JPH01138170A - Low-temperature sintered alumina - Google Patents

Low-temperature sintered alumina

Info

Publication number
JPH01138170A
JPH01138170A JP62297100A JP29710087A JPH01138170A JP H01138170 A JPH01138170 A JP H01138170A JP 62297100 A JP62297100 A JP 62297100A JP 29710087 A JP29710087 A JP 29710087A JP H01138170 A JPH01138170 A JP H01138170A
Authority
JP
Japan
Prior art keywords
weight
frit
alumina
sintered
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62297100A
Other languages
Japanese (ja)
Inventor
Noboru Aiko
愛甲 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62297100A priority Critical patent/JPH01138170A/en
Publication of JPH01138170A publication Critical patent/JPH01138170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain sintered alumina having high bulk density and to contrive to improve flexural strength, by adding a specific amount of molten frit consisting of Al2O3, CaO and B2O3 to alumina and sintering the blend at a specific low temperature. CONSTITUTION:This sintered alumina is formed by sintering a molded article of a composition of alumina containing 3-8wt.% frit at 1,250-1,300 deg.C. The frit is produced by melting three components of Al2O3, CaO and B2O3. The sintered alumina is sintered at low temperature, is not expanded, has high bulk density and improved flexural strength.

Description

【発明の詳細な説明】 産業上の利用分野 1250〜1300’Cの低温で焼結することができ、
しかも曲げ強さの高い焼結体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial applications Can be sintered at low temperatures of 1250-1300'C;
Moreover, it relates to a sintered body with high bending strength.

従来の技術 アルミナは優れた特性を有しているため、広く工業製品
に使用されているが、焼結体を得るには高温とする必要
があった。
Prior Art Alumina has excellent properties and is widely used in industrial products, but it is necessary to heat it to a high temperature to obtain a sintered body.

発明が解決しようとする問題点 従来のアルミナは焼結温度が1500℃以上で非常に高
いため、工業化に対して1つの難点となっており、焼結
温度の1氏いかつ曲げ強度が大である焼結体が望まれて
いた。
Problems to be Solved by the Invention Conventional alumina has a very high sintering temperature of 1500°C or higher, which poses a problem for industrialization. A sintered body was desired.

問題点を解決するための手段 本発明は、アルミナにA l 203 、 Cab、 
B2O3の3成分からなるものを熔融して作ったフリッ
トを添加した組成物を成形し、1250〜1300℃の
低温で焼結することができる。低温焼結アルミナ焼結体
により前述の問題点を解決し得たものであり、特に、ア
ルミナに前記フリットを3〜8重量%添加してなる低温
焼結アルミナ焼結体により、就中、フリットが3成分組
成図においてAl2O3とCaOとの共融点とB2O3
とを結ぶ線上にある組成割合、即ちA l 20343
.70重量%。
Means for Solving the Problems The present invention provides alumina with Al 203, Cab,
A composition to which a frit made by melting three components of B2O3 is added can be molded and sintered at a low temperature of 1250 to 1300°C. The above-mentioned problems can be solved by using a low-temperature sintered alumina sintered body, and in particular, a low-temperature sintered alumina sintered body made by adding 3 to 8% by weight of the frit to alumina can be used to solve the above-mentioned problems. In the ternary composition diagram, the eutectic point of Al2O3 and CaO and B2O3
The composition ratio on the line connecting A l 20343
.. 70% by weight.

Ca041.90重量%、B2O314.40重量%の
組成割合のものを蝋石質坩堝で熔融してつくったAl2
O332.50重量%、 Ca036.80重量%、 
B2O38.90重量%。
Al2 made by melting a composition of 41.90% by weight of Ca0 and 14.40% by weight of B2O3 in a rotisserie crucible.
O332.50% by weight, Ca036.80% by weight,
B2O38.90% by weight.

5jO219,20重量%組成のフリットである低温焼
結アルミナ焼結体により、前述の問題点を解決し得たも
のである。
The above-mentioned problems can be solved by using a low temperature sintered alumina sintered body which is a frit having a composition of 5jO219 and 20% by weight.

