異なる塩溶液、またはそ
の他の例えば、その濁りまたは反射率が光電バリヤ等に
作用することのできる光学式に検出可能な物質であって
もよい。その際測定球は、被測定管を通過する特定の確
率が現れるほどその数が多いかぎり、復水器の入口範囲
で装入することもできる。特に、測定球が適宜に符号化
してあり、つまり測定装置がかかるものとして検出可能
となっているかぎり、清浄体と一緒に測定球を装入する
ことができる。これは簡単には、容量式または誘導式に
検出可能な金属粒体等を混入して行われる。この場合検
出器を使って管始端および管終端の通過を確認すること
ができる。
The flow velocity is preferably measured intermittently, that is, not using a turbine impeller or a Pitot probe, but preferably the distance between the two measurement points of the pipe inlet and the pipe outlet and the free coolant component at one measurement point. This is done by the quotient of the time elapsed from passing through to the other measurement point. The amount of released coolant is smaller than the inner diameter of the entire pipe. Foreign matter in the form of a floating measurement sphere or a fluid, that is, a liquid charged in a trace amount in the range of the first measurement point or in the range that replaces the first measurement point. It is either a substance or a gas. The fluid may be ink, a salt solution having a different electrical conductivity than the coolant, or other optically detectable substance whose turbidity or reflectance can act on a photoelectric barrier or the like. The measuring spheres can then also be loaded in the inlet range of the condenser, as long as the number of measuring spheres is so great that a certain probability of passing through the pipe to be measured appears. In particular, it is possible to load the measuring sphere together with the cleaning body, as long as the measuring sphere is appropriately coded, that is to say that the measuring device can detect it as such. This is simply done by mixing metal particles or the like that can be detected capacitively or inductively. In this case, a detector can be used to confirm passage through the beginning and end of the tube.

管入口で装入され冷却剤とは物理的および/または化
学的に相違した流体の通過を測定する検出器として適し
ているのは特に2個の流れ方向で相前後または互いに対
向配設した電極であり、これを使って冷却剤について導
電抵抗が定常値として測定される。流体がかかる検出器
を例えば一層良好な伝導率または悪い伝導率で通過する
や導電抵抗が短時間変化し、これが測定に利用される。
この種の検出器でもって前述の測定球または通常の清浄
体の通過も検出することができる。というのもこれらは
液体排除または流れ効果により通過の瞬間に両電極間の
導線抵抗を変えるからである。
Particularly suitable as a detector for measuring the passage of a fluid charged at the pipe inlet and physically and / or chemically different from the coolant are electrodes arranged in front of or behind one another in two flow directions. This is used to measure the conductivity resistance of the coolant as a steady value. As the fluid passes through such a detector, eg with better or worse conductivity, the conductivity resistance changes for a short time, which is used for the measurement.
With this type of detector, it is also possible to detect the passage of the measuring spheres described above or the usual cleaning bodies. This is because they change the resistance of the conductor between the two electrodes at the moment of passage due to liquid exclusion or flow effects.

本発明の構成要素としてのかかる検出器の利点は特
に、検出器の構成要素でもある同じ電極を分極抵抗の測
定に使用することができる点にある。こうして被測定冷
却管の検出器に必要な支出が著しく減少する。冷却管
は、それとは絶縁して第二の電極が冷却管に続いて取付
けた筒内に、または冷却管に差し込んだいわゆるインサ
ート内に格納してある場合、それ自信を電極として利用
することができる。
The advantage of such a detector as a component of the invention is in particular that the same electrode, which is also a component of the detector, can be used for measuring the polarization resistance. In this way, the expenditure required for the measured cooling pipe detector is significantly reduced. The cooling tube can be used as an electrode if it is insulated and stored in a cylinder in which the second electrode is mounted next to the cooling tube or in a so-called insert inserted in the cooling tube. it can.

勿論かかる筒またはインサート内に残りの検出器も、
つまり温度検出器、容量式、誘導式または光学式測定装
置も、そして更に測定機構全体の装備に応じて、しかも
1つの復水器の被測定管の管入口にも管出口にも、格納
することができる。
Of course, the remaining detectors in such tubes or inserts
That is, a temperature detector, a capacitive, inductive or optical measuring device, and further depending on the equipment of the entire measuring mechanism, and also at the inlet and outlet of one condenser to be measured. be able to.

すでに先に述べたように、考えられる実施態様の一つ
は管入口および管出口でそれぞれ管板の軸方向前および
後で検出器支持体として働く支持体を含む。かかる支持
体は復水器の管板に固着しておくことができ、或は隣接
冷却管の一つを冷却剤が流れないようにするため蒸気温
度の測定に使用される栓を使って保持を行う。この種の
保持により管板は全く手つかずのままであり、復水器側
測定モジュール全体の設置が著しく簡素になる。
As already mentioned above, one of the possible embodiments comprises a support serving as a detector support at the tube inlet and at the tube outlet, respectively, axially before and after the tube sheet. Such a support can be fixedly attached to the condenser tubesheet, or held in one of the adjacent cooling tubes with a stopper used to measure the vapor temperature to prevent coolant flow. I do. This type of retention leaves the tube sheet untouched and greatly simplifies the installation of the entire condenser side measurement module.

