JPH01137996A - Optical resolution of optically active alcohol - Google Patents

Optical resolution of optically active alcohol

Info

Publication number
JPH01137996A
JPH01137996A JP29218387A JP29218387A JPH01137996A JP H01137996 A JPH01137996 A JP H01137996A JP 29218387 A JP29218387 A JP 29218387A JP 29218387 A JP29218387 A JP 29218387A JP H01137996 A JPH01137996 A JP H01137996A
Authority
JP
Japan
Prior art keywords
alcohol
optically active
formula
optical resolution
tables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29218387A
Other languages
Japanese (ja)
Inventor
Tomoya Kitatsume
智哉 北爪
Takashi Yamazaki
孝 山崎
Hitoshi Iwatsubo
岩坪 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP29218387A priority Critical patent/JPH01137996A/en
Publication of JPH01137996A publication Critical patent/JPH01137996A/en
Priority to US07/396,421 priority patent/US5047346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To easily perform optical resolution of an optically active alcohol in high yield, by esterifying an optically active alcohol produced by modifying a derivative of propargyl alcohol with trifluoromethyl and carrying out the asymmetric hydrolysis of the ester with a lipid decomposition enzyme. CONSTITUTION:The objective optically active compound of formula II and III can be produced by esterifying an alcohol compound of formula I [Ph is (substituted)phenyl] and carrying out the asymmetric hydrolysis of the ester with a lipid decomposition enzyme such as lipase. The esterification is performed e.g. by reacting the alcohol of formula I with acetyl chloride in the presence of pyridine.

Description

【発明の詳細な説明】 主粟上型机里公互 プロパギルアルコールの誘導体をトリフルオロメチル基
によって修飾することによって生理活性物質および液晶
化合物が容易且つ高収率で得られる。
DETAILED DESCRIPTION OF THE INVENTION Biologically active substances and liquid crystal compounds can be obtained easily and in high yields by modifying derivatives of the main Awagami-type Kishiri-Kotopropargyl alcohol with trifluoromethyl groups.

′ネーおよび 日の” しようとするp 占プロパギル
アルコールの誘導体をトリフルオロメチル基によって修
飾することによってトリフルオロメチル基に隣接する炭
素原子上に高い不斉が誘導でき、かつ種々の官能基への
変換を容易におこなうことができる。
By modifying a derivative of p-propargyl alcohol with a trifluoromethyl group, a high level of chirality can be induced on the carbon atom adjacent to the trifluoromethyl group, and it is possible to induce various functional groups. can be easily converted.

出発原料として入手容易なプロパギルアルコールとベン
ジルクロリドとを用いエーテル化合物を得る。
An ether compound is obtained using easily available propargyl alcohol and benzyl chloride as starting materials.

HCミC−CHzOH+  PhCl1z(J!→HC
= C−CHzOCH2Phさらに得られたエーテル化
物をグリニヤール試薬により金属−水素交換させてアニ
オンへ導き、次にこれにトリフルオロメチル基を導入し
てケトン(11を得た。
HCmiC-CHzOH+ PhCl1z(J!→HC
= C-CHzOCH2Ph Further, the obtained etherified product was subjected to metal-hydrogen exchange using a Grignard reagent to lead to an anion, and then a trifluoromethyl group was introduced thereto to obtain a ketone (11).

得られたケトン(1)は精製が困難であるため、ケトン
ノカルホニル基を還元してアルコール(2)へ誘導した
後単離精製した。
Since the obtained ketone (1) was difficult to purify, the ketone nocarbonyl group was reduced to derive alcohol (2), which was then isolated and purified.

得られた光学活性プロパギルアルコール誘導体(2)お
よび(4)の光学分割をおこなった。
The optically active propargyl alcohol derivatives (2) and (4) obtained were subjected to optical resolution.