作   用 前述のフリットをアルミナに添加することにより125
0〜1300’Cの低温で液相を作り、該液相によりア
ルミナ粒子間の焼結を促進させ、低温焼結を可能とする
ものである。
Effect By adding the above-mentioned frit to alumina, 125
A liquid phase is created at a low temperature of 0 to 1300'C, and the liquid phase promotes sintering between alumina particles, making low-temperature sintering possible.

実  施  例 以下、図面に示す予備試験例、実施例により本発明の構
成について説明する。
EXAMPLES The structure of the present invention will be explained below with reference to preliminary test examples and examples shown in the drawings.

本発明のアルミナの添加に使用するフリットは第1図に
示す3成分組成において、Al2O3とCaOとの共融
点とB2O3とを結ぶ線上にある組成割合、即ちA l
 20343.70重1%、 Ca041.90重量、
 B2O314.40重量%の組成割合のものを蝋石質
坩堝で熔融してつくったA l 20332.50重量
%、 Ca036.80重量%、 B2O38.90重
量%。
The frit used for adding alumina in the present invention has a composition ratio of three components shown in FIG.
20343.70 weight 1%, Ca041.90 weight,
A1 20332.50% by weight, Ca0 36.80% by weight, and B2O38.90% by weight were produced by melting a composition of 14.40% by weight of B2O3 in a waxite crucible.

SiO□19.20重量%組成のフリットである。This is a frit with a composition of 19.20% by weight of SiO□.

本試験を行うに先立って予備試験として白金坩堝で熔融
してつくったA l 20341.75重量%。
A1 20341.75% by weight was prepared by melting it in a platinum crucible as a preliminary test prior to conducting the main test.

Ca041.55重量%、B2O314.30重量%、
 5iO30,95重量%組成のフリットで行った。
Ca041.55% by weight, B2O314.30% by weight,
A frit having a composition of 5iO30 and 95% by weight was used.

(1)  予備試験 、前述の、白金坩堝で熔融してつくったフリットを平均
粒子径5.5μm(粗粒)と、3.6μm(微粒)との
2種類とし、それぞれを平均粒子径0.5μmのアルミ
ナに添加して試験を行った。
(1) Preliminary test: Frits made by melting in a platinum crucible as described above were made into two types: one with an average particle size of 5.5 μm (coarse particles) and one with an average particle size of 3.6 μm (fine particles), each with an average particle size of 0.5 μm. Tests were conducted by adding it to 5 μm alumina.

以下平均粒子径5.5μmのフリットを粗粒と、平均粒
子径3.6μmのフリットを微粒と称する。
Hereinafter, frits with an average particle diameter of 5.5 μm will be referred to as coarse particles, and frits with an average particle diameter of 3.6 μm will be referred to as fine particles.

前記粗粒には5μm以下の粒子が若干認められ、前記微
粒には5μm以上の粒子は認められず、1μm以下の粒
子が多く認められる。
Some particles of 5 μm or less are observed in the coarse particles, no particles of 5 μm or more are observed in the fine particles, and many particles of 1 μm or less are observed.

前記フリットの昇温収縮曲線は第6図に示す通りであり
、加熱減量曲線は第7図に示す通りである。1300″
Cで2時間放置した場合、減量率は約0.4%で、焼成
によるB2O3の蒸発は少く、焼成後も組成上は大きな
変化はな(ゝO 次に前記粗粒および微粒のフリットをそれぞれ平均粒子
径0.5μmのアルミナに15重量%添加した試料を1
500℃まで加熱した場合の昇温収縮曲線を第8図に示
す。同図で明らかなように、粗粒よりも微粒のフリット
を使用する方がよく焼き締ることか予想される。
The heating shrinkage curve of the frit is as shown in FIG. 6, and the heating loss curve is as shown in FIG. 7. 1300″
When left for 2 hours at C, the weight loss rate was about 0.4%, the evaporation of B2O3 during firing was small, and there was no major change in composition after firing (ゝO) Next, the coarse and fine frits were A sample containing 15% by weight of alumina with an average particle size of 0.5 μm was
FIG. 8 shows a heating shrinkage curve when heated to 500°C. As is clear from the figure, it is expected that the use of fine-grained frit will result in better baking performance than coarse-grained frit.

