JPH0113879Y2 - - Google Patents

Info

Publication number
JPH0113879Y2
JPH0113879Y2 JP9933284U JP9933284U JPH0113879Y2 JP H0113879 Y2 JPH0113879 Y2 JP H0113879Y2 JP 9933284 U JP9933284 U JP 9933284U JP 9933284 U JP9933284 U JP 9933284U JP H0113879 Y2 JPH0113879 Y2 JP H0113879Y2
Authority
JP
Japan
Prior art keywords
cylinder
piston
driven body
spheres
reciprocating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9933284U
Other languages
Japanese (ja)
Other versions
JPS6114252U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9933284U priority Critical patent/JPS6114252U/en
Publication of JPS6114252U publication Critical patent/JPS6114252U/en
Application granted granted Critical
Publication of JPH0113879Y2 publication Critical patent/JPH0113879Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Actuator (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、例えばマシニングセンターにおいて
安全性確保のために機械装置の周囲に構築された
囲壁に装着のドアを自動開閉する場合、そのほか
各種の可動部材を二位置間に亘つて往復移動させ
る場合に用いられるアクチユエータで詳しくはシ
リンダ内に嵌合のピストンが、該ピストン両側に
おけるシリンダ室への流体圧の供給制御によつて
シリンダ軸線方向に往復駆動移動自在に構成され
ているとともに、前記シリンダの外側に、シリン
ダ軸線方向と平行又はほぼ平行な一定経路に沿つ
て往復移動自在な被動体が設けられ、この被動体
と前記ピストンとの間に、前記ピストンの往復駆
動移動力を前記被動体に伝達する移動力伝達機構
が設けられている流体圧シリンダ利用の往復運動
用アクチユエータに関する。
[Detailed description of the invention] <Industrial application field> This invention is useful, for example, when automatically opening/closing a door attached to an enclosure built around a mechanical device in order to ensure safety in a machining center, and in other types of movable applications. An actuator used to reciprocate a member between two positions. Specifically, a piston fitted in a cylinder is driven reciprocally in the cylinder axis direction by controlling the supply of fluid pressure to the cylinder chamber on both sides of the piston. A driven body is configured to be movable and can be reciprocated along a fixed path parallel or substantially parallel to the cylinder axis direction on the outside of the cylinder, and between the driven body and the piston, The present invention relates to a reciprocating actuator that uses a fluid pressure cylinder and is provided with a moving force transmission mechanism that transmits the reciprocating force of the piston to the driven body.

〈従来の技術〉 上記構成のアクチユエータは、ロツドレスシリ
ンダが主要構成であつて、シリンダボア径の縮小
化のみならず、被動体の往復移動範囲をシリンダ
の軸線長さ範囲内にオーバーラツプさせて所定ス
トロークの往復運動を行なわせるに要するアクチ
ユエータの占有スペースを削減することが可能
で、出力/重量比、及び、力/大きさ比を大きく
できて用途性が著しく広いといつた実用効果を有
する。
<Prior art> The actuator with the above configuration has a rodless cylinder as its main configuration, which not only reduces the cylinder bore diameter but also overlaps the range of reciprocating movement of the driven body within the axial length range of the cylinder to achieve a predetermined stroke. It has practical effects such as being able to reduce the space occupied by the actuator required to perform the reciprocating motion of the actuator, increasing the output/weight ratio and the force/magnitude ratio, and greatly widening the versatility.

ところで、この種のロツドレスシリンダ利用の
アクチユエータで従来から知られているものは、 (イ) 第6図で概略示すように、ピストン02の往
復駆動力をシリンダ01外側に形成の一定経路
に沿つて往復移動自在な被動体03に伝達する
移動力伝達機構04が、前記被動体03の移動
経路を含む状態で前記ピストン02の運動方向
両側面部間に亘つてエンドレス状に掛け回し連
結されたワイヤーから構成されたもの、と (ロ) 図示省略するが前記ワイヤーに代えて屈曲性
のあるスチール帯板を利用して構成されたも
の、とがある。
By the way, heretofore known actuators that use this kind of rodless cylinder are: (a) As schematically shown in FIG. A moving force transmission mechanism 04 that transmits a moving force to a driven body 03 that is reciprocally movable includes a wire that is endlessly looped and connected between both side surfaces of the piston 02 in the movement direction, in a state that includes the moving path of the driven body 03. (b) Although not shown in the drawings, there are two types of wires: one constructed using a flexible steel strip instead of the wire.