こうして特に復水器の蒸気室、冷却剤室間で漏れの危
険が回避される。支持体は、特に管入口では、清浄体が
管内に流入する確率が管内の流れ条件をなお変化させな
いよう構成しなければならない。この条件は後になお図
示実施例を基に説明する。
In this way, the risk of leakage is avoided, especially between the steam chamber and the coolant chamber of the condenser. The support must be constructed, especially at the tube inlet, so that the probability of the cleaning body entering the tube does not change the flow conditions in the tube. This condition will be described later with reference to the illustrated embodiment.

その内部で蒸気温度の測定が行われる冷却剤の流れな
い管は特に有利には一方の復水器側の全測定端子を他方
の復水器側に導くのに利用することができ、一方の復水
室には全体として単一のダクトが必要なだけである。復
水器の入口室が特にこのため予定されている。従って少
くとも一方の室内では測定導線が流体の作用から十分に
守られており、この範囲では損傷の危険が十分に回避さ
れている。
The coolant-free pipe in which the steam temperature measurement is carried out can be used particularly advantageously to guide all measuring terminals on one condenser side to the other condenser side. The condensate room only needs a single duct as a whole. The condenser inlet room is specifically planned for this. The measuring conductor is therefore well protected from the action of the fluid in at least one of the chambers, the risk of damage being sufficiently avoided in this range.

総括して、本発明は冷却水の化学的状態調節にも冷却
管用陰極保護装置にも係るものであり、付加的に、蒸気
から冷却剤への熱伝達率に応じて清浄体の循環を制御す
る設備と2つの復水器最適化方式の併用とに係るもので
あると確認することができる。
In general, the present invention relates to the chemical conditioning of cooling water as well as to the cathode protection device for cooling tubes, which additionally controls the circulation of the cleaning body depending on the heat transfer coefficient from the steam to the coolant. It can be confirmed that it is related to the equipment to be used and the combined use of the two condenser optimization methods.

(実施例) 以下本発明の図示実施例を詳しく説明する。(Example) Hereinafter, the illustrated example of the present invention will be described in detail.

第1図に示した回路図は2つの測定装置とそれに付属
したコントローラと測定値を処理する制御器とを概略示
す。例えば発電所の蒸気を復水する通常の復水器1の内
部に入口室2、出口室3、そしてその間に冷却管の管巣
6があり、冷却剤は入口4、出口5を介し冷却管を貫流
することができる。管の末端で管板7、8が蒸気室を冷
却剤室から分離する。蒸気室を通して冷却管への蒸気の
給排は図示省略してある。
The circuit diagram shown in FIG. 1 schematically shows two measuring devices and their associated controllers and controllers for processing the measured values. For example, a normal condenser 1 for condensing steam from a power plant has an inlet chamber 2, an outlet chamber 3, and a tube nest 6 of a cooling pipe between them, and the coolant is cooled by the inlet 4 and the outlet 5 through the cooling pipe. Can flow through. At the ends of the tubes, the tube sheets 7, 8 separate the vapor chamber from the coolant chamber. The supply / discharge of steam to / from the cooling pipe through the steam chamber is not shown.

管巣6を冷却剤は一般に均一に流過するのでなく、高
速領域、低速領域、清浄体の流入する確率の大きい領
域、小さい領域、特に汚れた領域等が存在する。個々の
領域の代表的数値を検出するため所定の箇所に、非測定
冷却管11と並んで、その腐食状態および熱伝達率が持続
的にまたは間隔を置いて検出される被測定冷却管12が設
けてある。
The coolant generally does not flow uniformly through the tube nest 6, but there are a high-speed region, a low-speed region, a region having a high probability of inflow of the cleaning material, a small region, particularly a dirty region. In order to detect the representative numerical value of each area, in parallel with the non-measurement cooling pipe 11, the measured cooling pipe 12 whose corrosion state and heat transfer coefficient are detected continuously or at intervals is provided. It is provided.

今日一般的な長方形断面の復水器の場合例えば9本の
管が測定され、管は3平面で上下に重ねて各3本の管が
管巣6全体の面全体に実質的に均等配分して配設してあ
る。この配置が各管で繰り返されるので第1図には単一
の被測定冷却管12のみが単なる例として図示してある。
各被測定冷却管12に冷却剤の流れない冷却管13が付属し
ているが、この点はなお後に正確に説明する。冷却剤の
流れない冷却管13は両側が栓14で閉鎖される。
In the case of a condenser of rectangular cross section, which is common today, for example, nine tubes are measured, the tubes being stacked one above the other in three planes, each three tubes being distributed substantially evenly over the entire surface of the tube nest 6. It is arranged. Since this arrangement is repeated for each tube, only a single measured cooling tube 12 is shown in FIG. 1 as an example.
Each cooling pipe 12 to be measured is provided with a cooling pipe 13 through which a coolant does not flow, which will be explained exactly later. The cooling pipe 13 in which the coolant does not flow is closed by plugs 14 on both sides.