本発明は一般式 (式中phは置換または未置換フェニル基である)で表
わされるアルコール化合物をエステル化(3)シた後脂
質分解酵素例えばリパーゼで不斉加水分解して、一般式 %式% (式中phは上記と同意義を有する) で表わされる化合物を得る光学活性アルコールの光学分
割法に関するものである。
In the present invention, an alcohol compound represented by the general formula (in the formula, ph is a substituted or unsubstituted phenyl group) is esterified (3) and then asymmetrically hydrolyzed with a lipolytic enzyme, such as lipase, to obtain the alcohol compound represented by the general formula %. % (wherein pH has the same meaning as above) The present invention relates to an optical resolution method of an optically active alcohol to obtain a compound represented by % (wherein pH has the same meaning as above).

また、一般式 %式%(4) (式中phは上記と同意義である) で表わされるアルコール化合物についても上記と全く同
様にしてエステル化(5)後脂質分解酵素例えぼりバー
ゼで不斉加水分解して一般式 %式%(4) (式中phは上記と同意義を有する) で表わされる化合物を得る光学活性アルコールの光学分
割法に関するものである。
In addition, for the alcohol compound represented by the general formula % formula % (4) (in which pH has the same meaning as above), after esterification (5) in exactly the same manner as above, a lipolytic enzyme, e.g. This invention relates to an optical resolution method of an optically active alcohol to obtain a compound represented by the general formula % (4) (wherein pH has the same meaning as above) by hydrolysis.

光学活性アルコールの光学分割法を説明すれば次のよう
である。
The optical resolution method for optically active alcohols is explained as follows.

(A)不斉放水分解用 原料のアルコール化合物(2)をアセタートまたはイソ
ブチラードのエステル(3)に変換後、脂質分解酵素例
えばリパーゼMYおよびリパーゼPなどで不斉分解する
ことによって、光学活性化合物を得た。
(A) After converting the alcohol compound (2), which is a raw material for asymmetric hydrolysis, into an ester of acetate or isobutylade (3), the optically active compound is converted into an optically active compound by asymmetric decomposition using a lipolytic enzyme such as lipase MY and lipase P. Obtained.

(B)坏肩助lり障穎刈 アルコール化合物(2)のラセミ体を例えば還元性iで
還元して対応するアルケン(4)にした後、アセタート
またはイソブチラードのエステル(5)に変換後、上記
と同様にして脂質分解酵素例えばリパーゼMYおよびリ
パーゼPなどで不斉分解することによって光学活性化合
物(R)−(4) 、(S)−(5)を得た。
(B) The racemic form of the alcohol compound (2) is reduced to the corresponding alkene (4), for example with reducing i, and then converted to the acetate or isobutylade ester (5), Optically active compounds (R)-(4) and (S)-(5) were obtained by asymmetric decomposition using lipolytic enzymes such as lipase MY and lipase P in the same manner as above.

R π および (5)′ 次に実施例を掲げて本発明を説明するが、これに限定さ
れるものではない。
R π and (5)′ Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto.

実施例 2Ph )12Ph a)アセタート (3)の合成 窒素気流下減圧でよく乾燥させた50m7!の三つロフ
ラスコに、塩化メチレン15m11アルコ−ル(211
,22g (5,00mmoff)ならびに塩化アセチ
ル0.43 ml (6,05mmol)を加え、氷浴
シこより冷却した。ここに、ピリジン0.49mj!(
6,06mmoj! )を滴下し、室温に戻して終夜攪
陣を行なった。1規定の塩酸水溶液を加えて反応を停止
させ、塩化メチレンで抽出後、飽和炭酸水素ナトリウム
水溶液で洗浄し、無水硫酸マグネシウムで乾燥させた。
Example 2 Ph) 12 Ph a) Acetate Synthesis of (3) 50 m7 well dried under reduced pressure under a nitrogen stream! In a three-necked flask, add 15 ml of methylene chloride and 11 alcohol (211
, 22 g (5,00 mmoff) and 0.43 ml (6,05 mmol) of acetyl chloride were added, and the mixture was cooled in an ice bath. Here, 0.49 mj of pyridine! (
6,06 mmoj! ) was added dropwise, the mixture was returned to room temperature, and stirred overnight. The reaction was stopped by adding a 1N aqueous hydrochloric acid solution, extracted with methylene chloride, washed with a saturated aqueous sodium bicarbonate solution, and dried over anhydrous magnesium sulfate.

