JPH01138437A - Scratch testing machine - Google Patents

Scratch testing machine

Info

Publication number
JPH01138437A
JPH01138437A JP29828187A JP29828187A JPH01138437A JP H01138437 A JPH01138437 A JP H01138437A JP 29828187 A JP29828187 A JP 29828187A JP 29828187 A JP29828187 A JP 29828187A JP H01138437 A JPH01138437 A JP H01138437A
Authority
JP
Japan
Prior art keywords
sample
scratch
indenter
depth
indentator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29828187A
Other languages
Japanese (ja)
Inventor
Yuji Tsukamoto
塚本 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29828187A priority Critical patent/JPH01138437A/en
Publication of JPH01138437A publication Critical patent/JPH01138437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To accurately measure the depth of a scratch in real time by providing an acoustic wave detection sensor which measures the contacting between an indentator and a sample and the depth of the scratch. CONSTITUTION:The device consists of a pendulum 8 which vibrates freely while its one end is fixed on a rotary shaft and the indentator 7 for scratching is fixed to the other end, an angle detector 9 which measures the angle of rotation of the indentator 7, a test-piece 1, and a driver 3 which moves a sample base 2 where the test-piece 1 is fixed perpendicularly, a displacement gauge 4 which determines the depth of the scratch of the indentator 7 from the surface of the test-piece 1 by detecting the movement quantity of the test base 2, and the acoustic wave detection sensor 10. Then, the indentator 7 contacts the sample in the process wherein the indentator 7 scratches the surface of the sample, and the sample 1 continues to radiate an elastic wave up to the end of the scratching process. The acoustic wave detection sensor 10 measures the continuance of this elastic wave to accurately measure the length and depth of the scratch made by the indentator in the surface of the sample.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固体表面を圧子によりひつかき、その材料のひ
っかき変形強度を測定するひっかき試験機に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a scratch tester that scratches the surface of a solid with an indenter and measures the scratch deformation strength of the material.

(従来の技術) 現在の超精密機械加工技術においては、仕上げ面あらさ
10nm、形状精度1pm程度あるいはそれを越える精
度が達成されており、実際に多くの光学機器や磁気ディ
スク用基板の生産ラインに超精密加工が組み込まれてい
る。このような超精密加工は、工作機械に用いられる軸
受・や交錯台の高精度化、工具や材料の管理、防振や防
塵など加工環境の高精度制御、微小な変位量の計測や駆
動技術の確立によって支えられてきた。しかし、その加
工精度は通常の計測技術の限界を越えつつあるとされて
おり、計測技術の革新が今後の加工精度の向上のために
は必要不可欠な条件であるといわれている。一方では、
現在の加工精度を維持しつつ、今よりも高い生産性を有
、した精密加工プロセスを1iniLないという要求も
ある。例えば、前述した磁気ディスク用基板の加工工程
においては、基板材料であるA1合金が軟質な延性材料
であるために、切削時にパリが発生しやすく、規格値を
満足する良品率は極めて低い値に留っている。また、工
具の刃先にA1合金が付着しやすいために、工具寿命の
短縮化や、工具の交換に多くの時間がさかれてしまうと
いう問題点も指摘されている。このような課題を克服す
るためには、加工条件の最適化し、加工現象に影響する
因子を定量的に把握する必要があり、微小切削に伴うパ
リの形成過程や、材料表面の変形強度および挙動を研究
する必要性が指摘されている。
(Conventional technology) Current ultra-precision machining technology has achieved a finished surface roughness of 10 nm and a shape accuracy of about 1 pm or more, and is actually used in the production lines of many optical devices and magnetic disk substrates. Incorporates ultra-precision processing. This kind of ultra-precision machining requires high precision of bearings and crossheads used in machine tools, management of tools and materials, high precision control of the machining environment such as anti-vibration and dust prevention, measurement of minute displacements and drive technology. has been supported by the establishment of However, the machining accuracy is said to be exceeding the limits of normal measurement technology, and innovation in measurement technology is said to be an essential condition for improving machining accuracy in the future. on the one hand,
There is also a demand for a 1 iniL precision machining process that maintains the current machining accuracy and has higher productivity than the current one. For example, in the processing process for magnetic disk substrates mentioned above, since the A1 alloy that is the substrate material is a soft and ductile material, burrs are likely to occur during cutting, and the rate of good products that meet standard values is extremely low. It's staying. Furthermore, it has been pointed out that since the A1 alloy tends to adhere to the cutting edge of the tool, the tool life is shortened and it takes a lot of time to replace the tool. In order to overcome these challenges, it is necessary to optimize machining conditions and quantitatively understand the factors that affect machining phenomena. It has been pointed out that there is a need to study