〈考案が解決しようとする問題点〉 然して上記構成の従来アクチユエータにおいて
は、前者(イ)と後者(ロ)との比較において各々一長一
短があるものの、何れにしても本来の往復運動
(ストローク運動)性能の面でも多くの難点欠点
があつた。
<Problems to be solved by the invention> However, in the conventional actuator with the above configuration, although there are advantages and disadvantages when comparing the former (a) and the latter (b), in any case, the original reciprocating motion (stroke motion) There were many difficulties and drawbacks in terms of performance.

つまり、従来のものでは前記の移動力伝達機構
がワイヤー又はスチール帯板といつたようにピス
トンと被動体との長さ範囲に亘つて同一材質の長
尺一連の帯状体であるとともに、ピストンの移動
力がその長尺帯状体にテンシヨンを付与する状態
で被動体に伝達されるものであつて、殊に、被動
体停止状態からこれを移動させる運動初期におい
てはワイヤーやスチール帯板に強大な引張応力が
作用することになる。このようにストローク運動
時における引張応力の繰り返し作用に伴なう経時
的な伸びと環境条件、特に湿度変化に伴なう熱膨
張の影響度が大きいこと、更には前記長尺帯状体
の運動経路が屈曲経路となり、その経路構成部と
帯状体との摩擦に起因する伝達力のロスとが相乗
じてストロークや速度等被動体の運動性能を長期
に亘つて安定維持することができないばかりでな
く、力伝達機構(長尺帯状体)とシリンダとの間
のシール構成の面での耐性にも欠けるものであつ
た。また、熱膨張の影響度等をできるだけ小さく
して性能の維持を図る種々の工夫も試みられてい
るが、この場合は構成の複雑化に伴ない全体コス
トが非常に高くつく欠点があつた。加えて上記の
如き性能面での問題点は、ストロークが大きけれ
ば大きい程、また、被動体(負荷)重量が大きけ
れば大きい程に顕著に現われるのであり、それ故
にこの種のアクチユエータの適用範囲にも自ずと
限界があつた。
In other words, in the conventional system, the moving force transmission mechanism is a series of elongated strips made of the same material, such as wire or steel strips, over the length range of the piston and the driven body, and also The moving force is transmitted to the driven body while applying tension to the long strip, and especially in the early stage of movement when the driven body is moved from a stopped state, a strong force is applied to the wire or steel strip. Tensile stress will act. As described above, elongation over time due to the repeated action of tensile stress during stroke motion and environmental conditions, especially thermal expansion due to changes in humidity, have a large influence, and furthermore, the movement path of the long strip becomes a curved path, and the loss of transmission force due to the friction between the path component and the band-shaped body is compounded, and the movement performance of the driven object, such as stroke and speed, cannot be maintained stably over a long period of time. Also, the durability of the seal structure between the force transmission mechanism (elongated strip) and the cylinder was lacking. In addition, various attempts have been made to maintain performance by minimizing the influence of thermal expansion, but these have had the disadvantage that the overall cost is extremely high due to the complexity of the structure. In addition, the performance problems mentioned above become more pronounced as the stroke becomes larger and the weight of the driven object (load) becomes larger. Therefore, the scope of application of this type of actuator is Naturally, there was a limit.

本考案はかかる実情に鑑み、本来の運動性能を
確実、精巧に、かつ長期に亘つて安定的に維持で
き、しかも全体をコイト面で非常に有利に構成で
きる流体圧シリンダ利用の往復運動用アクチユエ
ータを提供する点に目的を有する。
In view of these circumstances, the present invention is an actuator for reciprocating motion using a fluid pressure cylinder, which can maintain the original motion performance reliably, precisely, and stably over a long period of time, and which can be configured entirely with a coil surface. The purpose is to provide the following.