溶媒を減圧上留去したのち、カラムクロマトグラフィー
により精製を行ない、目的とするアセタートを1.28
1 g (4,47mmon、89%yield)を得た。
After distilling off the solvent under reduced pressure, purification was performed by column chromatography to obtain the desired acetate at a concentration of 1.28
1 g (4.47 mmon, 89% yield) was obtained.

’HNMR(CCl 、)  δ2.17(s、 3!
(、CtL+C(0) )4.15(d、 2H,JH
−o =1.1Hz。
'HNMR (CCl,) δ2.17 (s, 3!
(, CtL+C(0) )4.15(d, 2H, JH
−o = 1.1Hz.

C三CCH2)、4.57(s、 2H。C3CCH2), 4.57 (s, 2H.

CH2Ph ”)、5.84(m、 LH。CH2Ph”), 5.84 (m, LH.

CF、C,H(01() )、7.67(s、 5H。CF, C, H (01()), 7.67(s, 5H.

ph > 19F NMR(C(J! 、)  δ−1,83(d
、 JH−F −6,2Hz )IR(neat ) 
   3050.2850(CH2,CH)、1760
(C=O) cm−’ なお、対応するイソブチラードについてもアセタートの
場合と全く同様に合成した。収率99%。
ph > 19F NMR (C(J!,) δ-1,83(d
, JH-F -6,2Hz)IR(neat)
3050.2850 (CH2, CH), 1760
(C=O) cm-' The corresponding isobutylade was also synthesized in exactly the same manner as in the case of acetate. Yield 99%.

’HNMR(CCjl! 4.)  δ1.27(d、
 6H,JH−o =6.8Hz。
'HNMR (CCjl! 4.) δ1.27 (d,
6H, JH-o = 6.8Hz.

tjj3)、2.67(sep、、 IH,(CH:+
)+4.15(d、 2■+JH−o =2.3Hz+
CミCCH2)、4.55(s、 2H。
tjj3), 2.67(sep,, IH, (CH:+
)+4.15(d, 2■+JH-o =2.3Hz+
CmiCCH2), 4.55(s, 2H.

CH2Ph )、5.87(m、 LH。CH2Ph), 5.87 (m, LH.

CF2Cl(OH) )、7.33(s、 5H。CF2Cl(OH)), 7.33(s, 5H.