次に前記微粒フリットを15重量%、平均粒子径0.5
μmのアルミナに添加した試料を1280℃,1300
℃,1320℃までそれぞれ昇温し、その後2時間保持
した場合の等温収縮曲線を第9図に示す。同図で明らか
なように、 1280″Cで2時間保持した場合は僅かに収縮が継続
し、膨張は起らない。1300℃で2時間保持した場合
は約1時間は収縮が継続するが、その後は膨張する。1
320℃で2時間保持した場合は膨張に転する。膨張す
るものは好ましくない。
Next, the fine frit was added at 15% by weight and the average particle size was 0.5.
A sample added to μm alumina was heated at 1280℃ and 1300℃.
FIG. 9 shows isothermal contraction curves obtained when the temperature was raised to 1320°C and then held for 2 hours. As is clear from the figure, when held at 1280°C for 2 hours, the shrinkage continues slightly and no expansion occurs.When held at 1300°C for 2 hours, the shrinkage continues for about 1 hour, but After that, it expands.1
When held at 320°C for 2 hours, it begins to expand. I don't like things that expand.

以下1300℃以下の焼結について試験を行う。Below, a test will be conducted regarding sintering at 1300°C or lower.

平均粒子径0.5μmのアルミナに5.10゜15重量
%のフリットをそれぞれ添加し、1000kg/ ca
の圧で成形し6℃/minの昇温で1200”C、12
50″C、1300’Cで焼結し、得られた焼結体を調
査の結果、第1表、第2表に示す結果を得た。
Frit of 5.10° and 15% by weight was added to alumina with an average particle size of 0.5 μm, and 1000 kg/ca
molded at a pressure of 1200"C with a temperature increase of 6℃/min,
The sintered bodies were sintered at 50''C and 1300'C, and the results shown in Tables 1 and 2 were obtained as a result of investigating the obtained sintered bodies.

前述の結果から次の結論を得た。The following conclusions were drawn from the above results.

q第1表に示す如く、微粒のフリットを15重量%添加
したものは1300℃焼結で曲げ強さ3800kg/ 
crl 、 X密度3.60.F/cJ、微粒のフリッ
トを10重量%添加したものは1300℃焼結で曲げ強
さ3.350kg / ca 。
q As shown in Table 1, the material with 15% by weight of fine frit added has a bending strength of 3800 kg/kg when sintered at 1300°C.
crl, X density 3.60. F/cJ, the one with 10% by weight of fine frit added has a bending strength of 3.350 kg/ca when sintered at 1300°C.

嵩密度3.60 p / caとなり共に良好な焼結体
となる。
The bulk density is 3.60 p/ca, resulting in a good sintered body.

■第1表には示されていないが、フリット添加15重量
%のものを1250’Cで焼結の熟成を充分に行ったも
の(1250℃で4時間熟成)は嵩密度3.68p/c
tlで、第1表記載の1300℃で2時間熟成のものの
嵩密度3.60g/ldのものより嵩密度が大で、良好
な焼結体となる。
■Although it is not shown in Table 1, the bulk density of 15% frit-added material that has been sufficiently aged by sintering at 1250'C (aged for 4 hours at 1250°C) is 3.68 p/c.
tl, the bulk density was higher than that of the one aged at 1300° C. for 2 hours listed in Table 1, which had a bulk density of 3.60 g/ld, resulting in a good sintered body.

■粗粒の場合は、第2表に示す如く、嵩密度、曲げ強さ
共に低くいずれも不良である。
(2) In the case of coarse grains, as shown in Table 2, both bulk density and bending strength are low and both are poor.

■フリットを添加しないアルミナ単体のものは1200
℃、 1300℃では全く焼結しない。焼結させうる温
度は1500℃以上を必要とする。
■Alumina alone without frit added is 1200
℃, no sintering occurs at 1300℃. The temperature required for sintering is 1500°C or higher.