〈問題点を解決するための手段〉 上記の目的を達成するために本考案に係る流体
圧利用の往復運動用アクチユエータは、冒頭詳記
のものにおいて、前記ピストン2の往復運動方向
側面部と前記被動体3の往復運動方向側面部とに
亘つて屈曲経路5が形成され、この屈曲経路5内
に同一径の複数個の球体6を、相隣るものの周面
が互いに接当する状態でかつ転動規制状態に配列
することにより、前記ピストン2の往復駆動移動
力を前記被動体3に伝達する移動力伝達機構4が
構成されているとともに、前記被動体3内に、該
被動体3の前記球体6群に対する移動力接当受面
3Aの前記経路5軸線方向に沿つた位置を、少な
くとも1つの球体6の直径Dに相当する範囲にお
いて調整自在な機構15が組込まれているという
構成に特徴と有するものである。
<Means for Solving the Problems> In order to achieve the above object, the actuator for reciprocating motion using fluid pressure according to the present invention is as described in detail at the beginning. A bending path 5 is formed across the side surface of the driven body 3 in the reciprocating direction, and a plurality of spheres 6 having the same diameter are placed in this bending path 5 with the peripheral surfaces of adjacent ones in contact with each other. By arranging the piston 2 in a rolling restricted state, a moving force transmission mechanism 4 for transmitting the reciprocating force of the piston 2 to the driven body 3 is configured, and the driven body 3 is provided with The structure includes a built-in mechanism 15 that can freely adjust the position of the moving force abutting surface 3A with respect to the group of spheres 6 along the axial direction of the path 5 within a range corresponding to the diameter D of at least one sphere 6. It has characteristics.

〈作用〉 このような特徴構成を有する本考案に係る流体
圧シリンダ利用の往復運動用アクチユエータによ
れば、前記ピストン2の流体圧による往復駆動移
動力が、前記屈曲経路5内に密接配列された球体
6群の力学的運動エネルギー保存の法則に基づく
押圧力を介して前記被動体3に伝達されることと
なり、屈曲経路5でありながらもその屈曲部分で
の力の逃散が殆んどなく、伝達力のロスが非常に
少なくて済む。而して、力の伝達媒体である球体
6群は精密加工が可能であるとともに、熱弾性係
数も非常に小さく、前記ピストン2と被動体3と
の間に亘る力の伝達作用の温度変化による影響度
を極めて僅少なものに抑制することができる。加
えて、力の伝達経路である前記屈曲経路5の構成
に際して多少の製作誤差が発生しても、前記被動
体3に組込まれている調整機構15を介しての移
動力接当受面3Aの位置調整により誤差を吸収
し、各球体6群の周面接当状態を確実容易に現出
させることができるのである。
<Operation> According to the reciprocating actuator using a fluid pressure cylinder according to the present invention having such a characteristic configuration, the reciprocating driving force of the piston 2 due to the fluid pressure is closely arranged in the bending path 5. The force is transmitted to the driven body 3 through the pressing force based on the law of conservation of mechanical kinetic energy of the 6 groups of spheres, and even though it is a curved path 5, there is almost no escape of force at the curved portion. The loss of transmission force is extremely small. Therefore, the 6 groups of spheres that are the force transmission medium can be precisely machined and have a very small thermoelastic coefficient, so that the force transmission between the piston 2 and the driven body 3 is not affected by temperature changes. The degree of influence can be suppressed to an extremely small level. In addition, even if some manufacturing error occurs in the configuration of the bending path 5, which is a force transmission path, the moving force abutting surface 3A can be adjusted via the adjustment mechanism 15 built into the driven body 3. By adjusting the position, errors can be absorbed and the state of contact between the circumferential surfaces of each of the six groups of spheres can be reliably and easily brought out.

〈実施例〉 以下本考案の実施例を図面に基づいて群述す
る。
<Examples> Examples of the present invention will be described below based on the drawings.