被測定管12の各入口側と各出口側で、これらの箇所で
必要な検出器をそれぞれ含んだ筒状支持体18,19が一種
のインサートとして被測定管12に挿入してある。両側の
これらの箇所で冷却剤入口温度、出口温度を測定する温
度検出器20,21がこれに付属しており、流量と合わせて
吸収熱量が検出される。これには蒸気温度を知ることが
不可欠である。これは冷却剤の流れない冷却管13内で温
度検出器28により測定される。3つの温度測定値がコン
トローラに入力され、そこで継続処理に利用される。
At each inlet side and each outlet side of the pipe to be measured 12, tubular supports 18 and 19 respectively including detectors required at these locations are inserted into the pipe to be measured 12 as a kind of insert. Temperature detectors 20 and 21 that measure the coolant inlet temperature and the coolant outlet temperature at these points on both sides are attached to this, and the absorbed heat amount is detected together with the flow rate. Knowing the steam temperature is essential for this. This is measured by the temperature detector 28 in the cooling pipe 13 in which no coolant flows. Three temperature measurements are input to the controller, where they are used for further processing.

図示実施例の場合単位体積あたりの流量の測定は以下
の如く行う。被測定冷却管12の入口側、筒状支持体18の
領域に装入部22があり、計量ポンプ26によりタンクから
化学物質が装入部を介し流動冷却剤中に噴霧することが
できる。噴霧物質は瞬間的に流動冷却剤の速度となり、
こうして比較的完全な液体飛領地として被測定管12内を
送られる。被測定冷却管12の出口側、筒状支持体19の内
部に2個の電極23が相前後して配設してある。
In the case of the illustrated embodiment, the flow rate per unit volume is measured as follows. A charging part 22 is provided in the region of the tubular support 18 on the inlet side of the measured cooling pipe 12, and a metering pump 26 allows chemical substances to be sprayed from the tank into the flowing coolant through the charging part. The atomized material momentarily becomes the velocity of the flowing coolant,
In this way, the inside of the pipe 12 to be measured is sent as a relatively complete liquid enclave. Two electrodes 23 are arranged one behind the other in the cylindrical support 19 on the outlet side of the measured cooling pipe 12.

噴霧物質、例えば塩溶液が電極23を通過すると電気の
流れが短時間変化し、この箇所で装入物質を検出するの
に利用される。装入部22で装入の時点が知られており、
また被測定冷却管12の横断面積が事前に検出してあるの
で、物質が装入部22から流出してから電極23を通過する
までの間の時間から体積流量を計算することができる。
体積流量は横断面積に被測定冷却管の装入部22、電極23
間の長さと噴霧物質が被測定冷却管12を横切る測定時間
とを掛けた積から生じる商に等しい。従って付属のコン
トローラに計量ポンプ26は装入時点のゆえに、そして電
極23は最終時間測定のため接続してある。管寸法は付属
の流速用コントローラ内にしっかり記憶してある。
When a spray substance, for example a salt solution, passes through the electrode 23, the flow of electricity changes for a short time and is used at this point to detect the charge substance. The charging time is known in the charging section 22,
Further, since the cross-sectional area of the measured cooling pipe 12 is detected in advance, the volume flow rate can be calculated from the time from when the substance flows out of the charging portion 22 to when it passes through the electrode 23.
The volume flow rate is the cross-sectional area of the measured cooling pipe charging part 22, electrode 23
It is equal to the quotient resulting from the product of the length of the gap and the measured time that the spray substance traverses the measured cooling pipe 12. The metering pump 26 is therefore connected to the attached controller because of the time of charging and the electrode 23 for the final time measurement. The pipe dimensions are stored securely in the attached flow rate controller.

上記の量、つまり冷却剤の単位体積あたりの流量、温
度差、比密度、熱容量、そして蒸気温度から、蒸気が被
測定管12の壁を通って冷却剤に伝達する熱伝達率を検出
することができる。かかる測定を、摩耗性清浄体を使っ
て金属が平滑になるまで根本的に清浄し、酸洗しまたは
手で清浄にした後、まだ汚れていない新しい冷却管で行
うことができるので、この最初の測定を介し基準値を
得、汚れによる各劣化の尺度として利用することができ
る。それとの偏差は、寸法と材質データが知られていて
熱伝達率を計算することができるので、純金属管の理論
値の基礎とすることもできる。この基準値でもって、冷
却管の熱工学的状態についての一般的特性値をそれぞれ
表す汚れ係数または清浄度を検出することができる。
From the above amount, that is, the flow rate of the coolant per unit volume, the temperature difference, the specific density, the heat capacity, and the steam temperature, it is possible to detect the heat transfer coefficient at which the steam is transferred to the coolant through the wall of the pipe 12 to be measured. You can Such a measurement can be carried out with a fresh, clean tube after being thoroughly cleaned with an abrasive cleaning body until the metal is smooth, pickled or hand-cleaned. A reference value can be obtained through the measurement of and can be used as a measure of each deterioration due to dirt. The deviation from that can be used as a basis for the theoretical value of the pure metal tube, since the dimension and material data are known and the heat transfer coefficient can be calculated. With this reference value it is possible to detect the fouling factor or cleanliness, which respectively represent a general characteristic value for the thermotechnical condition of the cooling pipe.