前述の予備試験は、白金坩堝でつくったフリットを使用
しているため、実用化、工業化は難しい。
The preliminary test mentioned above uses a frit made in a platinum crucible, so it is difficult to put it into practical use or industrialize.

(2)本試験 前述の予備試験の結果に基づき、前記 A 120343.70重量%、Ca041.90重量
%、 B2O314.40重量%の組成のものを蝋石質
坩堝で熔融してツくッたA 120332.50重量%
、CaO36,80重量%、 B2O38.90重量%
、 5iO219,20重量%のフリットを添加して本
試験を行った。
(2) Main test Based on the results of the preliminary test mentioned above, A with the composition of A 120343.70% by weight, Ca041.90% by weight, and B2O3 14.40% by weight was melted in a rosite crucible. 120332.50% by weight
, CaO36.80% by weight, B2O38.90% by weight
, 5iO219, 20% by weight of frit was added for this test.

a、前述の組成の平均粒子径3.6μm(微粒)のフリ
ットを平均粒子径0.5μmのアルミナに15重量%添
加した場合の昇温収縮曲線を第3表および第2図に示す
a. Table 3 and FIG. 2 show temperature-rise shrinkage curves when 15% by weight of frit having the above-described composition with an average particle size of 3.6 μm (fine particles) was added to alumina with an average particle size of 0.5 μm.

b、平均粒子径3.6μm(微粒)の前述の組成のフリ
ットを平均粒子径0.5μmのアルミナに3.5.8の
各重量%(3〜8重量%)添加し、それぞれを1100
0t / caの圧で成形し、6℃/minの昇温で1
300℃で焼結した。該焼結体の試験結果を第4表およ
び第3図、第4図、第5図に示す。
b. Frits of the above composition with an average particle size of 3.6 μm (fine particles) were added to alumina with an average particle size of 0.5 μm in an amount of 3.5.8% by weight (3 to 8% by weight), and 1100% of each was added.
Molded at a pressure of 0t/ca and heated at a rate of 6°C/min.
It was sintered at 300°C. The test results of the sintered body are shown in Table 4 and FIGS. 3, 4, and 5.

尚、AN 203  CaOB2O3の3成分からなる
前述の組成のものを白金坩堝で熔融してつくった平均粒
子径3.6μmの微粒子フリットを平均粒子径0.5μ
mのアルミナに添加した組成物を1000&g/ ct
lの圧で成形し1300℃で焼結したところの、前記フ
リットを10重量%添加した焼結体は曲げ強さ3.35
0に9/(211%同じ<15重量%添加した焼結体は
曲げ強さ3800&g/ cAのいずれも高い曲げ強さ
のものとなるが、白金坩堝を使用するため工業化は難し
い。
Furthermore, a fine particle frit with an average particle size of 3.6 μm made by melting the above-mentioned composition consisting of the three components of AN 203 CaOB2O3 in a platinum crucible was used as a fine particle frit with an average particle size of 0.5 μm.
Composition added to m alumina at 1000g/ct
The sintered body to which 10% by weight of the frit was added had a bending strength of 3.35 when molded at a pressure of 1 and sintered at 1300°C.
0 to 9/(211% Same <15% by weight) The sintered body has a high bending strength of 3800 g/cA, but it is difficult to commercialize it because a platinum crucible is used.

前述の通り本発明の、Al 203  CaOB2O3
の3成分からなる第1図中F点の組成のもの、即ちA 
120343.70重量%、Ca041.90重量%、
 B2O314.40重量%の組成物を蝋石質坩堝で熔
融してつくったA7I20332.50重量%、 Ca
036.8重量%、B2O33,90重量%、 5i(
h19.20重量%の組成で、平均粒子径3.6μmの
微粒子フリットを平均粒子径0.5μmのアルミナに各
3.5.8重量%(3〜8重量%)添加し、1100(
la/ cJの圧で成形し1250’Cで焼結し熟成を
充分に行うか、1250℃より高く1300℃までの範
囲の温度で焼結した焼結体は嵩密度が大で、気孔も殆ど
なく、第4表に示す通り、いずれも3000kg/ c
rA以上の曲げ強さを有する。
As mentioned above, Al 203 CaOB2O3 of the present invention
The composition at point F in Figure 1 consists of three components, that is, A
120343.70% by weight, Ca041.90% by weight,
A7I20332.50% by weight, Ca made by melting a composition of 14.40% by weight of B2O3 in a waxy crucible
036.8% by weight, B2O33, 90% by weight, 5i(
h19. With a composition of 20% by weight, 3.5.8% by weight (3 to 8% by weight) of fine particle frit with an average particle size of 3.6 μm was added to alumina with an average particle size of 0.5 μm, and
A sintered body formed under a pressure of la/cJ and sintered at 1250'C for sufficient aging, or sintered at a temperature higher than 1250°C up to 1300°C has a high bulk density and almost no pores. As shown in Table 4, all of them are 3000kg/c.
It has a bending strength of rA or more.