第1図乃至第3図において、1はその軸線方向
の両端にエアーや油圧等の流体圧供給及び排出用
の流路8A,8Bを貫設のプラグヘツド9A,9
Bを長尺ボールト16A、ナツト16Bを介して
気密状態又は水密状態に嵌着させたシリンダであ
り、、2は該シリンダ1内にその軸線方向に往復
摺動可能に嵌合保持されたピストンであつて、こ
のピストン2両側のシリンダ室1A,1Bへの図
外バルブ及び前記流路8A,8Bを介しての流体
圧供給制御によつてシリンダ軸線方向に往復駆動
移動自在に構成されている。3は前記シリンダ1
の上部左右両側において、前記両プラグヘツド9
A,9Bの上端部間に亘つて固着連設の軸状ガイ
ドレール10に沿つてシリンダ軸線方向と平行又
はほぼ平行に往復移動自在に支持された被動体で
あつて、これは例えば既述の自動開閉ドアに対す
る開閉操作用リンク機構の一端部や溶接装置など
を取付け可能に構成されているとともに、前記ガ
イドレール10に嵌合する筒部11,11と後述
の移動力受部材12とを備えている。5,5は前
記両プラグヘツド9A,9Bにノツクピン17,
17を介して固定連結の側面視半円状の部材5
a,5b及びそれらの外側に沿つて固定支持され
た半円状湾曲部材5a′,5b′との間に形成される
半円状湾曲経路部分5A,5Bと、前記シリンダ
1の直上部位置で円周方向に等間隔(中心角で
120度)を隔てた三箇所において前記移動力受部
材12を貫通させて前記両プラグヘツド9A,9
B間に亘つてシリンダ軸線と平行に固定架設した
三本のガイド杆7Dから構成される上側直線経路
部分5D,5D並びに、前記シリンダ1内でその
内径よりも小なる円周上に等間隔(中心角で120
度)を隔てた三箇所において前記ピストン2を貫
通させて前記プラグヘツド9A,9Bの対向両面
間に亘つてシリンダ軸線と平行に固定架設した三
本のガイド杆7Cから構成される下側直線経路部
分5C,5Cとをもつて、前記ピストン2の往復
運動方向両側面部と前記被動体3の両側面部とに
亘つて形成された屈曲経路であり、これら両屈曲
経路5,5内には夫々、鋼球又は硬度及び耐摩耗
性に勝れたナイロン66の成形球が用いられる同一
の径の複数個の球体6,6群を相隣るものの周面
が互いに接当する密接状態でかつ転動規制状態に
配列することにより、前記ピストン2の往復駆動
移動力を剛体による押圧力として前記被動体3に
伝達する移動力伝達機構4,4を構成してある。
15は前記被動体3における前記移動力受部材1
2内に組込まれた調整機構であつて、前記両屈曲
経路5,5各々に配列の球体6群に対する移動力
接当受面3A,3Aを有する部材15A,15A
を前記移動力受部材12に貫設の孔12A内に摺
動のみ自在に嵌合保持させるとともに、これら摺
動部材15A,15Aの対向端部に夫々それらの
摺動方向に対して傾斜し相互には逆勾配のカム面
15a,15aを形成し、この両カム面15a,
15aに同時作用するテーパ面15b,15bを
もつた楔部材15Bをねじ部材5Cを介して前記
摺動部材15A,15Aの摺動方向に対して直角
方向に出退移動自在に構成し、もつて前記ねじ部
材5Cを介しての楔部材15Bの出退移動操作に
より前記両摺動部材15A,15Aの移動力接当
受面3A,3Aの位置を、前記屈曲経路5,5の
軸線方向に沿つて、1つの球体6の直径Dに相当
する範囲において調整自在に構成してある。図中
13,13は前記屈曲経路5,5のうち、プラグ
ヘツド9A,9Bに貫設の貫通路の始端部分に筒
状に嵌着させた気密又は油密用の弾性シール部材
である。
In FIGS. 1 to 3, reference numeral 1 indicates plug heads 9A and 9 having passages 8A and 8B for supplying and discharging fluid pressure such as air and hydraulic pressure at both ends in the axial direction.
B is a cylinder fitted in an airtight or watertight state via a long vault 16A and a nut 16B, and 2 is a piston fitted and held in the cylinder 1 so as to be able to reciprocate and slide in the axial direction thereof. The piston 2 is configured to be movable reciprocatingly in the cylinder axis direction by controlling fluid pressure supply to the cylinder chambers 1A, 1B on both sides of the piston 2 via valves (not shown) and the flow paths 8A, 8B. 3 is the cylinder 1
Both the plug heads 9
The driven body is supported so as to be able to reciprocate in parallel or almost parallel to the cylinder axis direction along a fixedly connected shaft-shaped guide rail 10 between the upper ends of the cylinders A and 9B. It is configured to be able to attach one end of a link mechanism for opening/closing the automatic opening/closing door, a welding device, etc., and includes cylindrical portions 11, 11 that fit into the guide rail 10, and a moving force receiving member 12, which will be described later. ing. 5, 5 has knock pins 17 on both the plug heads 9A, 9B,
A member 5 having a semicircular shape in side view and fixedly connected via 17