冒頭すでに述べたように個々の冷却管11の清浄は清浄
体、例えばスポンジゴム球を規則的間隔で、または連続
して、場合によっては濃度を変えて冷却剤に添加しそし
て冷却管通過後出口5の領域で再び捕捉して行う。個々
の冷却管11の内壁を清浄体で過度に集中的に処理するこ
とは特に、防食のため表層を設けるようになっている合
金の場合否定的効果を有する。管壁が概ね平滑な場合清
浄体の循環は熱伝達をさして向上せず、しかもこの場合
表層が作用を受け、腐食の危険が高まる。
At the beginning, as already mentioned, the cleaning of the individual cooling pipes 11 is carried out by adding a cleaning body, for example sponge rubber balls, at regular intervals or continuously, optionally with varying concentrations, to the coolant and after passing through the cooling pipes the outlet. Recapture in area 5 and perform. Excessively intensive treatment of the inner walls of the individual cooling pipes 11 with a cleaning body has a negative effect, in particular in the case of alloys which are intended to provide a surface layer for corrosion protection. If the pipe wall is generally smooth, the circulation of the cleaning body does not improve by heat transfer, and in this case the surface layer is affected and the risk of corrosion increases.

この危険限界に接近していることを確認するため図示
復水器は本発明により分極抵抗を検出する測定装置を装
備している。このため筒状支持体18内に測定電極24、そ
して装入部22に至る送り管内には、被測定冷却管12の管
壁とともに動作電極としてこの管の分極抵抗の測定を可
能とする基準電極25がある。付属の制御器内でやはり測
定値の評価が行われる。表層状態の尺度としての分極抵
抗は単位面積当たりオームで表される。経験値は十分知
られており、これから各使用条件について目標値を設定
することができる。
In order to make sure that this danger limit is approached, the illustrated condenser is equipped with a measuring device according to the invention for detecting the polarization resistance. Therefore, the measurement electrode 24 in the cylindrical support 18, and in the feed pipe reaching the charging portion 22, as a working electrode together with the pipe wall of the cooling pipe 12 to be measured, a reference electrode capable of measuring the polarization resistance of this pipe. There are 25. Evaluation of the measured values is also carried out in the attached controller. Polarization resistance as a measure of surface state is expressed in ohms per unit area. The empirical value is well known, and the target value can be set for each usage condition.

表層は復水器に流入する冷却剤の化学処理、例えば銅
合金製冷却管の場合硫酸鉄を装入して強めることができ
る。それとは別に、いわゆる犠牲陽極または活性陰極保
護を利用することによっても、表層が損傷または浸食さ
れるにも拘らず冷却管の入口領域、出口領域で管母材の
浸食防止を達成することができる。
The surface layer can be strengthened by chemical treatment of the coolant flowing into the condenser, for example, in the case of a copper alloy cooling pipe, iron sulfate is added. Alternatively, the so-called sacrificial anode or active cathode protection can also be used to achieve erosion protection of the tube base material at the inlet and outlet areas of the cooling tube despite the surface being damaged or eroded. .

測定した熱量と分極抵抗とから得られた測定値は本来
の制御器で表示される外、清浄設備および防食系の活性
化に利用される。測定と経験値とを基に清浄体の清浄循
環は持続時間と強さとが調整される。この清浄で表層の
有効性が損なわれることがあるが、これは適宜な化学処
理または電気防食の活性化によって補償することができ
る。この処理は更に分極抵抗の測定値に依存させること
ができ、つまり害のある腐食を排除するのに十分安定し
た表層が存在するときには終了させる。
The measured value obtained from the measured amount of heat and the polarization resistance is used for activation of the cleaning equipment and anticorrosion system in addition to being displayed by the original controller. The duration and strength of the clean circulation of the cleaning body are adjusted based on the measurement and the empirical value. This cleaning can impair the surface effectiveness, which can be compensated for by appropriate chemical treatment or activation of the cathodic protection. This process can also be made dependent on the measured polarization resistance, i.e. it is terminated when there is a sufficiently stable surface to eliminate harmful corrosion.

復水器の清浄と防食とを特に硫酸鉄の計量時本発明に
より結び付けることにより、復水器の状態を常時監視し
ながら運転条件の変化に直ちに適合して復水器の最適運
転が可能となる。本発明提案により個々の冷却管の熱伝
達および分極抵抗を具体的に測定するので、測定品質が
凌駕されることはもはやない。これにより汚れ、腐食の
分布が検知可能となり、場合によっては管板の特定領域
で目標定めて対抗処理を取ることができる。
By combining the cleaning and anticorrosion of the condenser with the present invention especially when measuring iron sulfate, it is possible to immediately adapt to changes in operating conditions while constantly monitoring the state of the condenser and perform optimal operation of the condenser. Become. As the heat transfer and polarization resistance of the individual cooling tubes are specifically measured by the invention proposal, the measurement quality is no longer exceeded. This makes it possible to detect the distribution of dirt and corrosion, and in some cases it is possible to take targeted countermeasures in a specific area of the tube sheet.