ph > 19F NMR(CCIl、)  δ−0,83(d、
 JH−r =5.6Hz )IR(nea’t ) 
   3000.2950(CH3,CI(2,CH)
、1760(C=O) cm” b)アセタート(3)の不斉加水分解 500mnのナス型フラスコにアセタート(3)6.9
64 g (24,3mmo6)とリパーゼMY8.1
g (243000units)ならびに蒸留水300
mj!を加え、恒温槽で40−41℃に保ちながら攪拌
を続けた。加水分解が進行するにつれて系内に酢酸が生
成してくるが、これを・1規定の水酸化ナトリウム水溶
液で滴定しながら加水分解の進行度をチエツクした。適
当な加水分解率が得られたところで、反応溶液をセライ
ト濾過したのちに酢酸エチルで抽出を行なった。無水硫
酸マグネシウムで乾、CH)、燥、低沸点物を減圧留去
し、粗生成物をシリカゲルカラムクロマトグラフィーに
より精製し、対応するアルコール(2)1.099 g
 (4,50mmo11光学純度88%ee+ [αコ
D−1.68° (C1,’IO1MeOH) )なら
びにアセターH3)4.867 g (17,0mmo
 (1、[α]o+16.10° (c 1.26 、
MeOH))を得たく回収率88%)。なお、加水分解
酵素としてリパーゼPをもちいた場合なども、すべて同
様に行なった。結果は、下表に示した。
ph > 19F NMR (CCIl,) δ-0,83 (d,
JH-r=5.6Hz)IR(nea't)
3000.2950(CH3,CI(2,CH)
, 1760 (C=O) cm” b) Asymmetric hydrolysis of acetate (3) Acetate (3) 6.9 in a 500 mn eggplant-shaped flask
64 g (24,3 mmo6) and lipase MY8.1
g (243,000 units) and distilled water 300
mj! was added, and stirring was continued while maintaining the temperature at 40-41°C in a constant temperature bath. As hydrolysis progresses, acetic acid is produced in the system, and the progress of hydrolysis was checked while titrating this with a 1N aqueous sodium hydroxide solution. When a suitable hydrolysis rate was obtained, the reaction solution was filtered through Celite and then extracted with ethyl acetate. Dry over anhydrous magnesium sulfate (CH), remove low boilers under reduced pressure, and purify the crude product by silica gel column chromatography to obtain 1.099 g of the corresponding alcohol (2).
(4,50mmo11 optical purity 88%ee+ [αcoD-1.68° (C1,'IO1MeOH)) and aceter H3) 4.867 g (17,0mmo
(1, [α]o+16.10° (c 1.26,
MeOH)) was obtained with a recovery rate of 88%). The same procedure was also carried out when lipase P was used as the hydrolytic enzyme. The results are shown in the table below.

アセタート   リパーゼMY    27     
 88(R)アセタート   リパーゼP    37
      50(S)イソブチレート リパーゼMY
    31      40(β)イソブチレート 
リパーゼP    20      84(S)1’H
I よく乾燥した50m1の三つロフラスコに、窒素気流下
でNaA j! H2(OCI(ZCH20CH3) 
z (RedA Il■)の3、2 M )ルエン溶液
2.9 ml (10mmol)ならびに乾燥したジエ
チルエーテル10mj2を加えて水浴で冷却した。ここ
に、アルコール(211,22g(5,OOmmoj2
 )を滴下して、この温度で10分間、さらに室温で終
夜攪拌を続けた。1規定の塩酸水溶液を加えて反応を停
止させ、エーテル抽出、無水硫酸マグネシウムで乾燥、
溶媒の減圧留去を行なった。粗生成物をシリカゲルカラ
ムクロマトグラフィーにより精製しくn−ヘキサン/酢
酸エチル=2/1) 、期待する化合物を80%の収率
で得た。
Acetate lipase MY 27
88(R) Acetate Lipase P 37
50(S) Isobutyrate Lipase MY
31 40(β)isobutyrate
Lipase P 20 84(S)1'H
I In a well-dried 50 ml three-necked flask, add NaA j! under a stream of nitrogen. H2(OCI(ZCH20CH3)
2.9 ml (10 mmol) of a 3.2 M) toluene solution of z (RedA Il■) and 10 mj2 of dry diethyl ether were added, and the mixture was cooled in a water bath. Here, alcohol (211,22g (5,OOmmoj2
) was added dropwise, and stirring was continued at this temperature for 10 minutes and then at room temperature overnight. The reaction was stopped by adding 1N aqueous hydrochloric acid solution, extracted with ether, dried over anhydrous magnesium sulfate,
The solvent was distilled off under reduced pressure. The crude product was purified by silica gel column chromatography (n-hexane/ethyl acetate = 2/1) to obtain the expected compound in a yield of 80%.

’HNMR(CCβ4) δ3.94(bs、 IH,
OH) 、4.20(d+ 2HIJH−H,=5−4
H2ICH=C1lCHz  )  、4.47(m、
  IH。
'HNMR (CCβ4) δ3.94 (bs, IH,
OH), 4.20(d+2HIJH-H,=5-4
H2ICH=C1lCHz), 4.47(m,
IH.

CF3C1((OH) )、4.73(s、 2H。CF3C1 ((OH)), 4.73(s, 2H.