a, 5b and semicircular curved members 5a', 5b' fixedly supported along the outside thereof, and semicircular curved path portions 5A, 5B formed at a position directly above the cylinder 1. Equally spaced circumferentially (center angle)
The two plug heads 9A, 9 are inserted through the moving force receiving member 12 at three locations separated by 120 degrees.
The upper straight path portions 5D, 5D are composed of three guide rods 7D fixedly installed in parallel to the cylinder axis between the cylinders 1 and 5D, and the upper straight path portions 5D, 5D are arranged at equal intervals on a circumference smaller than the inner diameter of the cylinder 1. 120 at center angle
A lower straight path portion consisting of three guide rods 7C that are fixedly installed parallel to the cylinder axis between the opposite surfaces of the plug heads 9A and 9B, with the piston 2 passing through them at three locations separated by a 5C, 5C are curved paths formed across both side surfaces of the piston 2 in the reciprocating direction and both side surfaces of the driven body 3, and in these curved paths 5, 5, steel is formed, respectively. Balls or molded balls made of nylon 66, which has excellent hardness and wear resistance, are used. A plurality of balls 6 and groups of 6 with the same diameter are placed in close contact with the peripheral surfaces of adjacent balls and their rolling is restricted. By arranging them in this manner, a moving force transmitting mechanism 4, 4 is constructed which transmits the reciprocating force of the piston 2 to the driven body 3 as a pressing force by a rigid body.
15 is the moving force receiving member 1 in the driven body 3
2, the members 15A, 15A have movable force abutting surfaces 3A, 3A for the six groups of spheres arranged in both the bending paths 5, 5, respectively.
is slidably fitted and held in the hole 12A provided through the moving force receiving member 12, and the opposing ends of these sliding members 15A, 15A are respectively inclined with respect to their sliding direction and are mutually held. cam surfaces 15a, 15a with opposite slopes are formed on both cam surfaces 15a, 15a.
A wedge member 15B having tapered surfaces 15b, 15b acting simultaneously on the sliding member 15a is configured to be movable in and out in a direction perpendicular to the sliding direction of the sliding members 15A, 15A via a screw member 5C. By moving the wedge member 15B in and out through the screw member 5C, the positions of the moving force abutting surfaces 3A, 3A of the sliding members 15A, 15A are changed along the axial direction of the bending paths 5, 5. Therefore, it is configured to be adjustable within a range corresponding to the diameter D of one sphere 6. In the figure, reference numerals 13 and 13 designate air-tight or oil-tight elastic seal members which are fitted in a cylindrical shape at the starting end portions of the through passages which penetrate the plug heads 9A and 9B among the bending passages 5 and 5, respectively.