管巣の一方の側で検出器の配置変形を第2図に示し
た。筒状支持体に代え、図示実施例の場合入口側に単一
の電極32を備えた板状支持体31が設けてある。検出器を
形成するのに必要な第二の電極は被測定冷却管12の形で
設けてある。図示した電極32は支持体32の適宜な穴の周
囲全体でなく単に周囲の約3/4を満たしており、自由に
残った周囲部分に温度検出器(図示省略)を難なく格納
することができる。
The deformation of the detector on one side of the tube nest is shown in FIG. Instead of the cylindrical support, a plate-like support 31 provided with a single electrode 32 is provided on the inlet side in the illustrated embodiment. The second electrode required to form the detector is provided in the form of the measured cooling pipe 12. The illustrated electrode 32 fills only about 3/4 of the perimeter of the appropriate hole of the support 32, rather than the entire perimeter, allowing a temperature sensor (not shown) to be easily accommodated in the remaining free perimeter. .

板状支持体31は運転停止した管13は閉鎖する栓34で保
持されている。栓34はアンカーボルト35を使って圧潰す
ることのできる弾性壁領域を有しており、冷却剤の流れ
ない冷却管13の内部に液密な固定受座が生じる。アンカ
ー固定部は板状支持体31を動くことのないようそれに固
着できるほどしっかりしている。
The plate-like support 31 is held by a stopper 34 that closes the tube 13 that has stopped operating. The plug 34 has an elastic wall region that can be crushed using the anchor bolt 35, and a liquid-tight fixed seat is formed inside the cooling pipe 13 in which the coolant does not flow. The anchor fixing portion is strong enough to fix the plate-like support 31 to the plate-like support 31 so that the plate-like support 31 does not move.

それゆえ板状支持体31は板状支持体31の領域で清浄体
の流入する確率が影響を受けることのないよう比較的面
積が大きくかつ薄く実施してある。言い換えるなら清浄
体は板状支持体31の存在に左右されることなく常に冷却
管内に至る、統計的偶然法則により予想される同じ進路
を取るはずである。
Therefore, the plate-shaped support 31 has a relatively large area and is thin so that the probability of inflow of the cleaning material in the region of the plate-shaped support 31 is not affected. In other words, the cleaning body should always follow the same route as predicted by the statistical chance law, regardless of the presence of the plate-shaped support 31 and always reaching the inside of the cooling pipe.

第2図に示した板状支持体31は、冷却管の入口側でも
出口側でも、第1図に示す支持体19と容易に併用するこ
とができる。肝心なことは各検出器が相互に調整してあ
り、体積流量検出のため或る検出器と別の検出器との距
離が既知であることだけである。
The plate-like support 31 shown in FIG. 2 can be easily used together with the support 19 shown in FIG. 1 at both the inlet side and the outlet side of the cooling pipe. All that is essential is that the detectors are tuned to each other and the distance between one detector and another is known for volume flow detection.

【図面の簡単な説明】[Brief description of the drawings]

第1図は検出器用インサートを用いて伝熱管の防食およ
び清浄を制御する設備の回路図であり、概略図示した復
水器を一部拡大して示す横断面図を含む。 第2図は被測定冷却管と合わせ検出器用支持体の使用を
明らかにするため第1図の拡大部分の横断面図である。 〔符号説明〕 11,12,13……冷却管。
FIG. 1 is a circuit diagram of equipment for controlling corrosion prevention and cleaning of a heat transfer tube by using a detector insert, and includes a cross-sectional view showing a partially enlarged schematic view of a condenser. FIG. 2 is a cross-sectional view of the enlarged portion of FIG. 1 to clarify the use of the cooling pipe to be measured and the support for the combined detector. [Explanation of symbols] 11, 12, 13 ... Cooling tubes.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−14193(JP,A) 特公 昭58−44200(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-57-14193 (JP, A) JP-B-58-44200 (JP, B2)