CH2Ph )、6.05(ad、 In。CH2Ph), 6.05 (ad, In.

JH−1(=5.3,16.5Hz、 CFiCHC1
i□ )、6.37(dt、 JH−H=5.4.16
.5)1z。
JH-1 (=5.3, 16.5Hz, CFiCHC1
i□), 6.37 (dt, JH-H=5.4.16
.. 5) 1z.

CFICHCH−CH) 、7.68(s、 5H。CFICHCH-CH), 7.68 (s, 5H.

Ph ) I9F NMR(CCβ4) δ0.75(d、 JH
−F −6,6Hz )IR(neat )    3
400(O)1)、3050.2880(C)12.C
[)、980(C=Ctrans) cm−’【 許 +  CFaCH−CH=CH−CHzOCHzPh(
S) −(5) a)アセタート (5)の合成 アセタート(3)の場合と同様にして、アルコール(4
10,985g (4,OOmmoffi) 、塩化ア
セチル0.34 ml (4,80mmoj2)を塩化
メチレン10m1にt容解させ、0℃においてとリジン
0.39m1(4,80mmoff)を加え、室温に戻
した後終夜攪拌した。l規定の塩酸水溶液を加えて反応
を停止させ、飽和の炭酸水素ナトリウム水溶液で洗浄し
た後、無水硫酸マグネシウムで乾燥させ、溶媒を減圧留
去した。粗生成物をシリカゲルカラムクロマトグラフィ
ーで精製して、望むアセタート(5)を76%の収率で
得た。
Ph) I9F NMR (CCβ4) δ0.75 (d, JH
-F -6,6Hz)IR(neat)3
400(O)1), 3050.2880(C)12. C
[), 980 (C=Ctrans) cm-'[ + CFaCH-CH=CH-CHzOCHzPh(
S) -(5) a) Synthesis of acetate (5) In the same manner as in the case of acetate (3), alcohol (4
10,985 g (4,00 mmoff) and 0.34 ml (4,80 mmoff) of acetyl chloride were dissolved in 10 ml of methylene chloride, and at 0°C, 0.39 ml (4,80 mmoff) of lysine was added and the mixture was returned to room temperature. After that, the mixture was stirred overnight. The reaction was stopped by adding a normal aqueous solution of hydrochloric acid, washed with a saturated aqueous sodium bicarbonate solution, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The crude product was purified by silica gel column chromatography to obtain the desired acetate (5) in 76% yield.

’HNMR(CC14)  62.25(s、3H,C
H,co)、4.25(d、 2H,J、−o =5.
3Hz。
'HNMR (CC14) 62.25 (s, 3H, C
H, co), 4.25 (d, 2H, J, -o = 5.
3Hz.

CH=CHC1(z ) 、4.75(’s、 2H。CH=CHC1(z), 4.75('s, 2H.

CH,ph )、6.05(dd、  iH。CH, ph), 6.05 (dd, iH.

Jo−o =8.1.15.6H2,CFICH(JI
= )、5.96(m、 LH,CF3CH)  、6
.42(dt、  Jll−H□5.3,15.6Hz
Jo-o =8.1.15.6H2, CFICH(JI
= ), 5.96 (m, LH, CF3CH), 6
.. 42 (dt, Jll-H□5.3, 15.6Hz
.

CH=CHC1(=CH)  、7.70(5I5R。CH=CHC1 (=CH), 7.70 (5I5R.

ph ) !9F NMR(CCffi 、、)   δ−1,8
3(d、  Jo−y =8.1)1z )IR(ne
at )     3050.2900 (CHZ 、
 CH)、1760(C=O)  、970(C=Ct
rans)  am−’b)アセタート (5)の) 
■ ゝ” ひ50mβのナス型フラスコにアセター) 
+510.900g (3,00mmonりとリパーゼ
MY0.54g(16200units )ならびに蒸
留水30mffを加え、恒温槽で40−41°Cに保ち
ながら攪拌を続けた。
ph)! 9F NMR (CCffi, ) δ-1,8
3(d,Jo-y =8.1)1z)IR(ne
at) 3050.2900 (CHZ,
CH), 1760 (C=O), 970 (C=Ct
rans) am-'b) acetate (5))
■ ゝ” Acetar in a 50mβ eggplant-shaped flask)
+510.900 g (3,00 mm) of lipase MY0.54 g (16,200 units) and 30 mff of distilled water were added, and stirring was continued while maintaining the temperature at 40-41°C in a constant temperature bath.