上記の如く構成されたアクチユエータにおいて
は、図外バルブの切換えによつてピストン2両側
のシリンダ室1A,1Bに対する流体圧の供給制
御によりピストン2が矢印X−X′方向に往復駆
動移動し、その駆動移動力が球体6,6群を介し
て被動体3に伝達されてこの被動体3が一定経路
に沿つて矢印Y−Y′方向に往復運動され、もつ
てドアの開閉など可動部材を二位置間に亘つて往
復移動させるように用いられるのである。
In the actuator configured as described above, the piston 2 is reciprocated in the direction of the arrow The driving force is transmitted to the driven body 3 via the spheres 6 and groups of 6, and the driven body 3 is reciprocated in the direction of the arrow Y-Y' along a fixed path, which in turn moves movable members such as opening and closing doors. It is used to move back and forth between positions.

次に別の実施例について列記する。 Next, another example will be listed.

〔〕 第4図及び第5図に示す実施例は、ピス
トン2を嵌合した二つのシリンダ1,1を同一
平面内において互いに平行姿勢に並置するとと
もに、各ピストン2,2の互いに反対側の運動
方向側面部と前記被動体3の両側面部とに亘つ
て各別に屈曲経路5,5を形成し、これら屈曲
経路5,5に球体6,6群を密接配列すること
により、被動体3の往復運動を互いに異なる単
動式シリンダ1,1にて行なえるように構成し
たものである。
[] In the embodiment shown in FIGS. 4 and 5, two cylinders 1, 1 each having a piston 2 fitted therein are arranged parallel to each other in the same plane, and the opposite sides of each piston 2, 2 are arranged side by side in the same plane. By forming bending paths 5, 5 separately over the side surface in the movement direction and both side surfaces of the driven body 3, and arranging the spheres 6, 6 groups closely in these bending paths 5, 5, the movement of the driven body 3 is It is constructed so that reciprocating motion can be performed by mutually different single-acting cylinders 1, 1.

〔〕 前記調整機構15による最大調整範囲を
複数個の球体6の直径合計値にしても良い。
[] The maximum adjustment range by the adjustment mechanism 15 may be the total diameter of the plurality of spheres 6.

〈考案の効果〉 以上詳述したことからも理解されるように本考
案による時は、 (1) ピストンの往復駆動移動力を被動体に伝達す
る機構が、精密加工が可能で、かつ伝達効率の
良いものであるとともに、被動体のスレローク
や負荷の大きさに拘わらず、また繰返し応力を
受けるにも拘わらず、伸びなど歪変形しない又
は歪変形の極めて少ないものであり、更に熱影
響も極めて少ないものであるから、長期に亘つ
て所期の運動性能を確実良好に安定維持するこ
とができる。
<Effects of the invention> As can be understood from the detailed explanation above, when the present invention is used, (1) the mechanism for transmitting the reciprocating force of the piston to the driven body can be precisely machined, and the transmission efficiency is high. In addition to being of good quality, it does not undergo strain or deformation such as elongation, or exhibits very little deformation, regardless of the sliding torque of the driven body, the magnitude of the load, or even though it is subjected to repeated stress, and is also extremely resistant to thermal effects. Since the amount is small, it is possible to reliably and stably maintain the desired exercise performance over a long period of time.

(2) 力伝達機構とシリンダとの間のシール構成が
簡単で済むとともに、そのシールの耐久性向上
が図れる。
(2) The seal structure between the force transmission mechanism and the cylinder is simple, and the durability of the seal can be improved.

(3) ストロークを大きくとれ、また負荷重量も大
きくとれるので適用範囲の拡大が図れる。
(3) Since the stroke can be made larger and the load weight can be increased, the range of application can be expanded.

(4) 熱膨張や機械的な歪変形を抑制するための特
別な機構、構成が要らないことと、球体6が量
産化によつて安価に入手できることとによつて
従来のものに比して全体コストを低減化でき
る。
(4) Compared to conventional ones, it does not require any special mechanism or structure to suppress thermal expansion or mechanical distortion, and the sphere 6 can be obtained at low cost through mass production. Overall cost can be reduced.

(5) その上、屈曲経路の構成に際して多少の製作
誤差があつても各球体6群の周面接当状態を確
実容易に現出させることができるから、製作条
件を有利にしながら所期の運動性能を確実に発
揮させることができる。
(5) Furthermore, even if there is some manufacturing error in configuring the bending path, it is possible to reliably and easily bring out the state of contact between the peripheral surfaces of each group of six spheres. Performance can be ensured.