Claims (18)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】分極抵抗を測定し、抵抗限界値を下回ると
防食を向上する化学的または電気的手段を活性化しまた
は強め、抵抗限界値を上回ると前記手段を非活性化しま
たは弱め、そして/または、蒸気から冷却剤への熱伝達
率を測定後、限界値を下回る場合清浄体の清浄循環を開
始させ、そして限界値を上回ると停止させ、または清浄
循環を強めまたは弱めて伝熱管、特に発電所冷却管の防
食および/または清浄体により行う機械的清浄を制御す
る方法において、実質的に管巣面全体に均等配分された
所定本数の管について分極抵抗および/または熱伝達率
を測定し、前記熱伝達率の測定は冷却剤の入口温度、出
口温度および流速と蒸気の温度とから求め、腐食の危険
の最も強い管の測定結果に応じて防食向上手段を領域ご
とにまたは一括して装入し、および/または熱伝達率の
最も悪い管の測定結果に応じて清浄循環を制御すること
を特徴とする方法。
1. A method for measuring polarization resistance, activating or enhancing chemical or electrical means for improving corrosion protection below a resistance limit, deactivating or weakening said means above a resistance limit, and / or Alternatively, after measuring the heat transfer coefficient from the steam to the coolant, a clean circulation of the cleaning body is started if it is below the limit value and stopped if it exceeds the limit value, or the clean circulation is strengthened or weakened to increase the heat transfer tube, especially A method of controlling the mechanical cleaning performed by a corrosion protection and / or a cleaning body of a power plant cooling pipe, in which polarization resistance and / or heat transfer coefficient is measured for a predetermined number of pipes substantially evenly distributed over the entire nest surface of the pipe. The heat transfer coefficient is measured from the coolant inlet temperature, outlet temperature, flow velocity and steam temperature, and corrosion protection improving means is set for each region or collectively according to the measurement result of the pipe with the highest risk of corrosion. Method characterized by charged, and / or depending on the measurement result of the worst tube heat transfer coefficient for controlling the cleaning cycle.
【請求項2】蒸気温度は、冷却剤の流れない管を介して
検出することを特徴とする特許請求の範囲第1項に記載
の方法。
2. A method as claimed in claim 1, characterized in that the steam temperature is detected via a pipe in which the coolant does not flow.
【請求項3】管入口で冷却剤の流速を測定するため冷却
剤とは化学的または物理的に異種であることを確認する
ことのできる固定または流体を添加し、管出口で固体ま
たは流体の存在を記録し、添加から存在測定までの測定
した時間を添加箇所から存在測定箇所までの距離に関係
付けることを特徴とする特許請求の範囲第1項に記載の
方法。
3. A fixed or fluid, which can be confirmed to be chemically or physically different from the coolant, is added to measure the flow rate of the coolant at the pipe inlet, and a solid or fluid is added at the pipe outlet. Method according to claim 1, characterized in that the presence is recorded and the measured time from addition to the presence measurement is related to the distance from the addition point to the presence measurement point.
【請求項4】単管または管群の管内壁の受動層または他
の保護層を点検するため分極抵抗を測定する少なくとも
1つの装置と、熱交換器の入口範囲にあって保護層の形
成を促進する物質を混和する計量装置または管内壁の浸
食を防ぐ電気式陰極保護装置および/または蒸気から冷
却剤への熱伝達率を測定する装置と、管内壁のデポジッ
トを取り除くため清浄体を冷却剤中に装入して循環させ
る装置と、各装置の投入頻度、投入時間、投入強度を決
定する制御系とを備え、伝熱管、特に発電所冷却管の防
食および/または清浄体により行う機械的清浄を制御す
る設備において、各測定装置が複数本の好ましくは管巣
面全体に均等配分された管(12)に配設してあり、特に
熱伝達率を測定する装置は管入口および管出口で冷却剤
の温度を測定する各1個の温度検出器(20,21)と、蒸
気温度を測定する温度検出器(28)と管(12)を流れる
冷却剤量を定量する流量計とを含み、防食に役立つ装置
が制御系により分極抵抗の測定結果に依存して領域ごと
にまたは最も不都合な測定結果に応じて一括して投入可
能であり、そして清浄体循環装置が制御系により最も悪
い熱伝達率の測定値に応じて投入可能であることを特徴
とする設備。
4. At least one device for measuring polarization resistance for checking a passive layer or other protective layer on the inner wall of a tube of a single tube or a group of tubes, and the formation of a protective layer in the inlet area of the heat exchanger. A metering device that admixes the facilitating substance or an electric cathodic protection device that prevents erosion of the inner wall of the pipe and / or a device that measures the heat transfer coefficient from the vapor to the coolant, and the cleaning body is a coolant to remove deposits on the inner wall of the pipe. It is equipped with a device for charging and circulating it inside, and a control system that determines the charging frequency, charging time, and charging strength of each device, and is a mechanical system that performs corrosion prevention and / or cleaning of heat transfer pipes, especially power plant cooling pipes. In a facility for controlling cleaning, each measuring device is arranged in a plurality of tubes (12), preferably evenly distributed over the entire tube nest surface, and in particular, the apparatus for measuring the heat transfer coefficient is a tube inlet and a tube outlet. Measure the temperature of the coolant at A control system is a device that includes one temperature detector (20, 21), a temperature detector (28) for measuring the steam temperature, and a flow meter for quantifying the amount of coolant flowing through the pipe (12), and which is useful for anticorrosion. Depending on the measurement result of the polarization resistance, it is possible to put in each region collectively or according to the most inconvenient measurement result, and the clean body circulation device is controlled by the control system according to the worst heat transfer coefficient measurement value. Equipment that can be input.
【請求項5】蒸気温度を測定する温度検出器(28)が、
管(12)に隣接する、冷却剤の流れない管(13)内に設
置されることを特徴とする特許請求の範囲第4項に記載
の設備。