以上のような現状認識にたって、材料表面が受ける変形
状態に関する情報を得る手段としてひつかき試験機およ
び試験法がいくつか提案されてきた。例えば、特開昭6
2−245131号公報に記載されたひっかき試験機は
、(1)従来の低速型ひっかき試験機と異なり、切削速
度と同程度の速度領域で材料表面のひっかき変形抵抗が
測定できるb 1.(2)従来、の試験機に比較してミ
クロン以下の極めて薄い表面層の変形抵抗が測定可能で
ある。の2点を特徴としており、前述した超精密加工現
象に影響する因子の定量化に有効な手段を提供するもの
である。
Based on the above-mentioned current situation, several strain testing machines and testing methods have been proposed as a means of obtaining information regarding the deformation state that the material surface undergoes. For example, JP-A-6
The scratch tester described in Publication No. 2-245131 has the following features: (1) Unlike conventional low-speed scratch testers, the scratch deformation resistance of the material surface can be measured in a speed range comparable to the cutting speed.b1. (2) Compared to conventional testing machines, it is possible to measure the deformation resistance of extremely thin surface layers of microns or less. It is characterized by the following two points, and provides an effective means for quantifying factors that influence the ultra-precision processing phenomenon described above.

(発明が解決しようとする問題点) しかし、前述のひっかき試験機は、ひっかき深さを実験
中実時間で、かつ正確に測定できる点に問題がある。す
なわち、前記ひっかき試験機には、ひっかき深さを精密
に制御する駆動機構と変位測定部が設置されているもの
の、圧子と試料表面との接触や、圧子が表面をひっかく
深さを検知・測定する手段がなんら設けら・れていない
のである。
(Problems to be Solved by the Invention) However, the above-mentioned scratch testing machine has a problem in that the scratch depth can be accurately measured in real time during an experiment. In other words, although the scratching tester is equipped with a drive mechanism and a displacement measurement unit that precisely control the scratching depth, it is difficult to detect and measure the contact between the indenter and the sample surface and the depth at which the indenter scratches the surface. There is no means provided to do so.

(問題点を解決するための手段) 本発明は、一端を回転軸に固定され、他端にひっかき用
の圧子が固定された自由振動する振子と、該圧子の回転
角を測定する角度検出器と、該振子の下方に位置する試
験片と該試験片を固定した試料台を鉛直方向に移動させ
る駆動器と、該試料台の移動量を検知することにより試
験1片の表面と振子の他端に固定された圧子とのひ、っ
かき深さを決定する変位計と、圧子が試料表面を接触し
、その後ひっかく過程で発生する音波を検出することに
よりひっかき深さを測定する音波検知センサを備えたこ
とを特徴とするひっかき試験機である。
(Means for Solving the Problems) The present invention comprises a freely oscillating pendulum having one end fixed to a rotating shaft and a scratching indenter fixed to the other end, and an angle detector for measuring the rotation angle of the indenter. , a driver that vertically moves the test piece located below the pendulum and the sample stand on which the test piece is fixed, and a driver that moves the test piece and the pendulum by detecting the amount of movement of the sample stand. A displacement meter that determines the scratch depth with an indenter fixed at the end, and a sound wave detection sensor that measures the scratch depth by detecting the sound waves generated during the scratching process when the indenter contacts the sample surface. This is a scratch tester characterized by being equipped with.