といつた顕著な効果を期待し得るに至つたのであ
る。
We were able to expect significant effects such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例の縦断側面図、第2図は一部
切欠き平面図、第3図は第1図−線での拡大
縦断正面図、第4図及び第5図は別の実施例を示
す概略横断面図と第4図−線での縦断正面
図、第6図は従来例を示す概略縦断側面図であ
る。 1はシリンダ、2はピストン、3は被動体、4
は移動力伝達機構、5は屈曲経路、6は球体、7
C,7Cはガイド杆、15は調整機構。
Fig. 1 is a longitudinal sectional side view of one embodiment, Fig. 2 is a partially cutaway plan view, Fig. 3 is an enlarged longitudinal sectional front view along the line of Fig. 1, and Figs. 4 and 5 are another embodiment. FIG. 4 is a schematic cross-sectional view and a longitudinal sectional front view taken along the line 4--, and FIG. 6 is a schematic longitudinal sectional side view showing a conventional example. 1 is the cylinder, 2 is the piston, 3 is the driven body, 4
is a moving force transmission mechanism, 5 is a bending path, 6 is a sphere, 7
C and 7C are guide rods, and 15 is an adjustment mechanism.

Claims (1)

【実用新案登録請求の範囲】 シリンダ1内に嵌合のピストン2が、該ピス
トン2両側におけるシリンダ室1A,1Bへの
流体圧の供給制御によつてシリンダ軸線方向に
往復駆動移動自在に構成されているとともに、
前記シリンダ1の外側に、シリンダ軸線方向と
平行又はほぼ平行な一定径路に沿つて往復移動
自在な被動体3が設けられ、この被動体3の往
復運動方向側面部と前記ピストン2の往復運動
方向側面部との間に亘つて屈曲経路5が形成さ
れ、この屈曲経路5内に同一径の複数個の球体
6を、相隣るものの周面が互いに接当する状態
でかつ転動規制状態に配列することにより、前
記ピストン2の往復駆動移動力を前記被動体3
に伝達する移動力伝達機構4が構成されている
流体圧シリンダ利用の往復運動用アクチユエー
タであつて前記被動体3内に、該被動体3の前
記球体6群に対する移動力接当受面3Aの前記
経路5軸線方向に沿つた位置を、少なくとも1
つの球体6の直径Dに相当する範囲において調
整自在な機構15が組込まれていることを特徴
とする流体圧シリンダ利用の往復運動用アクチ
ユエータ。 前記の移動力伝達機構4が、単一のピストン
2の両側面部と前記被動体3の両側面部との間
に各々設けられている実用新案登録請求の範囲
第項に記載の流体圧シリンダ利用の往復運動
用アクチユエータ。 前記屈曲経路5のうち、シリンダ1内に位置
する直線経路部分5C及びシリンダ1外の直線
経路部分5Dが、前記ピストン2及び被動体3
を貫通させてシリンダ軸線と平行に固定架設さ
れた円周方向で三本以上の球体移動用ガイド杆
7C及び7Dから構成されている実用新案登録
請求の範囲第項に記載の流体圧シリンダ利用
の往復運動用アクチユエータ。 前記球体6群が鋼球である実用新案登録請求
の範囲第項に記載の流体圧シリンダ利用の往
復運動用アクチユエータ。 前記球体6群が硬度、耐摩耗性に勝れたナイ
ロン66の成形球である実用新案登録請求の範囲
第項に記載の流体圧シリンダ利用の往復運動
用アクチユエータ。
[Claims for Utility Model Registration] A piston 2 fitted in a cylinder 1 is configured to be movable reciprocally in the cylinder axial direction by controlling the supply of fluid pressure to cylinder chambers 1A and 1B on both sides of the piston 2. At the same time,
A driven body 3 is provided on the outside of the cylinder 1 and is capable of reciprocating along a constant path parallel or substantially parallel to the cylinder axis direction, and the side surface of the driven body 3 in the reciprocating direction and the piston 2 in the reciprocating direction A curved path 5 is formed between the curved surface and the side surface, and a plurality of spheres 6 having the same diameter are placed in this curved path 5 in a state in which the peripheral surfaces of adjacent spheres are in contact with each other and in a state where rolling is restricted. By arranging the piston 2, the reciprocating driving force of the piston 2 is transferred to the driven body 3.
This is an actuator for reciprocating motion using a fluid pressure cylinder, in which a moving force transmission mechanism 4 is configured, and a moving force contact receiving surface 3A of the driven body 3 with respect to the group of spheres 6 is provided in the driven body 3. At least one position along the axial direction of the path 5
An actuator for reciprocating motion using a fluid pressure cylinder, characterized in that a mechanism 15 that can be freely adjusted in a range corresponding to the diameter D of two spheres 6 is incorporated. The mobile force transmission mechanism 4 is provided between both side surfaces of the single piston 2 and both side surfaces of the driven body 3. Actuator for reciprocating motion. Of the bent path 5, a straight path portion 5C located inside the cylinder 1 and a straight path portion 5D outside the cylinder 1 are connected to the piston 2 and the driven body 3.
Utilization of a fluid pressure cylinder according to claim 1, which is constituted by three or more guide rods 7C and 7D for moving spheres in the circumferential direction, which are fixedly installed in parallel with the cylinder axis through the cylinder axis. Actuator for reciprocating motion. A reciprocating actuator using a fluid pressure cylinder according to claim 1, wherein the six groups of spheres are steel balls. A reciprocating actuator using a fluid pressure cylinder according to claim 1, wherein the six groups of spheres are molded spheres made of nylon 66 with excellent hardness and wear resistance.
JP9933284U 1984-06-29 1984-06-29 Reciprocating actuator using a fluid pressure cylinder Granted JPS6114252U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9933284U JPS6114252U (en) 1984-06-29 1984-06-29 Reciprocating actuator using a fluid pressure cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9933284U JPS6114252U (en) 1984-06-29 1984-06-29 Reciprocating actuator using a fluid pressure cylinder