アルミナ単体は1300℃では全く焼結せず、1500
℃以上の温度を必要とする。
Alone alumina does not sinter at all at 1300°C, and at 1500°C
Requires a temperature of ℃ or higher.

発明の効果 本発明はAl2O3,CaO9B203からなるものを
熔融してつくったフリットをアルミナに添加した組成物
を成形し、1250°〜1300’cの低温で膨張する
ことなく嵩密度の高いものを焼結することができたもの
であり、アルミナ焼結体として焼結温度を250℃以上
下げることができ、しかも3000/cg/ caの曲
げ強さの焼結体を実現することができ、工業化も容易で
コスト[氏減も大きいという各種の効果を奏するもので
ある。
Effects of the Invention The present invention molds a composition in which a frit made by melting Al2O3 and CaO9B203 is added to alumina, and sinters it at a low temperature of 1250° to 1300'c without expanding and having a high bulk density. It is possible to lower the sintering temperature by 250℃ or more as an alumina sintered body, and also to realize a sintered body with a bending strength of 3000/cg/ca, making it possible to industrialize it. It has various effects such as ease and cost reduction.

特にフリットを3〜8重量%添加することにより、就中
Al2O343.70重量%、 Ca041.90重量
%、 B2O314.40重量%の組成割合のものを蝋
石質坩堝で溶融してつくったフリットを添加することに
より前述の効果を確実に奏することができる。
In particular, by adding 3 to 8% by weight of frit, a frit made by melting a composition of 43.70% by weight of Al2O3, 1.90% by weight of Ca04, and 14.40% by weight of B2O3 in a Rouseki crucible is added. By doing so, the aforementioned effects can be reliably achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフリットと3成分組成図、第2図は実施例の昇
温収縮曲線図、第3図は同上フリット添加重量%−収縮
率線図、第4図は同上フリット添加重量%−嵩密度線図
、第5図は同上フリット添加重量%−曲げ強さ線図、第
6図は比較例(予備試験)の昇温収縮曲線図、第7図は
同上加熱減量曲線図、第8図は同上昇温収縮曲線図、第
9図は同上等温収縮曲線図である。
Figure 1 is a frit and three component composition diagram, Figure 2 is a temperature-rise shrinkage curve diagram of the example, Figure 3 is a graph showing the frit addition weight % vs. shrinkage rate diagram, and Figure 4 is the frit addition weight % vs bulk. Density diagram, Figure 5 is the above frit addition weight % - bending strength diagram, Figure 6 is the heating shrinkage curve of the comparative example (preliminary test), Figure 7 is the heating loss curve of the same, Figure 8 9 is a rising temperature contraction curve diagram of the same, and FIG. 9 is an isothermal contraction curve diagram of the same.