すなわち、本発明は、従来の技術の項に示したのひっか
き試験機の特徴である、数100cm/sec以下の速
度で振動する振子の先端に固定した圧子が試料表面をひ
っかく際に費やされるエネルギーを測定する角度検出器
と、試料を昇降させることによって圧子と試料表面との
ひっかき深さを変化させる駆動器及び該駆動器の駆動量
を測定する変位計の他に、圧子と試料との接触およびひ
っかき深さを測定する音波検知センサを備えたひっかき
試験機である。
That is, the present invention can reduce the energy expended when an indenter fixed to the tip of a pendulum vibrating at a speed of several 100 cm/sec or less scratches the sample surface, which is a feature of the scratch tester shown in the prior art section. In addition to an angle detector that measures the contact between the indenter and the sample, a driver that changes the scratch depth between the indenter and the sample surface by raising and lowering the sample, and a displacement meter that measures the amount of drive of the driver. and a scratch tester equipped with a sonic sensor to measure scratch depth.

(作用) 音波検知センサ(以下、AEセンサと呼ぶ。)は、物質
が変形もしくは破壊する際に発生する弾性波を検出する
機能を有している。はとんどすべての材料は、高ひずみ
速度条件下、すなわち高速で変形を受けると弾性波を放
出する、いわゆるアコースティックエミッション現象を
示すことはよく知られている。本試験機においても、圧
子が試料表面をひっかく過程において圧子が試料と接触
し、ひっかき過程を終えるまで試料は弾性波を放出し続
ける。この弾性波の持続時間を先のAEセンサによって
測定することにより、圧子が試料表面をひっかいた長さ
と深さを精密に測定するものである。
(Function) The acoustic wave detection sensor (hereinafter referred to as AE sensor) has a function of detecting elastic waves generated when a substance is deformed or destroyed. It is well known that almost all materials exhibit the so-called acoustic emission phenomenon, in which they emit elastic waves under high strain rate conditions, ie when subjected to rapid deformation. In this tester as well, the indenter comes into contact with the sample during the process of scratching the sample surface, and the sample continues to emit elastic waves until the scratching process is completed. By measuring the duration of this elastic wave using the aforementioned AE sensor, the length and depth of the scratch made by the indenter on the sample surface can be precisely measured.

また、変形抵抗は以下のようにして測定する。Moreover, the deformation resistance is measured as follows.

先端に圧子を固定した振子の持上げ角α、圧子が表面を
ひっかいた後の振子の振上がり角p、表面に形成された
弧状のひっかき溝の体積■を用いて、ひっかき変形抵抗
Rを R=mgr(cosp−cosα)/V     (1
)と定義した。ただし、mは圧子に作用する振子系全体
の等価慣性質量、gは重力加速度、rは振子の半径であ
る。角度α、pは角度検出器により精密測定が可能であ
る。
Using the lifting angle α of a pendulum with an indenter fixed to its tip, the swinging angle p of the pendulum after the indenter scratches the surface, and the volume ■ of the arc-shaped scratch groove formed on the surface, the scratch deformation resistance R can be calculated as R= mgr(cosp-cosα)/V (1
) was defined. Here, m is the equivalent inertial mass of the entire pendulum system acting on the indenter, g is the gravitational acceleration, and r is the radius of the pendulum. The angles α and p can be precisely measured using an angle detector.

(実施例) 第1図は本発明の一実施例を表わす図である。試料1は
試料台2の上に真空チャックによって固定されている。
(Embodiment) FIG. 1 is a diagram showing an embodiment of the present invention. A sample 1 is fixed on a sample stage 2 by a vacuum chuck.

試料台2は、マイクロメーターによりX。Sample stage 2 is set to X by a micrometer.