加水分解が進行するにつれて系内に酢酸が生成してくる
が、これを1規定の水酸化ナトリウム水溶液で滴定しな
がら加水分解の進行度をチエツクした。およそ30%の
加水分解率が達成されたところで、反応溶液をセライト
濾過したのちに酢酸工□チルで抽出を行なった。無水硫
酸マグネシウムで乾燥、低沸点物を減圧留去し、粗生成
物をシリカゲルカラムクロマトグラフィーにより精製し
、対応するアルコール(R)−(4)  0.174 
g (0,71mmof!s光学純度88%ees[α
]D+7.91゜(c 1.23 、MeOH) )な
らびにアセタート(S)−(5)0.573 g (1
,99mmo#)を得た(回収率90%)。
As hydrolysis progresses, acetic acid is produced in the system, and the progress of hydrolysis was checked while titrating this with a 1N aqueous sodium hydroxide solution. When a hydrolysis rate of approximately 30% was achieved, the reaction solution was filtered through Celite and then extracted with ethyl acetate. Dry over anhydrous magnesium sulfate, remove low-boiling substances under reduced pressure, and purify the crude product by silica gel column chromatography to obtain the corresponding alcohol (R)-(4) 0.174
g (0,71 mmof!s optical purity 88%ees [α
] D + 7.91° (c 1.23 , MeOH) ) and acetate (S)-(5) 0.573 g (1
, 99 mmo#) was obtained (recovery rate 90%).

又里少羞果 出発原料として入手容易なプロパギルアルコールから誘
導された光学活性アルコール(ラセミ体)を脂質分解酵
素により高収率で光学分割することができた。
An optically active alcohol (racemate) derived from propargyl alcohol, which is readily available as a starting material, could be optically resolved in high yield using a lipolytic enzyme.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼(2) (式中Phは置換または未置換フェニル基である) で表わされるアルコール化合物をエステル化した後脂質
分解酵素で不斉加水分解して、 一般式 ▲数式、化学式、表等があります▼−(2) および ▲数式、化学式、表等があります▼−(3) (式中Phは上記と同意義を有する) で表わされる化合物を得ることを特徴とする光学活性ア
ルコールの光学分割法。
(1) General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (2) (In the formula, Ph is a substituted or unsubstituted phenyl group) After esterifying the alcohol compound, it is asymmetrically hydrolyzed with a lipolytic enzyme. Compounds represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼-(2) and ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼-(3) (In the formula, Ph has the same meaning as above) An optical resolution method for an optically active alcohol, characterized in that it obtains the following:
(2)一般式 ▲数式、化学式、表等があります▼(4) (式中Phは上記と同意義を有する) で表わされるアルコール化合物をエステル化した後脂質
分解酵素で不斉加水分解して一般式▲数式、化学式、表
等があります▼−(4) および ▲数式、化学式、表等があります▼−(5) (式中Phは上記と同意義を有する) で表わされる化合物を得ることを特徴とする光学活性ア
ルコールの光学分割法。
(2) General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (4) (In the formula, Ph has the same meaning as above) After esterifying the alcohol compound, it is asymmetrically hydrolyzed with a lipolytic enzyme. To obtain a compound represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼-(4) and ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼-(5) (In the formula, Ph has the same meaning as above) An optical resolution method for optically active alcohols.
JP29218387A 1987-11-20 1987-11-20 Optical resolution of optically active alcohol Pending JPH01137996A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29218387A JPH01137996A (en) 1987-11-20 1987-11-20 Optical resolution of optically active alcohol
US07/396,421 US5047346A (en) 1987-11-20 1989-08-21 Optically active 3-(2-trifluoro-1-hydroxyethyl)propenyl benzyl ether, derivatives thereof, method for preparing the same and use thereof for liquid crystal compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29218387A JPH01137996A (en) 1987-11-20 1987-11-20 Optical resolution of optically active alcohol