Claims (3)

【特許請求の範囲】[Claims] 1.アルミナに、Al_2O_3CaO,B_2O_3
の3成分が熔融されてつくられたフリットが、添加され
てなる組成物の成形体が1250〜1300℃で焼結さ
れて得られる低温焼結アルミナ焼結体。
1. Alumina, Al_2O_3CaO, B_2O_3
A low-temperature sintered alumina sintered body obtained by sintering a molded body of a composition to which a frit made by melting the three components is sintered at 1250 to 1300°C.
2.フリットが3〜8重量%添加されてなる特許請求の
範囲第1項記載の低温焼結アルミナ焼結体。
2. The low-temperature sintered alumina sintered body according to claim 1, wherein 3 to 8% by weight of frit is added.
3.フリットが、3成分組成図においてAl_2O_3
とCaOとの共融点とB_2O_3点とを結ぶ線上にあ
る組成割合である、Al_2O_343.70重量%,
CaO41.90重量%、B_2O_314.40重量
%の組成割合のものが蝋石質坩堝で熔融されてつくられ
たフリットである特許請求の範囲第1項または第2項記
載の低温焼結アルミナ焼結体。
3. The frit is Al_2O_3 in the three-component composition diagram.
Al_2O_343.70% by weight, which is the composition ratio on the line connecting the eutectic point of and CaO and the B_2O_3 point,
The low-temperature sintered alumina sintered body according to claim 1 or 2, which is a frit made by melting a composition of 41.90% by weight of CaO and 314.40% by weight of B_2O_ in a waxite crucible. .
JP62297100A 1987-11-25 1987-11-25 Low-temperature sintered alumina Pending JPH01138170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297100A JPH01138170A (en) 1987-11-25 1987-11-25 Low-temperature sintered alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297100A JPH01138170A (en) 1987-11-25 1987-11-25 Low-temperature sintered alumina

Publications (1)

Publication Number Publication Date
JPH01138170A true JPH01138170A (en) 1989-05-31

Family

ID=17842202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297100A Pending JPH01138170A (en) 1987-11-25 1987-11-25 Low-temperature sintered alumina

Country Status (1)

Country Link
JP (1) JPH01138170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174354A (en) * 1989-11-30 1991-07-29 Kyocera Corp Aluminum oxide-based sintered body and production thereof
EP0810189A1 (en) * 1996-05-28 1997-12-03 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Liquid phase sintering process for alumina ceramics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4864587A (en) * 1971-12-08 1973-09-06
JPS61222957A (en) * 1985-03-29 1986-10-03 株式会社住友金属セラミックス Low temperature burnt ceramics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4864587A (en) * 1971-12-08 1973-09-06
JPS61222957A (en) * 1985-03-29 1986-10-03 株式会社住友金属セラミックス Low temperature burnt ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174354A (en) * 1989-11-30 1991-07-29 Kyocera Corp Aluminum oxide-based sintered body and production thereof
EP0810189A1 (en) * 1996-05-28 1997-12-03 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Liquid phase sintering process for alumina ceramics

Similar Documents

Publication Publication Date Title
Hoffman et al. Diphasic xerogels, A new class of materials: phases in the system Al2O3‐SiO2
JPS62260782A (en) Hot bonded fibrous product
US3317298A (en) Process for joining surfaces of refractory material with a mno-sio2-al2o3 system
US3246972A (en) Method of making ceramic article
JPS5924751B2 (en) Sintered shaped body
EP0081061B1 (en) Low thermal expansion modified cordierites
US4376742A (en) Fugitive liquid phase densification of silicon nitride
US2098812A (en) Ceramic material
US3480452A (en) Cordierite ceramic process and product
US4857486A (en) Adhesive for oxide ceramics and method of bonding oxide ceramics using it
JPH01138170A (en) Low-temperature sintered alumina
JP6572250B2 (en) Aluminum melt filter and manufacturing method thereof
US3251700A (en) Refractory compositions
US3184370A (en) Ceramic process and product
JPS63103877A (en) Manufacture of mullite base porous body
US3294496A (en) Metal ceramic compositions
CN113955943A (en) Complex phase glass ceramics and preparation method thereof
US2803554A (en) Low loss ceramic insulators and method of manufacture
US3131073A (en) Ceramic material and method of preparation
US2985547A (en) Method for preparing coated bodies
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JPH0224779B2 (en)
US3421202A (en) Process for joining metals and ceramics having grossly different coefficients of thermal expansion
JPS6047227B2 (en) Method for manufacturing heat-resistant, high-strength sintered bodies
JPS61168570A (en) Boron nitride sintered body and manufacture