5. A temperature detector (28) for measuring steam temperature,
5. Equipment according to claim 4, characterized in that it is installed in a pipe (13) adjacent to the pipe (12) in which the coolant does not flow.
【請求項6】流量計が不連続に測定することを特徴とす
る特許請求の第4項に記載の設備。
6. Equipment according to claim 4, characterized in that the flow meter measures discontinuously.
【請求項7】流量計が時間測定装置と、管入口の装入部
(22)と管出口で固体を記録しまたは冷却剤の物理的お
よび/または化学的変化を記録する検出器と、固体また
は流体を断続的に供給する計量装置(26)とからなり、
時間測定装置が装入信号と検出器信号との間の時間を検
出することを特徴とする特許請求の範囲第6項に記載の
設備。
7. A flow meter, a time measuring device, a detector for recording solids at the inlet (22) of the pipe inlet and at the pipe outlet or for recording physical and / or chemical changes of the coolant, solids. Or a metering device (26) for intermittently supplying fluid,
7. Equipment according to claim 6, characterized in that the time measuring device detects the time between the charging signal and the detector signal.
【請求項8】流量計が時間測定装置と、管始端の検出器
と管終端の検出器とからなり、冷却剤が検出器により検
出可能な、管(12)の内径より小さい直径の測定球を選
択的に備えることができ、時間測定装置が検出器信号間
の時間を検出することを特徴とする特許請求の範囲第6
項に記載の設備。
8. A measuring sphere having a diameter smaller than the inner diameter of the pipe (12), wherein the flowmeter comprises a time measuring device, a detector at the beginning of the pipe and a detector at the end of the pipe, and the coolant can be detected by the detector. 7. The device according to claim 6, characterized in that the time measuring device detects the time between the detector signals.
Equipment described in paragraph.
【請求項9】各検出器が2個の互いに距離を隔てて配設
し電源に接続した電極(23)からなり、流体が電極間を
通過する瞬間に測定球により惹き起こされる導電変化で
時間信号が発生されることを特徴とする特許請求の範囲
第7項または第8項に記載の設備。
9. Each detector is composed of two electrodes (23) arranged at a distance from each other and connected to a power supply, and the time of the change in conductivity caused by a measuring sphere at the moment when a fluid passes between the electrodes. Equipment according to claim 7 or 8, characterized in that a signal is generated.
【請求項10】各測定球が特にすくなくとも1個の金属
体により、またはその他の方法で容量式または誘導式に
検出可能であり、各検出器が測定コンデンサまたは測定
コイルからなることを特徴とする特許請求の範囲第7項
または第8項に記載の設備。
10. Each measuring sphere can be detected capacitively or inductively by at least one metal body or by any other method, each detector consisting of a measuring capacitor or a measuring coil. The equipment according to claim 7 or 8.
【請求項11】測定球が清浄体と同時に循環することを
特徴とする特許請求の範囲第10項に記載の設備。
11. The equipment according to claim 10, wherein the measuring sphere circulates at the same time as the cleaning body.
【請求項12】電極(23)が分極抵抗測定装置の構成要
素であることを特徴とする特許請求の範囲第9項に記載
の設備。
12. Equipment according to claim 9, characterized in that the electrode (23) is a component of a polarization resistance measuring device.
【請求項13】一方の電極がそれぞれ管(12)そのもの
であることを特徴とする特許請求の範囲第9項または第
12項に記載の設備。
13. The method according to claim 9, wherein one of the electrodes is a tube (12) itself.
Equipment described in paragraph 12.
【請求項14】各管入口、管出口の温度検出器(20)、
装入部(22)または検出器がそれぞれ筒状支持体(18,1
9)内に格納してあることを特徴とする特許請求の範囲
第5項〜13項のいずれかに記載の設備。
14. A temperature detector (20) for each pipe inlet and pipe outlet,
The charging part (22) or the detector is respectively a cylindrical support (18,1
The equipment according to any one of claims 5 to 13, characterized in that the equipment is stored in 9).
【請求項15】筒状支持体(18,19)が一種のインサー
トとして各管(12)に差し込んであることを特徴とする
特許請求の範囲第14項に記載の設備。
15. Equipment according to claim 14, characterized in that the tubular support (18, 19) is inserted as a kind of insert into each tube (12).
【請求項16】各管入口、管出口の温度検出器(20)、
装入部(22)または検出器が各管(12)の前または後で
ホルダにより位置調整してあり、ホルダ(32)が冷却剤
の流れない管(13)内でボルトで固定してあることを特
徴とする特許請求の範囲第5項〜13項のいずれかに記載
の設備。
16. A temperature detector (20) at each pipe inlet and pipe outlet,
The charging part (22) or the detector is adjusted in position by a holder before or after each pipe (12), and the holder (32) is bolted in the pipe (13) where the coolant does not flow. The facility according to any one of claims 5 to 13, which is characterized in that
【請求項17】冷却剤の流れない管(13)が一方の復水
室(3)の各測定装置の導線(30)を他方の復水室に導
くのに役立ち、全測定導線の導線ダクトが他方の復水室
の壁に設けてあることを特徴とする特許請求の範囲第5
項〜16項のいずれかに記載の設備。
17. A conduit (13) in which no coolant flows serves to guide the conductors (30) of each measuring device of one condensate chamber (3) to the other condensate chamber, the conductor ducts of all measuring conductors. Is provided on the wall of the other condensate chamber.
The equipment according to any one of Items 16 to 16.
【請求項18】各検出器が光電バリヤからなり、その暗
部が信号発生のため測定球または濁り物質に通されるこ
とを特徴とする特許請求の範囲第8項または第9項に記
載の設備。
18. Equipment according to claim 8 or 9, characterized in that each detector comprises a photoelectric barrier, the dark part of which is passed through a measuring sphere or a turbid substance for signal generation. .
JP63037305A 1987-02-19 1988-02-19 Corrosion protection for heat transfer tubes. Mechanical cleaning control method and equipment Expired - Fee Related JP2691344B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3705240.3 1987-02-19
DE19873705240 DE3705240C2 (en) 1987-02-19 1987-02-19 Process and system for controlling corrosion protection and / or mechanical cleaning of heat exchanger tubes