Publications (1)

Publication Number Publication Date
JPH01137996A true JPH01137996A (en) 1989-05-30

Family

ID=17778635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29218387A Pending JPH01137996A (en) 1987-11-20 1987-11-20 Optical resolution of optically active alcohol

Country Status (1)

Country Link
JP (1) JPH01137996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097075A (en) * 1989-10-16 1992-03-17 Showa Shell Sekiyu Kabushiki Kaisha 1,1,1-trifluoro-2-hydroxy compound
EP0714984A2 (en) 1994-11-29 1996-06-05 The Nisshin Oil Mills, Ltd. Process for producing optically active alcohol containing phenyl group

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097075A (en) * 1989-10-16 1992-03-17 Showa Shell Sekiyu Kabushiki Kaisha 1,1,1-trifluoro-2-hydroxy compound
EP0714984A2 (en) 1994-11-29 1996-06-05 The Nisshin Oil Mills, Ltd. Process for producing optically active alcohol containing phenyl group
US5600027A (en) * 1994-11-29 1997-02-04 The Nisshin Oil Mills, Ltd. Process for producing optically active alcohol containing phenyl group

Similar Documents

Publication Publication Date Title
JPS63284184A (en) Optically active compound and production thereof
JPH01137996A (en) Optical resolution of optically active alcohol
HU225765B1 (en) Process for preparing intermediates for the synthesis of antifungal agents
EP0519763B1 (en) Cyclohexylbutyric acid derivatives and their use in the production of optically active cyclohexylnorstatine
JPH04149151A (en) Production of 4-bromo-3-hydroxybutyric acid ester derivative
JPH10245369A (en) Production of serine derivative
JP3129775B2 (en) Method for producing optically active secondary alcohol compound
US5502221A (en) Process for producing cyclohexylbutyric acid derivative
JP3673603B2 (en) Process for producing optically active 2,4,4-trimethyl-2-cyclohexen-1-ol and esters thereof
JP2614259B2 (en) Optically active fluorinated alcohol
JP3121656B2 (en) Optically active glycidol derivative and method for producing the same
US6265209B1 (en) Intermediates and improved processes for the preparation of neplanocin A
JP3134786B2 (en) 2-Azabicyclo [3.3.0] octane derivatives, their production and optical resolution of diols or amino alcohols
JP3129776B2 (en) Method for producing optically active α-hydroxyalkene derivative
JPS61289899A (en) Production of optically active 2-halo-1-phenyl-ethanol and ester thereof
CN115710213A (en) Preparation method of cis-chiral 3-fluoro-4-hydroxypiperidine and derivatives thereof
JPH02235850A (en) Production of hydroxy-n-acyl-alpha-amino acid derivative, oligomer and lactone thereof
JP2974181B2 (en) A new method for producing cyclobutanol
JPH04124157A (en) Production of optically active 4-chloro-3-hydroxybutanoic acid and its ester
JP4135258B2 (en) NOVEL COMPOUND, PROCESS FOR PRODUCING THE SAME AND INTERMEDIATE
JP2852796B2 (en) Optically active 1,2-diphenylcyclohexane-1,2-diol and its preparation
JP3876079B2 (en) Process for producing 1,24-dihydroxycholesterols
US20030162281A1 (en) Intermediates and improved processes for the preparation of neplanocin A
JPH09169780A (en) Production of 3-chloro-4-silyloxy-2-cyclopenten-1-one compound
JPH0660114B2 (en) Optically active alcohol compound