Publications (2)

Publication Number Publication Date
JPS6114252U JPS6114252U (en) 1986-01-27
JPH0113879Y2 true JPH0113879Y2 (en) 1989-04-24

Family

ID=30658838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9933284U Granted JPS6114252U (en) 1984-06-29 1984-06-29 Reciprocating actuator using a fluid pressure cylinder

Country Status (1)

Country Link
JP (1) JPS6114252U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6815937B2 (en) * 2017-06-07 2021-01-20 トヨフレックス株式会社 Drive device

Also Published As

Publication number Publication date
JPS6114252U (en) 1986-01-27

Similar Documents

Publication Publication Date Title
CA1061221A (en) Self-contained activated slide apparatus and methods of constructing and utilizing same
EP0050466A1 (en) Rotary valve actuator
JPH0921403A (en) Fluid pressure actuator
JPH0113879Y2 (en)
US4337691A (en) Valve driving apparatus
EP1030092B1 (en) Bellows type pressure responding valve
EP0172780A3 (en) Fluid operated pump
JP4570299B2 (en) Rotary actuator
US8683883B2 (en) Ball and piston rotary actuator mechanism
RU2007123571A (en) AXIAL MOVEMENT CYLINDER DEVICE
CA2251346A1 (en) Valve actuator with pliable pressure conversion device
US6668988B2 (en) Buffering mechanism
WO2005073511A1 (en) Valve-controlled expansion machine
US5022311A (en) Compact fluid actuated working cylinder with spring loaded tensioning member
JPH0228727B2 (en)
DE58906396D1 (en) Shock absorber with variable damping characteristics.
US4702147A (en) Engine with pneumatic valve actuation
SU832143A1 (en) Multiposition pneumatic /hydraulic/ cylinder
AT410830B (en) SWITCHING
US11181129B2 (en) Rotary drive device and control method thereof
DE10296964T5 (en) Displacement element and sealing arrangement for Stirling cycle machines
JP3813853B2 (en) Fluid pressure cylinder
SU110812A1 (en) Hydraulic (or pneumatic) drive
SU912977A1 (en) Two-side action hydraulic damper
RU1800103C (en) Piston compressor