Y、Zの3方向にlpmの精度で手動で動かせるXYz
テーブルであり、駆動器として用いた圧電アクチュエー
ター3により2方向(矢印方向)の微調駆動が可能であ
る。試料台2の駆動量を測定する光ファイバー4(商品
名フォトニックプローブ)からの光5は試料台2の上に
真空チャックによって固定された鏡6に反射して再び光
ファイバー4に戻り、その反射光の強度によって変位量
を測定する。光ファイバー4と鏡6との距離を、圧電ア
クチュエーター3に印加する電圧を制御することにより
所定の値に設定することができる。すなわち、ひっかき
深さは、圧電アクチュエーター3に印加する電圧信号と
、光フアイバー変位計からの変位信号とを連動させるこ
とにより制御した。圧子7は振子8の先端に固定されて
おり、振子8のもう一端は角度検出器として用いた光ロ
ータリ−エンコーダー9の回転軸に取付けられている。
XYz that can be manually moved in 3 directions of Y and Z with lpm accuracy
The table is capable of fine adjustment driving in two directions (arrow directions) using a piezoelectric actuator 3 used as a driver. Light 5 from an optical fiber 4 (trade name Photonic Probe) that measures the amount of drive of the sample stage 2 is reflected by a mirror 6 fixed on the sample stage 2 by a vacuum chuck, returns to the optical fiber 4, and the reflected light is The amount of displacement is measured by the strength of the The distance between the optical fiber 4 and the mirror 6 can be set to a predetermined value by controlling the voltage applied to the piezoelectric actuator 3. That is, the scratch depth was controlled by interlocking the voltage signal applied to the piezoelectric actuator 3 and the displacement signal from the optical fiber displacement meter. The indenter 7 is fixed to the tip of a pendulum 8, and the other end of the pendulum 8 is attached to the rotating shaft of an optical rotary encoder 9 used as an angle detector.

光ロータリ−エンコーダー9は振子の持上げ角αと、ひ
つかき後の振子の振上がり角pを検知する。
The optical rotary encoder 9 detects the lifting angle α of the pendulum and the swinging angle p of the pendulum after being hit.

振子8を鉛直方向に静止させ、試料台を2方向に手動で
上昇させる。その後、圧電アクチュエーター3に印加す
る電圧を増加していき、試料1と圧子7を接触させる。
The pendulum 8 is kept stationary in the vertical direction, and the sample stage is manually raised in two directions. Thereafter, the voltage applied to the piezoelectric actuator 3 is increased to bring the sample 1 and the indenter 7 into contact.

この接触時に発生する弾性波をAEセンサ10により検
出し、接触位置を決定す“る。
The AE sensor 10 detects the elastic waves generated during this contact, and determines the contact position.

AEセンサ10は試料1の表面か、もしくは試料台2に
接着剤により固定する。接触位・置を高い感度で測定し
たい場合には、AEセンサ10を試料表面に固定するこ
とが望ましい。接触位置を決定した後に、振子を所定の
持上げ角αまで持上げ、圧電アクチュエーター3に印加
する圧電をさらに増加し、ひっかき深さを設定する。振
子を自由落下させ、ひっかき試験を行う。このひっかき
過程で発生する弾性波をAEセンサ10により測定し、
実際のひっかき深さを実時間で測定する。ひっかき後の
振上がり角pは、やはり光ロータリ−エンコーダ79に
よって測定する。
The AE sensor 10 is fixed to the surface of the sample 1 or to the sample stage 2 with an adhesive. If it is desired to measure the contact position with high sensitivity, it is desirable to fix the AE sensor 10 to the sample surface. After determining the contact position, the pendulum is lifted to a predetermined lifting angle α, the piezoelectricity applied to the piezoelectric actuator 3 is further increased, and the scratching depth is set. The pendulum is allowed to fall freely and a scratch test is performed. The elastic waves generated during this scratching process are measured by the AE sensor 10,
Measures the actual scratch depth in real time. The swing-up angle p after scratching is also measured by an optical rotary encoder 79.

第2図は本発明の一実施例を示すブロック図である。フ
ォトニックプローブ4からの変位信号に連動した、パー
ソナルコンピューター11からの制御信号をデジタルl
アナログ変換器12、定電圧電源13、電圧増幅器14
を介して圧電アクチュエーター3に加えることにより試
料台2の移動量を制御した。また、光ロータリ−エンコ
ーダー9からの信号はデジタルカウンタ15、パーソナ
ルコンピューター11を介してデータ処理され、ひつか
き試験中の振子の角度変化としてデイスプレィ16ある
いはプリンター17に出力される。なお、フォトニック
プローブ4からの変位信号はフォトニックセンサ18、
アナログlデジタル変換器19を通してパーソナルコン
ピューター11に入力される。ひつかき過程において発
生する弾性波はAEセンサ10によって検知され、プリ
アンプ20. AE解析装置21、デジタルオシロスコ
ープ22を介してパーソナルコンピューター11に入力
さ、れる。パーソナルコンピューター11では弾性波の
持続時間からひつかき深さと長さの計算が行われる。最
終的に、光ロータリ−エンコーダー9からの信号によっ
て求めたエネルギー損失需と、ひっかき深さから算出さ
れたひつかき体積より、(1)式に基づいてひっかき変
形抵抗が測定される。
FIG. 2 is a block diagram showing one embodiment of the present invention. The control signal from the personal computer 11 linked to the displacement signal from the photonic probe 4 is digitalized.
Analog converter 12, constant voltage power supply 13, voltage amplifier 14
The amount of movement of the sample stage 2 was controlled by applying it to the piezoelectric actuator 3 via the . Further, the signal from the optical rotary encoder 9 is data-processed via a digital counter 15 and a personal computer 11, and is outputted to a display 16 or a printer 17 as a change in the angle of the pendulum during the hit test. Note that the displacement signal from the photonic probe 4 is sent to the photonic sensor 18,
The signal is input to the personal computer 11 through an analog/digital converter 19. The elastic waves generated during the hitting process are detected by the AE sensor 10, and the preamplifier 20. It is input to the personal computer 11 via the AE analyzer 21 and the digital oscilloscope 22. The personal computer 11 calculates the depth and length of the stroke from the duration of the elastic wave. Finally, the scratch deformation resistance is measured based on equation (1) from the energy loss demand determined by the signal from the optical rotary encoder 9 and the scratch volume calculated from the scratch depth.

次に、本発明のひつかき試験機の性能を測定例により説
明する。
Next, the performance of the hit tester of the present invention will be explained using measurement examples.

(測定例)  10mm角のガラス基板上にCr膜を厚
さlpmマグネトロンスパッタ法により被覆した試料に
ついて第1図、第2図に示したひ、つかき試験機を用い
て、ひっかき変形抵抗を測定しな。測定条件は振子の半
径ニアcm、振子持上げ角:90°、圧子:頂角120
°のダイヤモンド円錐圧子、圧子に作用する慣性質量:
12g、ひっかき溝の設定最大深さ: 0.4pm、ひ
っかき速度: 93cm/seeである。持上げ角α;
90°、振上がり角13=87.2°であった。また、
AEセンサにより測定した実際の最大ひっかき深さは0
.49pmであった。ひっかき深さの設定値と測定値が
異なるのは最初の接触位置の設定操作におい6て、試料
表面が変形を受けたことと、接触位置確認後変形を受け
ていない表面についてひっかき試験をするため試料を移
動させたことに原因している。試験後表面あらさ計によ
り実際にひっかき溝の深さを測定したところ、0.49
3pmであり、有効数字2桁の範囲内でAEセンサによ
る測定値に一致している。また、測定データより算出し
たCr膜のひっかき変形抵抗は6.5 X 11012
er/am3であった。
(Measurement example) Using the scratch testing machine shown in Figures 1 and 2, scratch deformation resistance was measured for a sample in which a 10 mm square glass substrate was coated with a Cr film with a thickness of lpm by magnetron sputtering. Shina. Measurement conditions were pendulum radius near cm, pendulum lifting angle: 90°, indenter: apex angle 120°.
Diamond conical indenter in °, inertial mass acting on the indenter:
12g, set maximum depth of scratching groove: 0.4pm, scratching speed: 93cm/see. Lifting angle α;
90°, swing angle 13=87.2°. Also,
The actual maximum scratch depth measured by the AE sensor is 0.
.. It was 49pm. The reason why the set value and measured value of the scratch depth differ is because the sample surface was deformed during the initial contact position setting operation 6, and because the scratch test was performed on a surface that had not been deformed after the contact position was confirmed. This is caused by moving the sample. After the test, the depth of the scratch groove was actually measured using a surface roughness meter and found to be 0.49.
3 pm, which agrees with the value measured by the AE sensor within two significant figures. Also, the scratch deformation resistance of the Cr film calculated from the measurement data is 6.5 x 11012
It was er/am3.

(発明の効果) 以上に示したように、本発明によるひつかき試験機では
、ひっかき深さの実時間・高精度測定が可能となったた
めに、高ひっかき速度の領域で、ひっかき深さ0.1p
mレベルでの表面層のひっかき変形抵抗を高精度かつ迅
速に測定できることが分かった。また、接触位置確認後
や、同一試料について多数回の測定を行う際に試料台を
XY力方向手動で移動させる必要があるが、この時にも
試料と圧子の接触位置を検知することなく、実際のひっ
かき深さを検知できることも利点である。
(Effects of the Invention) As described above, the scratching tester according to the present invention enables real-time, high-precision measurement of scratching depth, so that scratching depths of 0. 1p
It was found that the scratch deformation resistance of the surface layer at m level can be measured quickly and with high accuracy. In addition, it is necessary to manually move the sample stage in the XY force direction after confirming the contact position or when making multiple measurements on the same sample, but even at this time, the actual contact position between the sample and the indenter cannot be detected. Another advantage is that it can detect the depth of scratches.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は本発明のひっかき試験機の一実施例の
構造とブロック図の例を示す図である。 図面において、1は試料、2は試料台、3は圧電アクチ
ュエーター、4はフォトニックプローブ、5は光、6は
鏡、7は圧子、8は振子9は光エンコーダ−10はAE
センサ、11はパーソナルコンピューター、12はデジ
タルlアナログ変換器、13は定電圧電源、14は電圧
増幅器、15はデジタルカウンタ、16はデイスプレィ
、17はプリンター、18はフォトニックセンサ、19
はアナログlデジタル変換器、20はプリアンプ、21
はAE解析装置、22・はデジタルオシロスコープであ
る。
FIGS. 1 and 2 are diagrams showing an example of the structure and block diagram of an embodiment of the scratch tester of the present invention. In the drawings, 1 is a sample, 2 is a sample stage, 3 is a piezoelectric actuator, 4 is a photonic probe, 5 is a light, 6 is a mirror, 7 is an indenter, 8 is a pendulum, 9 is an optical encoder, and 10 is an AE
Sensor, 11 is a personal computer, 12 is a digital/analog converter, 13 is a constant voltage power supply, 14 is a voltage amplifier, 15 is a digital counter, 16 is a display, 17 is a printer, 18 is a photonic sensor, 19
is an analog/digital converter, 20 is a preamplifier, 21
22 is an AE analyzer, and 22 is a digital oscilloscope.

Claims (1)

【特許請求の範囲】[Claims] 一端を回転軸に固定され、他端にひっかき用の圧子が固
定された自由振動する振子と、該圧子の回転角を測定す
る角度検出器と、該振子の下方に位置する試験片および
該試験片を固定した試料台を鉛直方向に移動させる駆動
器と、該試料台の移動量を検知することにより試験片の
表面と振子の他端に固定された圧子とのひっかき深さを
決定する変位計と、圧子が試料表面をひっかく過程で発
生する音波を検出する音波検知センサを備えたことを特
徴とするひっかき試験機。
A freely vibrating pendulum with one end fixed to a rotating shaft and a scratching indenter fixed to the other end, an angle detector for measuring the rotation angle of the indenter, a test piece located below the pendulum, and the test piece. A driver that vertically moves a specimen stage with a fixed specimen, and a displacement device that determines the scratch depth between the surface of the specimen and an indenter fixed to the other end of the pendulum by detecting the amount of movement of the specimen stage. A scratch testing machine characterized by being equipped with a sonic wave detection sensor that detects sound waves generated during the process of scratching the surface of a sample with an indenter.
JP29828187A 1987-11-25 1987-11-25 Scratch testing machine Pending JPH01138437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29828187A JPH01138437A (en) 1987-11-25 1987-11-25 Scratch testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29828187A JPH01138437A (en) 1987-11-25 1987-11-25 Scratch testing machine

Publications (1)

Publication Number Publication Date
JPH01138437A true JPH01138437A (en) 1989-05-31

Family

ID=17857601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29828187A Pending JPH01138437A (en) 1987-11-25 1987-11-25 Scratch testing machine

Country Status (1)

Country Link
JP (1) JPH01138437A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2497109C2 (en) * 2011-10-07 2013-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУВПО "КнАГТУ") Method of mechanical testing for flattening with analysis of acoustic-emission signals
CN107505248A (en) * 2017-08-21 2017-12-22 大连理工大学 A kind of nanometer cutting-in high speed single-point scratching experimental rig and its test method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2497109C2 (en) * 2011-10-07 2013-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУВПО "КнАГТУ") Method of mechanical testing for flattening with analysis of acoustic-emission signals
CN107505248A (en) * 2017-08-21 2017-12-22 大连理工大学 A kind of nanometer cutting-in high speed single-point scratching experimental rig and its test method
WO2019037282A1 (en) * 2017-08-21 2019-02-28 大连理工大学 Nanometer depth of cut high-speed single-point scratching test apparatus and test method therefor
CN107505248B (en) * 2017-08-21 2019-07-16 大连理工大学 A kind of nanometer of cutting-in high speed single-point scratching experimental rig and its test method
US11313783B2 (en) 2017-08-21 2022-04-26 Dalian University Of Technology Nanometer cutting depth high-speed single-point scratch test device and test method thereof

Similar Documents

Publication Publication Date Title
JPH0640066B2 (en) Adhesion force measuring device
Bhushan Depth-sensing nanoindentation measurement techniques and applications
EP3076153B1 (en) Method for calculating an indenter area function and quantifying a deviation from the ideal shape of an indenter
US20160334315A1 (en) Method for automated parameter and selection testing based on known characteristics of the sample being tested
JP2019529903A (en) Equipment for measuring rubber wear
EP2291635B1 (en) Surface evaluation employing orthogonal force measurement
US20050172702A1 (en) Method and apparatus for determining characteristics of thin films and coatings on substrates
JPH0579959A (en) Material strength measuring device
JPS62245131A (en) Scratch testing machine
JPH01138437A (en) Scratch testing machine
RU2442131C1 (en) Method for measuring surface texture properties and mechanical properties of the materials
JP2001091445A (en) Scratch strength testing device and method thereof
Yeo et al. Indentation damage evaluation on metal-coated thin-films stacked structure
Olson et al. Stiffness measurement of the external polymeric coating on an optical fiber
EP1095254B1 (en) Surface testing equipment and method
JPS63140939A (en) Measuring instrument for surface characteristic
JPH07325029A (en) Physical property of thin film evaluating apparatus
Makowski et al. Surface acoustic wave spectroscopy for non‐destructive coating and bulk characterization at temperatures up to 600° C enabled by piezoelectric aluminum nitride coated sensor
JPH01196537A (en) Method and apparatus for evaluating adhesion strength of film
JPS63140936A (en) Method and device for evaluating surface hardness of coating film
JP2803253B2 (en) Adhesion measuring device
JPS6365337A (en) Thin film tribology tester
Elfurjani Study on dimensional measurements based on rotating wire probe and acoustic emission touch sensing
Bhushan Nanomechanical characterization of solid surfaces and thin films
JP2003130774A (en) Micro hardness meter