Publications (2)

Publication Number Publication Date
JPS63302299A JPS63302299A (en) 1988-12-09
JP2691344B2 true JP2691344B2 (en) 1997-12-17

Family

ID=6321296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63037305A Expired - Fee Related JP2691344B2 (en) 1987-02-19 1988-02-19 Corrosion protection for heat transfer tubes. Mechanical cleaning control method and equipment

Country Status (2)

Country Link
JP (1) JP2691344B2 (en)
DE (1) DE3705240C2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3918531A1 (en) * 1989-06-07 1990-12-13 Taprogge Gmbh METHOD AND DEVICE FOR MONITORING THE EFFICIENCY OF A CONDENSER
DE4035242A1 (en) * 1990-11-06 1992-05-07 Siemens Ag OPERATIONAL MONITORING OF A TUBE CONDENSER WITH MEASUREMENTS ON SELECTED TUBES
DE102010040609A1 (en) * 2010-09-13 2012-03-15 Bayerische Motoren Werke Aktiengesellschaft Repair method for removing deposits from e.g. heat exchanger for heating inner chamber of vehicle in automotive industry, involves accommodating fluid to container wall when fluid flows through container, and removing fluid from container
KR101414291B1 (en) * 2013-07-11 2014-07-01 한국정수공업 주식회사 Cleaning Method and Apparatus of Heat Exchanger by Observing Corrosion Current

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919273B2 (en) * 1979-12-05 1984-05-04 株式会社日立製作所 Condenser performance monitoring method
JPS5714193A (en) * 1980-06-30 1982-01-25 Hitachi Ltd Distributing and controlling method of cleaning balls
JPS5844200A (en) * 1981-09-08 1983-03-15 日本綜合防水株式会社 Waterproof execution method for tunnel

Also Published As

Publication number Publication date
DE3705240A1 (en) 1988-09-01
JPS63302299A (en) 1988-12-09
DE3705240C2 (en) 1995-07-27

Similar Documents

Publication Publication Date Title
CN111051806B (en) Cooling water monitoring and control system
EP0224271B1 (en) Condenser having apparatus for monitoring conditions of inner surface of condenser tubes
Awad Fouling of heat transfer surfaces
AU2001272969B2 (en) Dynamic optimization of chemical additives in a water treatment system
US6131443A (en) Corrosion monitor
US7310877B2 (en) Method of producing sensors for monitoring corrosion of heat-exchanger tubes
Cho et al. Validation of an electronic anti-fouling technology in a single-tube heat exchanger
JP2691344B2 (en) Corrosion protection for heat transfer tubes. Mechanical cleaning control method and equipment
KR101060815B1 (en) Apparatus and method for continuously measuring acid concentration of pickling solution
WO2011053429A1 (en) Deposition sensor based on differential heat transfer resistance
TWI599411B (en) Chemical cleaning methods and chemical cleaning device
CN112815767B (en) Cleaning method of seawater desalination device
JP4167330B2 (en) Channel corrosion resistance test apparatus and channel corrosion resistance test method using the same
JPH03288586A (en) Method for monitoring contamination of water system
JP4288018B2 (en) Water quality evaluation method and water quality management system
EP3351312B1 (en) Method for inspecting cleanliness level of a metal surface of a metal compound in an industrial plant by means of electrical resistance measurement
JPH058360B2 (en)
Golovin et al. Using an eddy-current technique for studying local corrosion and scale formation on the walls of heat-exchanger tubes
JPH0296644A (en) Fouling sensor
JPS5915800A (en) Fouling preventing apparatus
EP0224270B1 (en) Method of monitoring the inner surface of copper-alloy condensor tubes
JPH10170470A (en) Pitting corrosion monitoring method
RU2675573C2 (en) Device and method for controlling deposit formation
Rahman et al. A review of ultrasonic tomography for monitoring the corrosion of steel pipes
CN104950081A (en) On-line cleaning rate test method and device for shell-and-tube heat exchanger

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees